$1.50

Software Arts Technical Note
SATN-18

PROGRAMMER’S GUIDE
to
DIF®
A Data Interchange Format

Software @rts, Inc.

4/81 V1.5



© Copyright 1980 by Software Arts, Inc. All rights reserved.
DIF® is a trademark of Software Arts, Inc.
Apple® is a registered trademark of Apple Computer, Inc.

Limited License to Copy

This Guide is intended for the use of the original purchaser only. The
original purchaser is hereby licensed to copy it for his own use,
provided that this notice is reproduced on each such copy. Copying of
this Guide in any form for purposes of resale, license or distribution
is prohibited.

No Warranty

This Guide is being published to enhance the usefulness of DIF, the
data interchange format used by the VisiCalc® program and other
programs. NEITHER SOFTWARE ARTS, INC. NOR PERSONAL
SOFTWARE INC. MAKES ANY WARRANTY, EXPRESS OR IMPLIED,
WITH RESPECT TO THE QUALITY, ACCURACY OR FREEDOM FROM
ERRORS OF THE DIF FORMAT OR OTHER CONTENTS OF THIS
DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A PAR-
TICULAR PURPOSE.

VisiCalc® a Trademark

The term “VisiCalc'' is a trademark of Personal Software Inc. which
designates a software product published by Personal Software Inc.
under an exclusive license from Software Arts, Inc.



Downloaded from www.Apple2Online.com



1. INTRODUCTION

Itis often desirable to process the same data by more than one program. For
example, a data management system may be used to record sales values.
These values are then to be used as the basis for projections using the VisiCalc
program. Finally the projections may be plotted by a third program. How can
you get data from one program to another without requiring the user to type
the data in anew each time? Each of the programs processing the data may be
written by a different person, and may even run on different machines.

In order to allow programs to ““talk” to each other, we must agree upon a
standard language. Software Arts, Inc., the creators of the VisiCalc program,
have developed a data interchange format, DIF, that can be used as a com-
mon language for data. This is the format in which VisiCalc saves data with the
/S# commands.

We are writing this document in order to explain to programmers how they
can read and write data files using this format. The more programs that
support the format, the more useful it becomes. The casual user should not be
concerned about the details. It is only important to be aware that the format
exists and that if two programs support the format, then it is likely that data
produced by one can be processed by the other.

If you read this document fully, you will learn all of the details of the standard.
This is notatutorial, so you may find it helpful to skim the more technical parts
that follow, and concentrate on the next section, the beginning of the Data File
Format section, and the sample programs.

The sample programs in this document are all coded in a general dialect of
BASIC, except as noted. Files are opened with an OPEN statement, and read
and written with INPUT# and PRINT# statements. To get these programs to
run on your system, you may have to modify them. '

2. WHAT DIF DOES AND DOES NOT DO

The basic goal of DIF is to allow the interchange of data among a wide variety
of programs. The type of data addressed by DIF is data that is stored in
tables—columns and rows. Examples of this type of data would be time series,
such as the daily closing price of one or more stocks that are to be input to a
regression analysis package, or the actual expense figures for acompany that
are to be used as the starting point for a forecast. DIF treats all data as a group
of equal length vectors—that is, groups of related data, like time series, or
columns in a relation. The word vector is used, rather than column, since the
actual orientation of the data (a horizontal row or vertical column) does not
necessarily correspond to how it is logically oriented. Likewise, the corre-
sponding elements of the vectors are called tuples rather than rows. For
example, in the data below, the Sales, Cost and Profit figures (across the rows)
could be viewed as vectors, with each year (down the columns) corresponding
to a tuple:

Programmer’s Guide to DIF 1



Year 1980 1981 1982 1983

Sales 100 110 121 133
Cost 80 88 97 106
Profit 20 22 24 27

The actual choice of which grouping of the data is considered to be the
vectors, and which the tuples, is really up to the programmer or user. Some
programs may just view the data as a rectangle of unrelated data, while others
may require the user to be aware of the grouping. The VisiCalc program would
be an example of the former, and a plotting package would be an example of
the latter.

In DIF, data is stored by tuples. That is, it consists of successive values from
each vector grouped together into tuples, which are then output (or input) in
that order. In the data used for our example, if the vectors were across the rows
(Sales would be one vector, Cost and Profit the other two), then the first tuple
would consist of the three numbers 100, 80, and 20, in that order. The second
tuple would be 110, 88, and 22, and so on.

