e B e e 1
MICRSSOFT
APPLESOFT.

COMPILER

System

For Apple I

MICROSOFT LICENSE AGREEMENT

CAREFULLY READ ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT PRIOR TO
JREAKING THE DISKETTE SEAL. BREAKING THE DISKETTE SEAL INDICATES YOUR ACCEPTANCE OF
HESE TERMS AND CONDITIONS.

If you do not agree to these terms and conditions, return the unopened diskette package and the
ther components of this product to the place of purchase and your money will be refunded. No refunds will
e given for products which have opened disketle packages or missing components.

1. LICENSE: You have the non-exclusive rnight to use the enctosed program. This program can
only be used on a single computer. You may physically transfer the program from one computer to another
provided that the program is used on only one computer at a time. You may not electronically transfer the
program from one computer 1o another over a network. You may not distribute copies of the program or
documentation to others. You may not modify or translate the program or related documentation without the
pnor written consent of Microsoft.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM OR DOCUMENTATION, OR
ANY COPY EXCEPT AS EXPRESSLY PROVIDED IN THIS AGREEMENT.

2. BACK-UP AND TRANSFER: You may make one (1) copy of the program sclely for back-up
purposes. You must reproduce and include the copyright notice on the back-up copy. You may transfer
and license the product to another party if the other party agrees to the terms and conditions of this
Agreement and completes and returns a Registration Card to Microsoft. If you transfer the program you must
at the same time transfer the documentation and back-up copy or transfer the documentation and destroy
the back-up coppy.

3. COPYRIGHT: The program and its related documentation are copyrighted. You may not copy
the program or its documentation except as for back-up purposes and to load the program into the computer
as part of executing the program. All other copies of the program and its documentation are in violation of this
Agreement.

4. TERM: This license is effective until terminated. You ma?/ terminate it by destroying the
program and documentation and all copies thereof. This license will also terminate if you fail to comply with
any term or condition of this Agreement. You agree upon such termination to destroy all copies of the
program and documentation. .

5. HARDWARE COMPONENTS: Microsoft product hardware components only include circuit
cards and the mechanical mouse.

6. LIMITED WARRANTY: THE PROGRAM IS PROVIDED “AS IS" WITHOUT WARRANTY OF ANY
KIND. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED BY
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU éAND NOT MICROSOFT OR ITS DEALERS
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. FURTHER,
MICROSOFT DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE
USE OF, OR THE RESULTS OF THE USE OF, THE PROGRAM IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, CURRENTNESS, OR OTHERWISE; AND YOU RELY ON THE PROGRAM AND RESULTS
SOLELY AT YOUR OWN RISK.

Microsoft does warrant to the original licensee that the diskette(s) on which the program is
recorded be free from defects in matenals and workmanship under normal use and service for a period of
ninety (90) days from the date of delivery as evidenced by a copy of your receipt. Microsoft warrants to the
original licensee that the hardware components included in this package are free from defects in materials
and workmanship for a period of one year from the date of delivery to you as evidenced by a copy of your
receipt. Microsoft's entire liability and your exclusive remedy shall be replacement of the diskette or
hardware component not meeting Microsoft's limited warranty and which is returned to Microsoft with a copy
of your receipt. If failure of the diskette or hardware component has resulted from accident, abuse or
misapplication of the product, then Microsoft shall have no responsibility to replace the diskette or hardware
component under this Limited Warranty. In the event of replacement of the hardware component the
|replacemem will be warranted for the remainder of the original one (1) year period or 30 days, whichever is
onger.

2 THE ABOVE IS THE ONLY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE THAT IS MADE BY MICROSOFT ON THIS MICROSOFT PRODUCT. THIS WAR-
RANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE.

NEITHER MICROSOFT NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION,
PRODUCTION, OR DELIVERY OF THIS PROGRAM SHALL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES ARISING OUT OF THE USE, THE RESULTS OF USE, OR
INABILITY TO USE SUCH PRODUCT EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES OR CLAIM. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
EF/D\E&HT'E E(%TJ CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE ABOVE LIMITATION MAY NOT

7.UPDATE POLICY: In order to be able to obtain updates of the program, the licensee and
persons to whom the program is transferred in accordance with this Agreement must complete and return
the attached Registration Card to Microsoft. IF THIS REGISTRATION CARD HAS NOT BEEN RECEIVED BY
MICROSOFT, MICROSOFT IS UNDER NO OBLIGATION TO MAKE AVAILABLE TO YOU ANY UPDATES EVEN
THOUGH YOU HAVE MADE PAYMENT OF THE APPLICABLE UPDATE FEE.

8. MISC.: This license agreement shall be governed by the taws of the State of Washington and
shall inure to the benefit of Microsoft Corporation, its successors, administrators, heirs and assigns.

9. ACKNOWLEDGEMENT: YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE
THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF AGREEMENT BETWEEN
THE PARTIES AND SUPERCEDES ALL PROPOSALS OR PRIOR AGREEMENTS, VERBAL OR WRITTEN,
AND ANY OTHER COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE SUBJECT MATTER
OF THiS AGREEMENT.

Should you have any questions concerning this Agreement, please contact in writing Microsoft,
Customer Sales and Service, 10700 Northup Way, Bellevue, WA 88004,

& Microsoft I1s a registered trademark and SoftCard and RAMCard are trademarks of Microsoft
orporation.

Microsoft.
Applesoft. Compiler

User’s Manual

Microsoft Corporation

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation. The
software described in this document is furnished under a license agreement.
The software may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy Microsoft Applesoft Compiler
software on any medium for any purpose other than personal use.

Copyright © Microsoft Corporation, 1981, 1982, 1983

If you have comments about this documentation or the
enclosed software, complete the Software Problem Report at
the back of this manual and return it to Microsoft
Corporation.

Microsoft and the Microsoft logo are registered trademarks and MS, SoftCard, and
RAMCard are trademarks of Microsoft Corporation.

Apple and Applesoft are registered trademarks of Apple Computer, Inc.

Part No: 22F22B
Doc. No: 8106-300-02

ii

Contents

Part 1 48K Version

Introduction vii

System Requirements vii

Contents of the MSw Applesoft Compiler X
How to Use This Manual xi

Syntax Notation xii

Runtime License Requirements Xiil
Resources for Learning Applesoft xiii

1 Demonstration Run 1

2 Introduction to Compilation 5
Vocabulary 5
Compilation vs. Interpretation 6
The Program Development Process 8

3 Debugging With the Applesoft Interpreter
Creating a Source Program 11
Running a Program With Applesoft 11

4 Compilation 13
Options 13

Terminating Compilation 18
Compiling Large Programs 18

5 Executing a Compiled Program 21

11

iii

Contents

Compiler/Interpreter Language Comparison

Statements Not Implemented 25
Features Supported With Limitations 26
Other Language Differences 29
Operational Differences 30

Language Enhancements 39

Integer Arithmetic 39
Chain With COMMON 45

How the Compiler Works 55

PASS0, PASS1, and PASS2 55
Syntax Analysis 57

Code Generation 59

Special Techniques 60

Error Messages and Debugging 63
Compiletime Error Messages 63

Runtime Error Messages 65
Sources of Common Problems 66

Appendices to Part 1

HoQwe

iv

Moving Binary Files With the ADR Utility 71
Creating a Turnkey Disk 77

Notes on Applesoft 79

Runtime Memory Map 83

Zero Page Usage 85

25

Contents

Part 2 64K Version

10 64K Microsoft Applesoft Compiler 87
11 The DOSMOVER Program 89
Speed Improvements 89

Using DOSMOVER 89
The ?ADR Command 91

12 Compiling With the 64K Version of
Microsoft Applesoft Compiler 93

13 Executing Compiled Programs
With Relocated DOS 95
Appendices to Part 2

A RENUMBER.UPDATE 97
B DOSMOVER Technical Notes 99

Part 3 128K Version

14 128K Microsoft Applesoft Compiler 103

15 Default Compilation With
128K MS-Applesoft Compiler 105

16 Executing 128K Programs 107
17 Banked Memory 109

The Apple- Ile 109

Bank-Switched Memory 110
18 Apple Ile Memory 113

The 64K Apple Ile Memory Configuration 114
The 128K Apple IIe Memory Configuration 116

Contents

19 Default Memory Allocation 119

20 Specifying Different Memory Configurations

21 Additional Differences From 48K

Microsoft Applesoft Compiler 127

Compilation (Chapter 4) 127
Compiler/Interpreter Language

Comparison (Chapter 6) 128

Language Enhancements (Chapter 7) 130
Error Messages and Debugging (Chapter 9) 131
Zero Page Usage (Appendix E, Part 1) 131

Index 133

vi

121

Introduction

Microsoft- Applesoft- Compiler is designed to complement the
Applesoft BASIC interpreter, to extend the Applesoft language,
and to enhance execution of Applesoft programs. The interpre-
ter/compiler combination is the ideal Applesoft program devel-
opment tool. Programs can be quickly entered and debugged
with the interpreter, then optimized for speed with the compiler.