When the VisiCalc program deals with data in DIF it gives you the option of
storing or loading by rows’ (R or RETURN) or “‘by columns” (C). What the
VisiCalc program means by by rows" is that the vectors go across the rows,
and the tuples go down the columns. For example, in ourexample data, saving
Sales, Cost and Profit by rows would output first the tuple 100, 80, 20, and then
the tuple 110, 88, 22, etc. “‘By columns’ is just t;opposite, with the vectors
down the columns, and the tuples across the rows. For the same data, the first
tuple by columns would be 100, 110, 121, 133, and then 80, 88, 97, 106, etc.

Notall of the programs that process the data staged in DIF will have identical
requirements. For example, some programs will only be able to process a
simple list of numbers while others will want to store attributes associated with
multiple vectors of numbers. Thus, a goal in the design of DIF was that
programs should be able to keep descriptive information about the data, but
must not be required to generate it. At the same time, the program reading the
data should be able to ignore all descriptive information that is not relevant to
the actual processing of data.

The primary constraint on the format of data stored in DIF is simplicity. It
should be very simple for users to write programs in a common language to
read and write datafiles. Since BASIC is so pervasive and minimal, the needs of
BASIC were used to determine the details of the format. Itis necessary for other
languages, such as Pascal or PL/I, to be able to process this data, too. Fortu-
nately these languages allow the use of subroutine libraries. Thus, a standard
set of subroutines to process the interchange format can be provided for the
users of those languages, freeing them from many of the details of processing
the data.

Nongoals were just as important as goals during the design of DIF. Specifi-
cally, there is no emphasis on a minimal space representation. This repre-
sentation is meant to be modest and does not attempt to preserve the richness
available in many database systems. The central idea is that we should be able
to transport a table of values (numeric and/or string) from one program to

2 Programmer’s Guide to DIF



another. There is an additional mechanism to allow cooperating programs to
exchange some information about the data, such as labelling..

Some of the more specific constraints are:

Predetermined data types

Itis much simpler to write a program in BASIC if one knows ahead of
time what the format of the data is, and in particular whether one is
going to be reading a string or a number. Some BASICs are missing
the VAL function that will convert from a string to a number, making it
even more difficult. Therefore, DIF defines exactly which type of data
is tybe read at each point.

Lack of line input

Many BASICs do not have the ability to read a line of text without
giving special meaning to some characters. For this reason strings
containing special characters must be quoted.

Lack of parsing

Some BASICs will only input a whole line as a string. They do not use
", " as a string value delimiter. Therefore, DIF always stores string
values alone on a single line.

Input size

Many BASICs have a limited input buffer. 255 characters is a typical
limit for the length of an input line. Therefore, DIF tries to keep most
lines of information short.

Preallocation

In systems that permit dynamic allocation, it is often necessary to
allocate the space before actually reading the data. Even when this is
not required, knowing the total amount of data beforehand can be an
important efficiency consideration. For this reason, DIF has a method
for making this information available to a program reading the data.

End of data

In some systems it is either difficult or impossible to detect the end of
data in a file gracefully. Thus the program should know when it has
read the last value. DIF has a special provision to signal when the last
data element has been read.

3. THE DATA FILE FORMAT

A DIF file consists of two parts—the header and the data part. The header
describes the data and the data part has the actual values. An example of a DIF

Software Arts Technical Note SATN-18 3



file is the following, which is from our sample data above. It has the vectors
going across the rows, so there are three vectors, and four tuples. The various
parts of the file are labelled, and will be described below:

TABLE
0,1

VECTORS — ) Header
0,3 Item

TUPLES
0 ' 4
DATA
0,0

= 1590
BOT
0,100 1980 Sales

v

0,80 1980 Cost

v

0,20 1980 Profit

v

-1,0

BOT

0,110 — s Data

v —) Value Tuple
0,88

A%

0,22 Data
V .
-1,0 Part

BOT
0,121
v

Header

0,97

v

0,24

v

-1,0

BOT

0,133 1983 Sales
v

0,106 1983 Cost
v

0,27 1983 Profit
v
-1,0
EOD

Programmer’s Guide to DIF



THE HEADER

The header is organized into header items. Each header item contains a
different piece of information about the data stored in the file. That data is
sometimes numeric, and sometimes a string value.

STRUCTURE OF A HEADER ITEM

Each header item consists of four fields arranged as follows:
Topic
Vector number, Value
“String value”

The Topic

This is a keyword that identifies the header item. It must be a simple
token readable as a string in BASIC without quotation marks. A word
consisting of just letters with no spaces is best.

The Vector number

Several header items, such as a label, will apply to a specified vector.
The Vector number specifies which vector this particular header item
refers to. If the header item is not specific to a vector, such as a report
title, this value should be 0.

The Value

This appears on the same line as the Vector number. It is used for
header items that specify values, such as the number of vectors. It
is zero if the value is not used by the header item. The value must be
an integer.

The " String value”

This appears on a separate line after the Vector number and Value. Itis
used for header items that need string values rather than numeric
values. The vector labels are an example. The string is always en-
closed in quotes.

Thus the header item consists of three lines. The first line is the topic of the
header item, the second line consists of two numbers and the third line has a
string. The specific header items are described below.

Programs can ignore all header items until one with the topic DATA (de-
scribed below) is found. The following program segment will skip the header
items:

1000 INPUT#1,T$ REM - Read the Topic name
1010 INPUT#1,S,N REM - Read the Vector #, Value
1020 INPUT#1,S$ :REM - Read the String value
1030 IF TS$<>"DATA" THEN 1000 :REM - Check for

:REM - DATA header item

Software Arts Technical Note SATN-18 5



THE HEADER ITEMS

The standard header items are shown below with a description. The
only required header items are TABLE and DATA, which must be the
first and last header items, respectively.

TABLE
0,version
"title"

VECTORS
0,count

TUPLES
0,count

LABEL
vector# ,line#
"label"

COMMENT
vector# line#
"label"

SIZE

This is the first entry in the file. While it is not strictly
required, it is important to allow for changes in future
versions and it allows programs to verify that the fileis a
TABLE of data. The version number must be 1. Some
programs may not accept the file without the TABLE
header item.

This tells how many data vectors are present. Some
programs will require this header item to be present. If
this header item is absent, the input program can calcu-
late this value by counting the number of Data Valuesin
each tuple (see below). N.B.: This header item must
appear before header items that reference vector num-
bers, such as the LABEL header item.

Specifies the length of each vector. (All vectors must be
the same length.) Some programs will require this
header item. If this header item is absent, the input
program can calculate this value by counting the
number of tuples before an end of data (EOD) Special
Data Value (see below).

Provides a label for the specified vector. This is op-
tional. The line# allows for labels spanning multiple
lines, but can be ignored by systems allowing only
single line labels. The values 0 and 1 should be equiva-
lent for line#.

This is similar to the LABEL header item for systems

that allow an expanded description in addition to
labels. ;

This is used by programs, such as data base systems,

vector#,#bytes that allocate fixed size fields for each value. Such pro-

DATA
0,0

nn

grams, though, should be able to read files that do not
contain SIZE information, since other programs may
not be able to generate information of this type.

This says that data follows. The data is organized by
tuples, with one value from each vector in a given tuple.

Subsystems may define their own header items to meet their needs.
Header items that will tend to be common should be standardized,

Programmer’s Guide to DIF



such as the LABEL for a vector. The DIF Clearinghouse will serve as a
repository for standard header items (see the address for DIF corre-
spondence in the section Clearinghouse, below).

THE DATA PART

The data part consists of tuples, i.e. one value for each vector, in vector
order. The tuples are made up of groups of two numeric values and one
string value called Data Values. Each Data Value is used to represent the
value of one element of data in the file.

In addition to the Data Values used to represent the actual data in the file,
there are two types of Special Data Values used to provide information
about the organization of the data. One Special Data Value is used to show
where each tuple starts, and the other Special Data Value is used to indicate
the end of all of the data in the file.

Data Values are all in the following format:

Type Indicator, Number Value
String Value

The first two fields are numeric values on asingle line, the last is astringon a
line by itself. These fields are:

The Type Indicator field

The Type Indicator is an integer that is used to indicate the way in
which to interpret the rest of the fields in a Data Value. The currently
assigned values for the Type Indicator are:

-1 Indicates that this Data Value is a Special Data Value, either a
beginning of tuple indicator or an end of data indicator. See
below for a discussion of the Special Data Values.