The compiler supports the Applesoft language with only a few
modifications. Most programs already written in Applesoft can
be compiled with little or no change.

System Requirements

Three versions of Microsoft Applesoft Compiler are included
in this package. The 48K version is the standard compiler. The
64K version is an enhanced version that requires 64K of
memory. The 128K version is a special compiler for the 128K
Apple. Ile. It includes special features that use the additional
64K of available memory.

All three compilers require a minimum of 48K RAM and 1 disk
drive. The MS-Applesoft Compiler is provided on disks in DOS
3.3 16-sector format. MS-Applesoft Compiler can be converted
to DOS 3.2 13-sector format with the standard DOS 3.3
DEMUFFIN utility. System configuration requirements for
the three compilers are listed in Table 1.

vii

Applesoft Compiler

viii

Table 1

System Configuration Requirements

System Version

48K 64K
48K Apple 11

Basic system -
+ Applesoft BASIC ROM Card *
+ RAMC&I‘dTM i

48K Apple II Plus

Basic system * -
+ RAMCard % *
64K Apple Ile
Basic system * *
+ ADDED 64K BANK
(128K) * *

128K

An asterisk (*) shows which versions will run on which systems.

A hyphen (-) indicates that the version will not run on that configuration.

A plus (+) means “in addition to the basic system.”

16K memory cards similar to the Microsoft RAMCard are
acceptable substitutes for RAMCards in the systems listed

above.

All systems must have Applesoft available in ROM or loaded

into a RAMCard.

Apple II computers have Integer Basic in ROM, and
therefore require either the Applesoft ROM card or Apple-

soft loaded into a RAMCard.

Apple II Plus systems have Applesoft (in ROM) built in.

Apple Ile has 64K of RAM built in, but 64K can be added
with a plug-in “extended 80-column” card. This 64K + 64K
= 128K configuration is the “ADDED 64K BANK (128K)”

system listed above.

Introduction

The Microsoft Applesoft Compiler provides the following
benefits:

1.

Increased execution speed

Applesoft programs compiled with the compiler normally
run from two to twenty times faster than the same pro-
grams run under the interpreter.

Compact object code

MS-Applesoft Compiler is designed to produce compact
compiled programs. Compiled programs are usually long-
er than their interpreted Applesoft equivalents, but the
compiler uses special techniques to minimize expansion.

True integer arithmetic

Unlike the Applesoft interpreter, the compiler can per-
form true integer arithmetic. Integer arithmetic can
greatly increase execution speed.

Interprogram communication

Programs can pass information to each other by using
COMMON variables.

Disk-based compilation

Instead of creating the machine language version of the
program in memory, MS-Applesoft Compiler writes out
the machine language program to disk as it compiles.
This allows the compiler to compile programs of virtually
any size.

Source code security

MS-Applesoft Compiler creates machine language equi-
valents of Applesoft BASIC programs. This machine
language file is all that need be distributed when a com-
mercial application is sold. Therefore, the Applesoft pro-
gram (called a “source” program) is protected from copy-
ing or plagiarism.

ix

Applesoft Compiler

In addition, the 64K version of the compiler allows you to
access the extra memory on RAMCard, and the 128K version is
specially designed to take advantage of the extra memory
available on a 128K Apple Ile. 128K MS-Applesoft Compiler
generates special code to allow variables and strings to be
stored in the extra 64K bank of memory. Since the extra 64K of
memory is not directly accessible to Applesoft, compiling with
MS-Applesoft Compiler has the added advantage of increasing
the amount of memory available to Apple Ile users.

These benefits are important for speed-critical applications,
and for applications where large program size is a problem.

MS-Applesoft Compiler is particularly outstanding for large,
complex applications. Large programs can be separated into
several small programs that communicate values with COM-
MON variables. The smaller programs reduce memory require-
ments and are usually easier to maintain. The compiler is an
example of such a system, since it was separated into parts and
used to compile itself. This illustrates the power of Microsoft
Applesoft Compiler as a programming tool.

Microsoft Applesoft Compiler is also appropriate for commer-
cial applications that require source code security.

Contents of the Microsoft
Applesoft Compiler Package

The MS-Applesoft Compiler package includes this manual and
three disks, labeled 48K Version, 64K Version, and 128K
Version.

Introduction

Important

Microsoft Applesoft Compiler is simple to use, but this
manual is an important part of the compiler package.
Read Part 1, the basic 48K section, and perform the dem-
onstration run (Chapter 1) before attempting to compile
programs with MS-Applesoft Compiler.

How to Use This Manual

This manual is divided into three parts, one for each of the
three versions of the compiler. Part 1 describes the basic 48K
MS-Applesoft Compiler, the standard version. This description
is also the basis for the discussions of the 64K and 128K ver-
sions. Part 2 describes the 64K (extended memory) version and
Part 3 covers the 128K (Apple Ile extended memory) version.
48K MS-Applesoft Compiler users need only read Part 1 (48K).
Users with 64K systems should read Part 1, then continue on to
the 64K section, Part 2. Apple Ile users should read all three

parts.

Part 1
48K Version

Part 2
64K Version

Chapters cover compilation, debugging with
the interpreter, executing a compiled program,
compiler/interpreter language comparison, lan-
guage enhancements, explanation of how the
compiler works, a list of error messages and
their solutions, and a demonstration run. Ap-
pendices discuss moving binary files with the
ADR utility, creating a turnkey disk, little-
known Applesoft features, memory usage, and
zero page usage.

Chapters cover the 64K version of MS-Applesoft
Compiler, the DOSMOVER program, compila-
tion, and executing compiled programs. The
appendices discuss RENUMBER.UPDATE
and DOSMOVER technical notes.

xi

Applesoft Compiler

Part 3 Chapters cover the 128K version of MS-

128K Version Applesoft Compiler, default compilation, exe-
cuting 128K programs, specifying different
memory configurations, and additional differ-
ences from the 48K version.

This manual assumes that the user has a working knowledge
of the Applesoft language. For additional information on
Applesoft programming, refer to “Resources for Learning
Applesoft” in the Introduction.

Syntax Notation

xii

The following notation is used throughout this manual in de-
scriptions of command and statement syntax:

<> Angle brackets indicate user-entered data. When
the angle brackets enclose lowercase text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brac-
kets enclose uppercase text, the user must press
the key named by the text; for example,

<RETURN>.

CAPS Capital letters indicate portions of statements
or commands that must be entered exactly as
shown.

Boldface Boldface text represents prompts produced by

the compiler. All other punctuation, such as
commas, colons, slash marks, and equal signs,
must be entered exactly as shown.

Introduction

Runtime License Requirements

Microsoft Applesoft Compiler is authorized for single computer
use only, and only by the registered owner. Applications
created with the compiler may be distributed with the runtime
library. No royalties are required; however,

“PORTIONS COPYRIGHTED BY MICROSOFT CORP., 1981,1982, 1983"
must appear on the media and documentation.

In addition, the DOSMOVER utility discussed in Chapter 11
can be distributed only with applications compiled with the
MS-Applesoft Compiler and the copyright message.

Resources for Learning Applesoft

This manual provides complete instructions for using the com-
piler. However, it does not provide tutorial material for learning
Applesoft. The following texts are good sources for this
information:

1. Albrecht, Robert L., Leroy Finkel, and Jerry Brown.
BASIC. 2nd ed. New York: Wiley Interscience, 1978.

2. Apple Computer Inc. Applesoft II BASIC Programming
Reference Manual, 1978.

3. Apple Computer Inc. The Applesoft Tutorial. Cupertino,
California: Apple Computer, 1979.

4. Coan,JamesS. Basic BASIC. Rochelle Park, N.J.: Hayden
Book Co., 1978.

5. Dwyer, Thomas A. and Margot Critchfield. BASIC and

the Personal Computer. Reading, Mass.: Addison-Wesley,
1978.

xiii

Chapter 1
Demonstration Run

This chapter takes you step by step through the compilation of
a sample program. This demonstration uses the basic 48K
compiler to introduce you to Microsoft Applesoft Compiler. The
demonstration is simple, but it provides you with a basic
understanding to build on later. If you enter commands exactly
as described in this chapter, you should have a successful
session with the compiler. We strongly recommend that you
perform the demonstration run before compiling any other
programs.

Note

Before beginning this demonstration run, make a back-up
copy of the 48K MS-Applesoft Compiler disk. Store the
master disk in a safe place and work with the back-up

copy.

MS-Applesoft Compiler is simple to use. First insert your 48K
MS-Applesoft Compiler disk into your computer and then type

JCATALOG

to display the file directory. Note that the promptisin boldface
type.

The 48K MS-Applesoft Compiler disk contains the following
files:

1. APCOM—48K version of the Microsoft Applesoft Com-
piler.

2. PASS0, PASS1, PASS2—Internal subprograms of 48K
MS-Applesoft Compiler.

Applesoft Compiler

3. RUNTIME—Runtime library.

4. ADR—Utility for binary files.

5. CREATE ADR—Utility for creating ADR on other disks.
6. BALL—Demonstration program.

These files and their use are described more completely in the
chapters that follow. For now, invoke the compiler by typing

JRUN APCOM

Next, a few simple questions must be answered to begin the
compilation process. The first two prompts ask you for the
names of the source and object files:

SOURCE FILE? BALL

OBJECT CODE FILE:
(DEFAULT BALL.OBJ)? <RETURN>

The source file is an Applesoft program named BALL that
already exists on disk. The object file is the machine language
binary file that is created by the compiler. The name of the
object file defaults to the original filename with the extension
.OBJ added, so the object file produced for the BALL program
is BALL.OBJ. The default is specified by pressing the
<RETURN> key.

The source fileis assumed to be located on the same disk as the
compiler, unless you specify otherwise. The object file defaults
to the same disk that the source is on. Different slots or drives
can be specified using the normal ,S<slotnumber> and
,D<drivenumber>syntax. Disk commands can be executed by
typing <CTRL-D>, followed by the command and <RETURN>.

The next two prompts ask you whether you want default values
for all other compilation options. Since most compilations are
performed with the same set of options, you should press the
<RETURN> key after each prompt to specify the default
values:

Demonstration Run

MEMORY USAGE:

NORMAL CONFIGURATION:
(DEFAULT YES)? <RETURN>
COMPILATION OPTIONS:
NORMAL CONFIGURATION:
(DEFAULT YES)? <RETURN>

If you had refused the default configurations above, you would
need to explicitly specify the values of several memory usage
and compilation options. These options are explained in Chap-
ter 4, “Compilation.” The actual compilation process starts
without further input, since you have specified the defaults
above.

When compilation begins, the disk is accessed almost con-
stantly to either read the source file or to write the object file.
The compiler lists the source program as it is being compiled
and generates appropriate messages if it encounters any
errors. When the source stops listing, the first part of compila-
tion is finished, and the compiler prints:

«+++BEGINNING PASS2

The second part of compilation also uses the disk extensively.
To indicate that it is still compiling, the compiler prints a
percent sign (%) on the screen every few seconds. When it is
finished, the compiler prints:

»xx++*CODE GENERATION COMPLETE
At this point, the actual compilation process is complete.

The next prompt offers a listing of compilation information.
Press <RETURN> to see the listing:

LIST COMPILATION INFORMATION:
(DEFAULT YES)? <RETURN>

This input also accepts <CTRL-D> disk commands. You can
direct where you want to list the compilation information using
the Apple DOS <CTRL-D>disk commands. For example, if you
want to list the information on your printer, type in the
following:

<CTRL-D> PR#<printerslot>

Applesoft Compiler

The last prompt offers a listing of the object code addresses for
each program line. Type Y or YES to see what the listing looks
like:

LIST LINE NUMBER ADDRESSES:
(DEFAULT NO)? Y

The address of the object code for each line is listed next to the
line number. When the listing is finished, the compiler prints
the following message and returns to the interpreter:

«x»*COMPILATION COMPLETE

The increase in the BALL program’s execution speed is quite
apparent when compared to the same program running under
the interpreter. Compare speeds by first running the inter-
preted program:

JRUN BALL

Next, execute the compiled program by entering the following
DOS commands:

]BLOAD RUNTIME
]BRUN BALL.OBJ

Note that the runtime library must be loaded into memory with
the BLOAD command before BALL.OBJ can be run with
BRUN.

You have now successfully completed the demonstration run.
Be sure to read Chapter 6, “Compiler/Interpreter Language
Comparison,” before attempting to compile other Applesoft
programs.

Chapter 2
Introduction to Compilation

This chapter introduces the vocabulary of compilation, com-
pares compilation to interpretation, and describes the devel-
opment process for compiled Applesoft programs. These three

topics serve as an introduction to compilation.

Vocabulary

Although this manual attempts to keep technical languageto a

minimum, the following terms must be understood:

Source file. The Applesoft program is commonly called a
source file because it is the source from which an equivalent
machinelanguage fileis created. The source fileis the input file
to the compiler. CATALOG lists the names of Applesoft files,

with the letter “A” preceding the size of each file.

Object file. MS-Applesoft Compiler translates source files
into machine language object files. The object file is the output
file created by the compiler. The object file is an executable
binary file that is the machine language equivalent of the
source. CATALOG lists the names of binary files, with the

letter “B” preceding the size of the file.

Compiletime. Thetime during which the compileris translat-

ing a source file into an object file.

Runtime. The time during which a compiled program is exe-
cuting. By convention, runtime refers to the execution time of a
compiled program, and not to the execution time of the

compiler.

Runtime library. A collection of machine language routines
that are used by compiled programs. These routines all reside

in the file named.

Applesoft Compiler

RUNTIME. RUNTIME mustbeloaded into memory before an
object file can be executed.

Compilation vs. Interpretation

Since the microprocessor in the Apple can execute only its own
machine instructions, it does not execute Applesoft program
statements directly. Instead, statements must be simulated by
machine language routines that perform the operations speci-
fied by each BASIC statement.

Compilers and interpreters approach this translation problem
differently. This difference is demonstrated in the following
analogy.

Suppose you wish to build a stereo from a kit. Unfortunately,
you find that the instructions are written in Japanese, a lan-
guage you do not know.

One way to approach this problem is to translate each instruc-
tion with a Japanese-English dictionary and perform the
instructions one by one. This process parallels the interpreta-
tion of Applesoft statements by the Applesoft interpreter. Your
construction of a stereo kit is analogous to the Apple’s execu-
tion of a program.

Inefficiencies can arise in this process, especially if you fail to
write down the translated instructions as they are carried out.
Suppose, for example, that halfway through the construction
process you translate an instruction that says:

Go back to Instruction 14. Then repeat the preceding steps
for the second speaker.