0 The data is numeric. The value of the Data Value is stored in
the Number Value field, possibly modified by the String Value
(see the descriptions of the Number Value and String Value
fields below).

1 The data is a string. The value of the Data Value is stored in
the String Value field.

2 This is an application specific value. The meaning is deter-
mined by the cooperating programs that are expected to use
the data. For example, it might be an expression in the host
language. For simple applications these values can be
treated as strings.

The Number Value field

This is used when the Type Indicator is 0 to represent the value. The
value must be a decimal (base 10) number. It may optionally be
preceded by a sign (+ or —), have a decimal point, and immediately be
followed by the letter E and an optionally signed power of ten expo-

Software Arts Technical Note SATN-18 7



nent. The number may be preceded or followed by one or more
blanks. Note that this is the only place in DIF where a non-integer
value is allowed. Some programs that read data in DIF may only
acceptintegervalues (e.g., programs written in some BASICs or some
systems programming languages).

The String Value field
The interpretation of this field depends upon the Type Indicator.

For normal Type Indicator O (numeric) data, the String Value should
be the letter V (for value). If it is not V, then it is a Value Indicator, used
to override the value. A subsystem may choose its own Value Indi-
cators for named values, though they should be registered with the
DIF Clearinghouse. The following Value Indicators are used by the
VisiCalc program:

Vv
This is the normal case for numbers.

NA

This is a value marked explicitly as Not Available. The Number
Value'is set to 0.

ERROR

This is a value that represents the result of an invalid calculation,
such as division by 0. The Number Value is set to 0.

It should always be possible to ignore the String Value for numeric
dataand just use the Number Value given. Anothersimple approach is
to treat all values with a Value Indicator other than V"’ as missing.
Note that quotes are not permitted around the Value Indicator (for the
sake of some BASICs).

For the Type Indicator of 1 (string data), this field is used for the string
value itself. The quotes are optional if the field consists of just letters
and does not contain any spaces. However, if a starting quote is given,
a terminating quote must also be given.

Each tuple begins with a Special Data Value whose Type Indicator is -1,
Number Value is 0, and whose String Value is BOT (for Beginning Of Tuple).
This Special Data Value can be used by programs to determine how many
vectors are in the file in the absence of a VECTORS header item (by counting
the number of Data Values between BOT Special Data Values), or for a pro-
gram to verify its position in a file.

Atthe end of the last tuple is a Special Data Value with a Type Indicator of -1, a
Number Value of 0, and a String Value of EOD (for End Of Data). This will allow
programs to determine the number of tuples in the absence of a TUPLES
header item (by counting the number of tuples before an EOD Special Data
Value), and to gracefully detect the end of the file.

8 Programmer’s Guide to DIF



SAMPLE PROGRAMS

Here are two sample programs. The first program creates a DIF file. The
second program can read a DIF file and list its contents. They should be helpful
in understanding how to manipulate DIF files. They are written as main pro-
grams with subroutines, so you can pick up code from them to be used in other
programs. Both programs are written in a general BASIC, as described above.

CREATING A DIF FILE

100 REM - This program creates a DIF file.

110 REM - It prompts for the file name, number of vectors and
120 REM - tuples, and then for the values themselves, Data
130 REM - may be either numeric (type 0) or string (type 1).
140 REM