One problem is immediately apparent: you can’t even find
Instruction 14 without scanning the instructions from the start
for the Japanese characters for fourteen. You then face the
time-consuming task of retranslating each instruction so the
second speaker can be assembled precisely like the first. Like-
wise, the Applesoft interpreter must repeatedly translate each
statement executed inside a FOR/NEXT loop.

Introduction to Compilation

An alternative approach to constructing the stereo is to sit
down with pencil and paper and translate the entire instruc-
tion sheet into English. When you are finished, you have a new
set of instructions written in English. These English instruc-
tions correspond to the object file created by the compiler.

The actual assembly of the kit can then proceed without any
further translation, and even without any further need for the
original Japanese text. When you finally sit down to build your
speakers, you can construct them more quickly. Similarly, a
compiled BASIC program does not require the original BASIC
source and runs very quickly in comparison to the interpreted
version of the same program.

This analogy gives you a feel for the difference between inter-
pretation and compilation. The following paragraphs discuss
interpretation and compilation more technically , but also more
directly.

Interpretation

The interpreter translates Applesoft source statements line by
line at runtime. Each time the interpreter executes an Applesoft
statement, it must analyze the statement, check for errors, and
call machine language routines that perform the desired
function.

When statements must be executed repeatedly, as must those
within a FOR/NEXT loop, the translation process must be
repeated every time the statements inside the loop are executed.

In addition, BASIC line numbers are stored in a list. GOTOs
and GOSUBs force the interpreter to search this list to find the
desired line. When the line is near the end of a long program,
this search is slow.

The interpreter keeps track of variables by using a similar list.
When it encounters a reference to a variable, the interpreter
searches from the beginning of the list to find the desired
variable. If the variableis not present in the list, the interpreter
creates a new entry for it. This procedure also slows interpreted
programs.

Applesoft Compiler

Compilation

A compiler, on the other hand, takes a source program and
translates itinto a machine language object file. This object file
consists of a large number of machine language CALLs to
routines in the runtime library and to routines in the Applesoft
interpreter. By calling routines in the Applesoft interpreter, the
compiler assures good language compatibility with the inter-
preter.

Unlike the interpreter, the compiler analyzes all statements
before runtime. In addition, absolute memory addresses are
provided for variables and program lines. These addresses
eliminate the list searching that occurs while an interpreted
program executes.

The compiler, unlike the interpreter, implements true integer
arithmetic and integer loop variables in FOR/NEXT loops. In
comparison, the Applesoft interpreter converts all integers to
real numbers before operating on them. These conversions
make interpreted integer arithmetic relatively inefficient. In
addition, the interpreter does not support the use of integers as
loop control variables in FOR/NEXT loops.

These factors combine to make compiled programs considera-
bly faster. In most cases, execution of compiled programs is two
to twenty times faster than execution of the same program
under the interpreter.

The Program Development Process

This discussion of the program development process is keyed to
Figure 1. Refer to it when reading this text.

1. The best way to create and edit an Applesoft source pro-
gram is to use the editing facilities of the Applesoft
interpreter.

Introduction to Compilation

The source program should then be debugged using the
Applesoft interpreter. Since the compiler and interpreter
are very similar, running a program in the interactive
environment of the interpreter provides a much quicker
syntactic and semantic check than does compiling the
same program.

Next, the source program is compiled. If compilation is
successful, the compiler produces an object file.

Finally, the object file is executed as a machine language
program. If the compiler detects errors, or if errors show
up while executing the compiled program, the process
starts over at step 2.

Applesoft Compiler

Applesoft
interpreter

f

Applesoft source

|

—> Applesoft
interpreter

yes
-——— g[rors?

lno

Applesoft
Compiler

yes l

—>errors?

lno

Object file

Create and edit
Applesoft source.

RUN and debug source
with the interpreter.

Compile source,
creating a binary
object file.

Execute compiled
object file.

Figure 1. The Program Development Process

10

Chapter 3

Debugging With the
Applesoft Interpreter

Debugging a program intended for compilation is a two-step
process that involves

1. Creating the source program.

2. Running the program under the interpreter to check for
errors.

These two steps are described in the following sections.

Creating a Source Program

Creating an Applesoft source program requires the use of the
editor available within Applesoft. Programs are created by
simply entering Applesoft statements from within Applesoft.
Once a program has been created, it can be saved to disk with
SAVE. The compiler can only compile Applesoft disk files. For
more information on creating source files, see the Applesoft 11
BASIC Programming Reference Manual and the DOS 3.3
Manual.

Running a Program With Applesoft

Programs should be debugged before you attempt to compile
them with the Applesoft interpreter. It may be necessary to
debug the program with the compiler if the program to be
compiled uses features that are not available in the interpreter.
See “Notes on COMMON?” in Chapter 7 for other debugging
suggestions.

11

Applesoft Compiler

12

Microsoft Applesoft Compiler is highly compatible with the
Applesoft interpreter. This compatibility allows the Applesoft
interpreter to function as the primary debugging tool. The
interpreter provides much better debugging facilities than a
compiler, since it includes features for tracing execution of
programs. With the interpreter, programs can also be halted
and the values of variables examined, with immediate mode
printing of their values. In addition, an interpreted program
can be modified without having to repeat the more lengthy
compilation process.

There are some drawbacks to debugging with the interpreter.
Statements that are only executed under special circumstances
might never be examined, whereas the compiler examines
every statement in a program. The interpreter halts execution
when it encounters the first error in a program; the compiler, on
the other hand, can continue the compilation even if it encoun-
ters errors.

In general, compiling a program is an effective way to check for
syntax errors; however, tracking program logic errors is easier
with the interpreter.

Chapter 4
Compilation

This chapter discusses the more technical aspects of compila-
tion. It addresses the following topics:

1. Options
2. Terminating Compilation

3. Compiling Large Programs

Note

If a compiled program does not run correctly, see Chapter
9, “Error Messages and Debugging,” for possible solu-
tions. Chapter 6, “Compiler/Interpreter Language Com-
parison,” also provides information about possible prob-
lems and their solutions.

Options

The demonstration run showed only the most basic type of
compilation. Microsoft Applesoft Compiler includes several
options that can be used to control memory allocation and
compilation. To explicitly specify the values for these options,
simply answer NO when the compiler offers the default values,
then enter a value.

13

Applesoft Compiler

Memory Usage

14

The memory used at runtime by the compiled code is divided
into three areas:

1. Runtime library
2. Object program
3. Variables

The compiler allows the location for each of these separate
blocks to be specified individually. The memory allocation fea-
tures can be used to protect machine language programs,
HIRES shape tables, HIRES screens, or any other important
part of memory.

The default allocation order of the blocks is: library, program,
variables. The library is allocated lowest in memory, and the
program and variables follow. The library begins at location
2051, or $803 (with the dollar sign ($) indicating a hexadecimal
value). The default configuration for memory is:

top
string space
variables
object code
RUNTIME
bottom

Alternate addresses for the blocks are simple to specify. The
new location for thelibrary is entered as a number and defaults
to $803. Addresses can be specified in either hexadecimal or
decimal form. Hex addresses must be preceded by a dollar sign

($).

Compilation

The library must be loaded, using the BLOAD command,
before a compiled program can be run. By default, the library is
loaded at $803. When a program is compiled to expect the
library at a different address, the library must be loaded in at
the correct address by using the “A” option with the BLOAD
command. See Appendix A, Part 1, “Moving Binary Files With
the ADR Ultility,” for more information about loading and
saving the binary object and RUNTIME files.

The beginning address for the object code may be specified
with

1. The word HGRI1.

2. The word HGR2.

3. A decimal or hex number.
4. The <RETURN> key.

HGR1 and HGR2 simply set the beginning of the program
above the appropriate HIRES screen. The 4K runtime library
defaults to the space below the first HIRES screen. This default
library location is suggested for programs that use HIRES
(high resolution) graphics. An absolute decimal or hex address
may also be specified, but care must be taken when doing so.
Beware of overlapping memory allocations. Pressing the
<RETURN> key causes the beginning of the object code to
default to the end of the library.

Variable space may be specified explicitly or allowed to default.
The beginning of variable space defaults to the end of the object
code.

Compiled programs use the normal HIMEM pointer to deter-
mine the top of available string space. Strings grow downward
from HIMEM. The bottom of available string space is set so
that the block that is highest in memory is protected. Therefore,
the normal default order (runtime library, object code, varia-
bles) sets the bottom of string storage to the end of variable
space. Specifying another block to reside highest in memory
sets the bottom of string storage to the end of that block. See
Chapter 6, “Using HIMEM,” for more information on HIMEM.

15

Applesoft Compiler

Compilation Options

There are five compilation options that can be specified before
the compilation process begins. The options and their defaults
are listed in Table 2.

Table 2

Compilation Options and Defaults
Compilation Option Default
Compilation listing YES
Pause on errors YES
Integer arithmetic YES
Integer constants YES
RESUME /Debug code NO

Answering YES or NO to the default option prompt provides a
chance to turn each of these options on or off.
Compilation Listing Option
The compiler normally lists the source file. Turning the listing
option off suppresses the listing. Errors, warnings, and special
messages are printed as usual.
Pause on Errors Option
Errors normally halt compilation and allow the user to abort or

continue compilation. Turning the pause option off suppresses
the pause after any error messages are printed.

16

Compilation

Integer Arithmetic Option

The compiler includes a full integer arithmetic package. True
integer arithmetic allows operations on integers to be per-
formed in about half the normal time. Including this option
substantially increases the speed of programs that use inte-
gers, but there are some limitations. See “Integer Arithmetic”
in Chapter 7 for more information on the integer arithmetic
package.

Integer Constants

Constants in a compiled program can be treated as integers or
floating-point numbers. Selecting the integer constants option
allows constants that are used as integers to be stored in
integer format. If a constant is also needed in floating-point
form, the compiler includes both forms with the compiled code.
Conversion of constants at runtime is totally eliminated.
Including the integer constants option increases the speed of
programs where constants are accessed as integers.

Integer constants take up two bytes in the object file; the
floating-point representation requires five bytes. Including
integer constants can slightly increase the size of the object
code if both real and integer versions are needed, butit can also
shorten the code if only the integer representation is required.
The integer constants option should normally be left on. See
“Compiling Large Programs” in this chapter for more infor-
mation on handling any problems with longer programs.

RESUME/Debug Code Option

Turning on the RESUME/Debug code option causes code
handling the RESUME statement to be included in the object
program. The RESUME statement in Applesoft allows an
error trapping routine to resume execution at the beginning of
the statement that caused the error.

Including the RESUME/Debug code option requires the com-
piler to generate extra code at the beginning of each statement
that may generate an error. Selecting the RESUME/Debug
code option causes the object code to be larger and somewhat
slower.

17

Applesoft Compiler

The RESUME/Debug code option must be turned on if RE-
SUME statements are used in the program to be compiled. One
advantage of using the RESUME/Debug code option is that
any runtime error messages include the object code address.
Normally, only some of the runtime errors generated by the
runtime library include an object code address. The RESUME /-
Debug code option can be useful for debugging with the com-
piler. However, including it decreases execution speed and
increases the length of the compiled code. The RESUME/-
Debug option should be disabled unless absolutely needed. If
the option is disabled, the compiler ignores all RESUME state-
ments.

Terminating Compilation

Ordinarily, <RESET> would be used to terminate compilation
of a program. However, since the compiler often accesses the
disk, using <RESET> is inadvisable. Instead, use <CTRL-C>
to terminate compilation. This works because the compiler
occasionally checks to see if a <CTRL-C> has been typed, and
terminates compilation if it has. The compiler can also be
halted by typing <CTRL-C> as the first character of an input
response, but this does not correctly terminate compilation.

Since stopping compilation leaves the object file incomplete, the
compiler deletes the object file if compilation is aborted. The
compiler modifies DOS, so exiting by using <RESET> or typ-
ing <CTRL-C> in an input leaves DOS in its modified state.
DOS must then be rebooted. Typing <CTRL-C> outside an
input is the only way to correctly terminate compilation. Nor-
mal exiting of the compiler restores DOS to its normal state.

Compiling Large Programs

18

Features such as compact object code, disk-based design, and
COMMON variables make Microsoft Applesoft Compiler an
outstanding compiler for large programs. Because of the com-
piler’s minimal object code expansion, most large programs

Compilation

can be compiled without modification. However, if a program is
simply too large to be compiled or to fit into the available
memory, special measures must be taken. The sections that
follow describe possible solutions.

Reducing Symbol Table Space

The compiler’s symbol table stores information about varia-
bles, functions, constants, line number references, and COM-
MON assignments. Long programs that exhaust symbol table
space yield a “SYMBOL TABLE FULL” error during compi-
lation. There are several ways to correct this problem.

The simplest way is to turn off the integer constants option.
With the option on, constants are initially stored as integers. If
the constant is later needed as a floating-point number, it is
converted and entered into the symbol table as a floating-point
constant as well. The initial integer entry takes five locations.
If the additional floating-point entry is required, it takes up
eight locations.

With the integer constants option disabled, constants are
stored only in floating-point form. Therefore, turning the
option off saves five locations for every constant that is refer-
enced as a floating-point value. Although this savings is usu-
ally insignificant, it may be important for long programs with
many constants.

Disabling the integer constants option also slows down the
object code slightly. The option should be left on whenever
possible. The symbol table is examined before each new entry
is made. This examination prevents duplication of informa-
tion. The first use of a variable requires the compiler to create a
new entry, but later references do not require additional space.
Similarly, multiple references to a single line number do not
require multiple entries. In practice, it is difficult to reduce the
number of variables and line number references in a program,
but doing so will save some symbol table space. If the “SYM-
BOL TABLE FULL” error persists, a program can often be
separated into two parts, as described below.

19

Applesoft Compiler

Separating a Program Into Parts

20

When the object code for a program does not fit in the available
memory, or when a program requires too much symbol table
space, the program can often be separated into two smaller
programs. Programs that spend most of their time in one sec-
tion of code, then move on to another section and do not return,
are good candidates for this technique. A program of this type
can be broken into two smaller programs quite easily. The first
small program performs the first part of the process, then
passes any needed values on to the second program.

Programs without a natural division present more of a prob-
lem. An artificial division can often be created with this type of
program. In some cases, the separated programs may have to
run each other alternately. It is preferable, however, to find a
division where alternate execution is not required, since run-
ning programs alternately from disk is very slow.

Since most programs that are separated into parts need to pass
values from one program to another, the usual procedure is to
pass the needed values in a disk file. One program writes the
information out to disk, and a second reads it in. This is a
workable solution, but it is slow when a large amount of infor-
mation needs to be passed.

Microsoft Applesoft Compileris designed to simplify compiling
large programs. The compiler allows you to pass the needed
values in COMMON. The variables are simply declared in
COMMON statements in both programs, and the compiler
allocates storage so that saving the values on disk is unneces-
sary. This is the technique that the compiler uses to communi-
cate between its three parts: PASS0, PASS1, and PASS2. See
“Chain With COMMON” in Chapter 7 for more information
about the compiler’s powerful COMMON features.

Chapter 5

Executing a
Compiled Program

Microsoft Applesoft Compiler is designed to implement the
Applesoft language as closely as possible. Executing a com-
piled program performs the same functions as executing the
source program using the interpreter. However, the process of
loading and running a compiled program is different from
running an interpreted program, because the object file is a
machine language program stored as a binary file.

Differences between the compiler and the interpreter, along
with other related topics, are discussed below:

1.