1000 PRINT "FILE NAME"; tREM - Get name of file

1010 INPUT F$

1020 OPEN 1,F$ :REM - Open for write

1030 PRINT "NUMBER OF VECTORS"; :REM - Get number of vectors
1040 INPUT NV :REM - into variable NV

1050 PRINT "NUMBER OF TUPLES"; :REM - and number of tuples
1060 INPUT NT :REM - into variable NT

1070 GOSUB 3000 :REM - Write out DIF header
1080 FOR I = 1 TO NT :REM - Get data and output it

1090 T =-1: V = 0: S$ = "BOT" :REM - Output beginning of tuple
1100 GOSUB 4000

1110 FOR J = 1 TO NV :REM Get each Data Value
1120 PRINT "DATA TYPE FOR VECTOR #"; J,", TUPLE #";I;

1130 INPUT T

1140 V =20: S$ = "v" tREM - Init values

1150 PRINT "DATA VALUE FOR VECTOR #";J;", TUPLE #";I;
1160 IF T=0 THEN INPUT V

1170 IF T=1 THEN INPUT S$

1180 GOSUB 4000 :REM - Output the Data Value
1190 NEXT J

1200 NEXT I

1210 T = -1: V = 0: S$ = "EOD" :tREM - Output end of data

1220 GOSUB 4000

1230 CLOSE 1

1240 PRINT “"FINISHED CREATING DIF FILE ";F$

1250 STOP :
3000 :REM - Routine to write out DIF header
3010 PRINT#1,"TABLE": PRINT#1,"0,1": GOSUB 3500

3020 PRINT#1,"TUPLES": PRINT#1,"0,";NT: GOSUB 3500

3030 PRINT#1,"VECTORS": PRINT#1,"0,";NV: GOSUB 3500

3040 PRINT#1,"DATA": PRINT#1,"0,0": GOSUB 3500

3050 RETURN

3500 :REM - Routine to write "" (null string)
3510 PRINT#1,CHRS (34) ;CHRS (34) :REM - See Appendix on quoted
3520 RETURN :REM - strings in BASIC, below
4000 :REM - Routine to write out Data Value

4010 PRINT#1,T;",";V
4020 PRINT#1,S$

4030 RETURN

4040 END

Note that if the string values being saved have spaces or special characters,
the code at line 4020 should be changed to check for those cases, and add
leading and trailing quotes. Seethe discussion about Quoted Strings in BASIC
in the Appendix.

* Software Arts Technical Note SATN-18 9



LISTING A DIF FILE

100

110

120

500

510

520

530

540

550

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
5000
5010
5020
5030
5040
5050
5060
6000
6010
6020
6030
6040
6050
6060
6070
6500
6510
6520
6530
6530
6540
6600
6610
6620
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
8000
8010
8020
8030

10

REM - This program reads a DIF file

REM - and lists its contents.
REM - the name of the file to
DIM T(100)
DIM V(100)
DIM VS$ (100)

GOSUB 5000
GOSUB 6000
FOR I = 1 TO NT

PRINT "VALUES FOR TUPLE #";I

GOSUB 7000
FOR J = 1 TO NV
IF T(J)=0 THEN PRINT V(J)

IF T(J)=1 THEN PRINT V$ (J):REM -

NEXT J
NEXT I
CLOSE 2

The program prompts for
be listed.
tREM - Maximum of 100 vectors

tREM - T, V, and V$ hold the

:REM - Type Indicator, Number
tREM - Value and String Value
tREM - of each element in a tuple
:REM -

tREM - Call initialization code
:REM - Read header

tREM - Read all of the tuples

Get a tuple

:tREM -
:REM - Output each element
:REM - Output numeric value

Output string value

PRINT "FINISHED LISTING FILE ";F$

STOP

:REM - Initialization code

PRINT "FILE NAME";
INPUT F$

OPEN 2,F$

NV = 0

NT = 0

RETURN

:REM - Get name of file to read

tREM - Open file for read
:REM - Init counts of vectors
:REM - and tuples

:REM - Read header, and set NV and NT

INPUT#2,T$
INPUT#2,S,N

INPUT#2,S$

IF T$="VECTORS" THEN 6500
IF T$="TUPLES" THEN 6600
IF T$="DATA" THEN RETURN
GOTO 6010

NV = N

:REM - Get Topic name

:REM - Get Vector number, Value
:REM - Get "String value"

:REM - Check for known header
:REM - items

:REM - DATA ends header

:REM - Ignore unknown ones

:REM - Value is number of vectors

PRINT "THE FILE HAS ";NV;" VECTORS."

IF NV<=100 THEN 6010
PRINT "TOO MANY VECTORS.
CLOSE 2

STOP

NT = N

:REM - If not too many, continue

THIS PROGRAM ONLY HANDLES 100."

:REM - Value is number of tuples

PRINT "THE FILE HAS ";NT;" TUPLES."