Program disk storage

Interpreted programs are stored as Applesoft files. Apple-
soft files are indicated by an “A” in the disk CATALOG.
Interpreted programs are executed by typing

RUN <filename>

In contrast, compiled programs are machine language
files stored in binary format. Binary files are indicated by
a “B” in the CATALOG.

Since compiled programs are not Applesoft files, attempt-
ing to RUN a compiled program generates a “FILE TYPE
MISMATCH?” error. Instead, compiled files are executed

by typing
BRUN <filename>

The “B” prefix to the RUN command indicates a binary
file. The runtime library must already be in memory when
a program is BRUN. The library need not be reloaded if
the runtime library is still in memory from a previous
program run and is located where the next program
expects it.

21

Applesoft Compiler

22

Thenormal sequence for executing a compiled program is:

BLOAD RUNTIME
BRUN <filename>

Compiled programs can only be executed when the
Applesoft interpreter is in memory. Compiled programs
will not work with Integer BASIC.

Use of Ampersand (&)

Once the compiled program has been loaded and exe-
cuted, it can be reexecuted by typing an & followed by a
<RETURN>. The compiled program sets the Ampersand
vector to point to the beginning of the object code when it
executes, so the Ampersand vector can be used as long as
the program is the last program run. Using the Amper-
sand is much more convenient than using the CALL
statement to call the code explicitly, since using CALL
requires knowing the address of the beginning of the
object code.

Halting execution of a compiled program

Typing <CTRL-C> during execution does not interrupt a
compiled program. <CTRL-C> as a response to an IN-
PUT statement does terminate execution, but <CTRL-C>
at any other time is simply ignored. Unless the object
program is explicitly looking for input, any characters
typed are ignored.

Since <CTRL-C> is normally ignored, compiled pro-
grams must be interrupted by using <RESET>. Unfortu-
nately, <RESET> stops the compiled program without
reinitializing the interpreter. The NEW command must be
used to insure that the interpreter is correctly initialized
after using <RESET>.

The NEW command

NEW causes the interpreter to reset pointers, but does not
clear the program space. Therefore, a compiled program
can be safely reexecuted aftera NEW command as long as
no program lines have been typed in and stored into the
program space.

Executing a Compiled Program

Immediate commands

The compiled code does not maintain a variable list, so the
interpreter cannot find the values of variables used in a
compiled program. Executing a compiled program that
uses the variable A and then typing the immediate
command

PRINT A

returns a value unrelated to the variable in the compiled
program.

23

Chapter 6

Compiler/Interpreter
Language Comparison

Microsoft Applesoft Compiler produces compact and efficient
code that simulates the Applesoft interpreter in very accurate
detail. This chapter describes any differences between the
compiler and the interpreter that must be taken into account
when compiling programs. If a compiled program does not run
correctly, also see Chapter 9, “Error Messages and Debug-
ging,” for more information.

Statements Not Implemented

The very nature of compilation makes supporting some fea-
tures of the interpreter impractical, since the source file is
unavailable while the object code produced by the compiler is
executing. Therefore, Applesoft statements that depend on the
source file (such as LIST and DEL) are not available with
MS-Applesoft Compiler. The cassette I/O features of Applesoft
have also been removed. Most other features of Applesoft are
implemented without change.

The following Applesoft statements are not included in the

compiler:
CONT RECALL
DEL SAVE
LIST SHLOAD
LOAD STORE
LOMEM: TRACE
NOTRACE &

Some other Applesoft statements and features must be used
differently in compiled programs. These differences are de-
scribed in the following sections.

25

Applesoft Compiler

Features Supported With Limitations

The following Applesoft features are supported with some
limitations:

DEF FN
DIM
<CTRL-C>

The differences between the compiled and interpreted versions
of these statements are described below.

User-Defined Functions: DEF FN

26

Both Microsoft Applesoft Compiler and the Applesoft interpre-
ter allow the definition of single-argument, real-valued, arith-
metic functions with the DEF FN statement. In addition, the
interpreter allows functions to be redefined with a later DEF
FN statement using the same function name. The compiler
does not support function redefinition.

In the interpreter, a DEF FN does not define a function until
the DEF FN statement is actually executed at runtime. The
compiler, on the other hand, scans all function definitions at
compiletime. Therefore, function definitions can be located
anywhere within the source file, and functions are defined from
the beginning to the end of program execution. The source file
cannot contain more than one definition for a given function,
even if the definitions are identical.

The compiler’s treatment of user-defined functions prevents
“UNDEF’D FUNCTION” error messages at runtime. All
user-defined function references are matched with the corres-
ponding definition at compiletime. References to undefined
functions are detected and flagged as errors during compilation.

Compiler/Interpreter Language Comparison

The Dimension Statement: DIM

The interpreter provides three methods of dimensioning an
array:

1. Explicit constant dimensioning

Executing a DIM (dimension) statement in which the
specified dimensions are constants sets aside the same
amount of storage for the array each time the program is
run.

2. Explicit dynamic dimensioning

Excuting a DIM (dimension) statement in which the
specified dimensions are arithmetic expressions sets aside
space for the array depending on the computed value of
the expressions.

3. Default dimensioning

If an array reference is encountered before a DIM state-
ment, the array is given the default maximum value of 10
for each dimension of the array. Accessing an element of a
three-dimensional array before dimensioning the array
produces the default dimensions (10,10,10). Applesoft
allows the use of 0 as an array subscript, so an array
dimensioned to 10 actually has 11 elements (0-10).

The compiler does not support dynamic dimensioning of
arrays. Any DIM statements in the program must use integer
constants, not floating-point values or arithmetic expressions.
DIM statements can be located anywhere within the file, and
they need not precede the first reference to the array. Arrays
can be dimensioned more than once, but the dimensions speci-
fied must be identical. The compiler’s added INTEGER and
COMMON statements can also dimension arrays. See Chapter
7, “Language Enhancements,” for more information on IN-
TEGER and COMMON statements. An array that is refer-
enced and not dimensioned receives a default dimension of 10
for each subscript.

27

Applesoft Compiler

References to an array within a DIM statement or arithmetic
expression must be consistent with the number of dimensions
used throughout the file. An error is generated if an array is
referenced with a number of subscripts that differs from the
number first used.

The lack of dynamic array dimensioning can be overcome by
dimensioning arrays to the largest size likely to be needed. The
array dimensions must be within the limits of the available
memory.

Use of <CTRL-C> to Halt a Compiled Program

28

The Applesoft interpreter allows the user to interrupt execution
of a program by typing a <CTRL-C>. In addition, typing
<CTRIL-C>followed by a <RETURN> during INPUT causes
the program to halt.

Compiled code does not check for <CTRL-C> during execution.
A compiled program can be halted only by using the <RESET>
key. However, <RESET>> interrupts cannot be trapped by
compiled programs. As a result, <RESET> does not properly
terminate compiled programs, and a NEW command must be
executed to re-initialize the interpreter. See Chapter 5 under
“Halting Execution of a Compiled Program” for more informa-
tion on the use of <RESET>.

While the compiled code does not check for <CTRL-C> during
execution, it does support the use of <CTRL-C> during an
INPUT statement. Typing <CTRL-C> followed by a <RE-
TURN>> in response to an INPUT prompt causes program
termination and a “BREAK IN ####” message. The compiled
INPUT statement functions the same as the interpreted
INPUT.

Ifnecessary, a compiled program can simulate the interpreter’s
handling of <CTRL-C> during execution by periodically
checking the keyboard strobe. See the Applesoft Manual for
more information about the keyboard strobe.

Compiler/Interpreter Language Comparison

Other Language Differences

A few Applesoft statements have been modified to return rea-
sonable results under a wider variety of conditions. These are
described below.

IF/THEN Using Strings

The Applesoft interpreter was not designed to allow the
IF/THEN statement to test a string expression. However, the
interpreter does not ensure that the expression used in an
IF/THEN statement is a number. A string expression can be
used in an IF/THEN statement and the interpreter will not
detect the error. However, using an IF/THEN statement with a
string expression more than two or three times in a program
causes a “?FORMULA TOO COMPLEX” error. In addition,
the logical value returned for the string is not consistent.