GOTO 6010
:tREM -
GOSUB 8000
IF T1<>-1 THEN 9000
IF S$<>"BOT" THEN 9000

:REM - Get next header item

Get all vector elements in a tuple

:REM - Get next Data Value
:REM

- Must be BOT or else error
tREM - Get each Data Value
:REM - Save Values and Type
:REM - Indicator

:REM - Get next Data Value

FOR K = 1 TO NV
GOSUB 8000
IF Tl=-1 THEN 9000
V(K) = V1
V$ (K) = S$
T(K) = Tl
NEXT K
RETURN
INPUT#2,T1,V1
INPUT#2,S$
RETURN

tREM - Get Type Indicator,
:REM - Numeric Value and String
:REM - Value

Programmer’s Guide to DIF



9000 PRINT "ERROR IN FILE FORMAT."
9010 CLOSE 2

9020 STOP

9030 END

Please note that while the above program can read many DIF files correctly,
it depends upon the TUPLES and VECTORS header items to determine the
organization of the file. A more general program could be written that, in the
absence of these header items, deduced their values from the placement of
BOT and EOD Special Data Values. While most programs that deal with DIF
should be able to produce TUPLES and VECTORS header items (the VisiCalc
program, for example, does), some may not (such as a program that records
data incrementally, and doesn’t know how many data points it will encounter
until it is finished).

5. APPENDICES
QUOTED STRINGS IN BASIC

Writing the quoted strings is not always convenient in BASIC. In some
implementations, quotes may be included in a string by doubling them.
For example: .

PRINT#1,"TABLE"
PRINT#1,0,1
PRINT$#1,"""Stock Prices for ABC Computer Co.

In other implementations the CHR$ function must be used:

PRINT#1,"TABLE"
PRINT#1,0,1
PRINT#1,CHRS (34) ; "Stock Prices for ABC Computer Co.";CHRS (34)

Apple Integer BASIC presents special problems. It seems that it is necessary
to POKE an assembly language routine into memory to output a quote. The
following sequence will setup such a program at location $300 (hex):

100 POKE 768,169:POKE 769,162 :REM - LDA #°"“+$80
110 POKE 770,108:POKE 771,54:POKE 772,0 :REM - JMP (CWSL)

And to use this code:

120 PRINT "TABLE"

130 PRINT 1,0

140 CALL .768

150 PRINT "Stock Prices for ABC Computer Co.";
160 CALL 768

170 PRINT

Software Arts Technical Note SATN-18 11



Apple Integer BASIC also requires that the user remove the quotes from the
input string with:
300 IF LEN(S$) > 2 THEN

IF (ASC(S$(1,1)) MOD 128) = 34 THEN
S$ = S$(2,LEN(SS$)~1)

This assumes that there is also a trailing quote. Note that in order to make the
quoted string itself acceptable to most BASICs it must not contain a quote.

CHARACTER SETS

The character set is assumed to be that of the host machine. Thus, if one is
transferring a file from a machine using ASCII to one using EBCDIC, the
appropriate conversions must be made. In addition, some machines may
require that the quote be changed to an apostrophe. These changes should be
transparent to most users. In order to assure compatability, strings should not
contain nonprinting characters, other than the end of line sequence
(RETURN, CR/LF, NEWLINE or whatever).

The ASCII character set defines 95 printable characters. The user should be
aware that some systems do not make it easy to use the full set. In particular,
keywords (including topic names and number types) must be in upper case.
Some systems only support a limited set of characters, often 64 printable
characters or less. When transporting a file to such a system the upper and
lower case characters would be mapped together to one case. Other special
characters may be mapped into common characters. If these transformations
affect the integrity of the data, it should be specified in the documentation
associated with the data.

6. CLEARINGHOUSE

In order to coordinate information about DIF and the programs that make
use of it, Software Arts, Inc. is setting up a clearinghouse for such information.

We would appreciate it if the authors of programs that support DIF would
send a one page description of the program to the clearinghouse. This descrip-
tion should include a short write-up of what the program does, on which
computers it runs, how it relates to DIF, and how it may be obtained.

Users who would like a copy of the information that we receive should send
$6.00 (to cover the costs of running the clearinghouse and providing the
information) and their name, address and zip code, with a note specifically
requesting a copy of the list of programs that support DIF.

All correspondence relating to DIF should be sent to the following address:

DIF Clearinghouse
P.O. Box 527
Cambridge, MA 02139

12 Programmer’s Guide to DIF