A string expression is not simply an expression that contains
string operands. String expressions are defined as expressions
that evaluate to a string result. The following examples evalu-
ate to a string result and are string expressions:

CHRS(3)
A$+B$
STR$(IxdJ)

The following examples evaluate to a numeric result and are
numeric expressions:

A$<B3$+C$
A$<CHR$(2)
FLAG AND A$<C$

The compiler fully supports the use of IF/THEN in all its forms
with a numeric argument, but an IF/THEN statement with a
string expression is flagged as an error during compilation.
IF/THEN is discussed more completely in the Applesoft 11
Basic Programming Reference Manual.

29

Applesoft Compiler

Numeric GET

The Applesoft interpreter’s GET statement was designed for
use only with strings. However, it is possible to use it with
numeric variables. Unfortunately, the interpreted GET state-
ment may be inconvenient to use with numeric variables. The
biggest problem is that the interpreted numeric GET yields a
syntax error and stops the program if the input response is
nonnumeric. The compiled numeric GET eliminates this prob-
lem. Entering a nonnumeric input yields a zero as the entered
value, and does not generate an error message.

Numeric READ

The Applesoft interpreter does not allow numeric strings to be
read into numeric variables. For example, although the follow-
ing DATA statements are treated identically when they are
READ into a string variable, the second generates a “?SYN-
TAX error” when it is READ into a numeric variable:

10 DATA 1234
20 DATA “1234”

The compiled version of the READ statement accepts “1234”
and 1234 as equivalent. The quotation marks enclosing the
number simply insure that no leading or trailing spaces in the
DATA statement will be treated as part of “1234” if it is read
into a string variable. Quoted numbers as responses to INPUT
requests still cause the “? REENTER” message.

Operational Differences

30

This section describes several additional differences between
compiled and interpreted programs. The differences are usu-
ally insignificant, but they may need to be taken into account
in some cases.

Compiler/Interpeter Language Comparison

The Runtime Stack

Compiled and interpreted programs use part of memory as a
stack to store GOSUB/RETURN and FOR/NEXT informa-
tion. The routines that are used by a compiled program are
more stack-efficient than those in the interpreter. Therefore,
some programs that generate stack overflow errors when exe-
cuted with the interpreter can be run without problems when
compiled. Although compiled programs use less stack space
than interpreted programs, compiled code does not check for
stack overflow.

There are 254 bytes of free stack space. RETURN entries take 2
bytes, and FOR entries take 16. The stack overflows if subrou-
tine calls are nested more than 127 levels deep or if FOR/-
NEXTs are nested more than 15 levels deep. Part of the stack
area is used as scratch space by the Applesoft PRINT and
STRS$ routines. Using these statements overwrites the last 16
bytes of available stack space. Overflowing the stack or over-
writing the top of the stack when it contains information
causes a compiled program to behave unpredictably. Since
compiled programs are more stack-efficient than interpreted
programs, observing the restrictions imposed by the interpre-
ter should prevent stack overflow when running a compiled
program.

ONERR GOTO and the Stack

The ONERR GOTO statement may cause difficulties with the
stack in both compiled and interpreted code. Problems occur
when an internal interpreter or runtime routine is exited with
an error condition. Most internal routines use a small amount
of stack space as temporary storage. Exiting with an error
condition may leave some stored parameters on the stack.
When ONERR is not in effect, the program stops execution,
and the information on the stack does not cause any problems.

When ONERR GOTO is used to handle errors, the extra stack
entries are left on the stack and control is transferred to the
error handling routine. The stack is restored to its pre-error
state and the extra bytes do not cause any problem, if the
error-handler ends with RESUME. However, if the error-
handler returns without executing a RESUME, the leftover
information on the stack is never removed. Repeating this
process too many times causes the stack to overflow.

31

Applesoft Compiler

The Applesoft II BASIC Programming Reference Manual
includes a machine language program that restores the stack
to its state before the last error occurred. Calling this routine at
the end of an error-handler restores the stack and prevents
overflow. This routine also resets the stack when used in a
compiled program. However, the compiled code does not usu-
ally save the stack pointer before each statement. When the
routine tries to restore the stack to its previous state, it will set
the stack pointer incorrectly.

Compiled programs that use the stack clear routine must
include the RESUME/Debug code to avoid this problem. The
RESUME/Debug code saves the stack pointer before each
statement, so including the RESUME /Debug code allows the
stack clear routine to function correctly.

Failure to include the extra code will cause the compiled pro-
gram to jump into the monitor, execute parts of the program
twice, or encounter other problems. Programs that use the
stack clear routine can usually be recognized by CALLs in their
error handling routines. See the Applesoft II BASIC Pro-
gramming Reference Manual under ONERR GOTO for infor-
mation about the stack clear routine. See “Compilation Op-
tions” in Chapter 4 for information on invoking the RESUME
option.

Note

Do not use CALIL-3288. This restores the stack pointer, but
returns to the interpreter, not the compiler.

Special Machine Language Calls

32

A few Applesoft programs use special techniques for passing
information to machine language routines. The most common
method is to include extra text following the machine language
call. For instance, the following statements might be used:

USR(0)“3,5,6"
CALL 520“PROGRAM 2”

Compiler/Interpreter Language Comparison

These statements work with the interpreter only because the
machine language program can change the interpreter’s point-
erinto the current statement and prevent the added characters
from being seen. Since the compiler scans all statements at
compiletime, the extra text will be flagged as a syntax error. See
“How COMMON Variables Work” in Chapter 7 for more
information on passing parameters to machine language
programs.

Using HIMEM

The Applesoft statement HIMEM sets the maximum memory
address to be used by an Applesoft program. HIMEM affects
string space, since strings are stored from the top of memory
downward. Changing HIMEM moves the top of memory
available for string space. If some strings have already been
assigned values, changing HIMEM disrupts the string point-
ers and leaves the strings unprotected. The CLEAR statement
should be used immediately after changing HIMEM to insure
that string spaceis initialized correctly. The CLEAR statement
should be used after changing HIMEM in both interpreted and
compiled programs to insure that string space is reset correctly.

Compiled programs using COMMON string variables must
include an additional CLEAR COMMON statement with the
normal CLEAR statement. The compiled CLEAR affects only
local (non-COMMON) variables, so the CLEAR COMMON
statement must be used to insure that COMMON strings are
initialized correctly as well. See “CLEAR CHAIN and CLEAR
COMMON?” in Chapter 7 for more information about the
CLEAR COMMON statement.

Using MAXFILES From Within a Compiled Program

The DOS MAXFILES command sets the number of available
file buffers. The number of available buffers determines how
many files can be open simultaneously. Since the compiler
fully supports all DOS commands, the MAXFILES command
can be used from within a compiled program. However, DOS
does not perform the additional operations needed to correctly
execute MAXFILES in a compiled program. DOS changes the
value stored in the HIMEM location, but DOS does not alter
other pointers that must be changed so that a compiled pro-
gram will conform to the new HIMEM value.

33

Applesoft Compiler

MAXFILES in a compiled program must be followed by a
HIMEM statement to set all pointers correctly. The HIMEM
statement should simply specify the new HIMEM value pro-
vided by the MAXFILES command. This can be accomplished
with the following statements:

HIMEM: PEEK(115) + 256 x ABS(PEEK(116))
CLEAR
REM! CLEAR COMMON

The ABS() function is used to force the PEEK(116) to be treated
as a real number instead of an integer. In turn, this prevents
the multiplication from being treated as an integer multiply.
Integer numbers are limited to -32768 and +32767, and the
HIMEM address may be outside this range. The CLEAR and
CLEAR COMMON statements are necessary to correctly
initialize string space, as mentioned in this chapter under
“Using HIMEM.”

Using RUN With COMMON

34

The Applesoft RUN statement is normally used as an imme-
diate command from the editor, but the interpreter also allows
it to be included in a program. RUN in an interpreted program
clears all variables and reexecutes the program. RUN with the
optional line number specified also clears all variables, but
begins execution at the specified line rather than the beginning
of the program.

The compiler also includes the RUN command. RUN without
the optional line number reexecutes the program by jumping to
the Ampersand vector. The reexecution causes the same varia-
ble initialization that began the program. If the program has
no COMMON variables, or specified them with USECOM-
MON, then only local variables are cleared. If the program
specified DEFCOMMON, then both COMMON and local var-

1ables are cleared.

Use of the RUN <linenumber> form of the RUN command
causes a CLEAR statement, followed by a GOTO to the speci-
fied line. The compiled CLEAR initializes only local (non-
COMMON) variables, so RUN does not affect COMMON var-
iables. See Chapter 7, “Language Enhancements,” for more
information on COMMON and CLEAR.

Compiler/Interpreter Language Comparison

NEW, STOP, and END

The NEW statement in an interpreted program erases the
current program before terminating execution. STOP prints
the message “BREAK IN ####” before termination, and END
simply terminates execution.

These statements function somewhat differently when com-
piled. STOP still prints the BREAK message, but the number
specified is an object code address, not a line number. NEW is
equivalent to END: a compiled program cannot be listed or
edited, so there is no need for NEW to “erase” the compiled
program. All three commands delete any interpreted program
in memory, initialize all Applesoft pointers properly, then re-
enter the interpreter.

Abnormal Termination of a Compiled Program

Although the compiled and interpreted versions of a program
produce the same output, the internal process is substantially
different. Both the compiled code and the interpreter make
extensive use of memory page zero, which resides at $00-FF
(decimal 0-255). Many of the locations used by the interpreter
are used for a different purpose when a compiled program is
running. See Appendix E, Part 1, “Zero Page Usage,” for a
description of how the zero page is used by a compiled program.

Compiled programs begin with a call to an initialization rou-
tine that sets up the zero page for execution of the compiled
program. When the compiled program executes an END,
STOP, or NEW statement, or is interrupted by <CTRL-C>
during an INPUT statement, it reinitializes page zero for the
interpreter before terminating execution. This terminates the
compiled program properly.

Using <RESET> to interrupt a compiled program stops the
program, but does not reinitialize the zero page for the interpre-
ter. Runtime errors also stop the program without reinitializa-
tion. Attempting to use the interpreter at this point is unwise.
Even if statements appear to function normally, the interpreter
may be destroying DOS or making other errors. A NEW com-
mand is necessary to properly reinitialize the interpreter. NEW
sets the pointers stored on page zero to their correct values,
allowing the interpreter to operate normally.

35

Applesoft Compiler

Applesoft Pointers Preserved by Compiled Code

36

There are only two pointers used by the interpreter that are
preserved during execution of a compiled program. These two
pointers are MEMSIZ and TXTTAB. MEMSIZ is the top-of-
memory pointer affected by the HIMEM statement, and
TXTTAB is the beginning-of-program pointer. They reside at
$73-4 (decimal 115-6) and $67-8 (decimal 103-4), respectively.

Compiled programs use MEMSIZ for the same purpose the
interpreter does. The compiled HIMEM statement changes the
contents of MEMSIZ.

Compiled programs do not use TXTTAB, but the interpreter
uses TXTTAB to point to the beginning of the current program
in memory. The interpreter and DOS also use TXTTAB to
decide where a loaded program should begin. Compiled pro-
grams preserve TXTTAB so that a compiled program can eas-
ily RUN an interpreted program using DOS.

The program storage format used by the Applesoft interpreter
requires that the location just before the program area pointed
to by TXTTAB contains a zero. A program can still be entered
when the location is not zero, but attempting to RUN the
program produces a “?SYNTAX ERROR.” This restriction
also holds when using DOS to LOAD or RUN interpreted
programs. The location does not usually need to be explicitly
set to zero, since TXTTAB normally points to its default loca-
tion of $801. $800 is set to zero when Applesoft is initialized, so
leaving TXTTAB at its normal value alleviates any problems.

To maintain this convenience, the compiler leaves location
$800 protected in its default memory allocation mode. Preserv-
ing this location allows compiled programs to RUN interpreted
programs, without first having to store a zero in $800. $801
and $802 are protected for similar reasons, so the default ad-
dress for the library is $803 (decimal 2051).

Compiler/Interpreter Language Comparison

Linking Between Compiled Programs

Interpreted programs are linked using the DOS RUN com-
mand. Attempting to RUN an object file produced by the com-
piler produces an error, since compiled programs are binary
files, not Applesoft programs.

Compiled programs are linked using the BRUN command. To
facilitate linking, the compiler allows COMMON variables, a
powerful extension that is not available in the Applesoft inter-
preter. Programs executed in sequence can use COMMON var-
iables to pass information. See Chapter 7, “Language En-
hancements,” for an explanation of this new feature.

String Operations

MS-Applesoft Compiler handles strings differently than the
interpreter. The interpreter usually duplicates string values in
an assignment such as A$=BS$. If thirty strings have the same
string value, the interpreter normally stores the same string
thirty times in memory. Copying strings makes the interpreter
especially slow in applications that move strings frequently.

The compiler eliminates string copying by allowing several
strings to point to the same value in memory. This eliminates
the need to duplicate strings and makes operations like sorting
much faster. In exchange for being very fast in assignments,
the compiler is slightly slower on operations that build and
take apart strings. LEFT$, RIGHTS$, and MIDS$ are less effi-
cient. Since these functions are normally used less often than
string assignments, the modified method used in the compiler
is more efficient.

“Garbage collection” usually presents the biggest speed prob-
lem in string operations. Both the interpreter and the compiler
must “houseclean” when the available string space is filled.
Garbage collection compacts the strings that are still being
used, and eliminates any string “garbage.”

The frequency of garbage collection is determined by two fac-
tors: the amount of free space available and the rate of garbage
production. The amount of free space affects how much gar-
bage can accumulate before collection is necessary. In turn, the
rate of garbage production determines how quickly the spaceis
filled.

37

Applesoft Compiler

38

Garbage collection is normally a lengthy process. The time
required depends on how many string variables are used in a
program. Large string arrays substantially slow garbage col-
lection, since the program must look through more variables to
decide whether a string should be kept or discarded. Each time
garbage collection is necessary, the program must suspend
execution to houseclean.

The number of times garbage collection is necessary can be
reduced by increasing the string space available or decreasing
the rate of garbage production. More space can be obtained by
reducing the size of arrays, shortening the program, or setting
DOS MAXFILES to a smaller number. The rate of garbage
production can be decreased by holding operations such as
LEFT$, RIGHTS$, MIDS$, and string concatenation (+) to a min-
imum. The number of assignments is not a factor, because the
compiler does not duplicate strings for assignment.

The time spent during each garbage collection call can also be
reduced by decreasing the number of string variables. Cutting
the number of variables in half usually makes “garbage collec-
tion” about four times faster, because the time required is
roughly proportional to the square of the number of string
variables.

Using string operations efficiently can increase execution
speed, and keeping the number of garbage collection calls to a
minimum results in the best performance.

Chapter 7
Language Enhancements

Microsoft Applesoft Compiler provides two major enhance-
ments to Applesoft that substantially increase speed and pro-
gramming power:

1. True integer arithmetic, including integer FOR/NEXT
loops

2. COMMON variables

The compiler makes these enhancements possible by including
five new statements:

CLEAR CHAIN INTEGER
CLEAR COMMON USECOMMON
DEFCOMMON

These new statements and the language enhancements they
allow are discussed in the sections that follow.

Integer Arithmetic

The compiler includes a full integer arithmetic package. The
integer math routines allow very fast operations on integers.
They are a major improvement over the methods used by the
interpreter.

Integer Arithmetic in Interpreted Programs

The Applesoft interpreter includes the use of integer variables,
butit does not actually perform integer operations. All integers
are converted to floating-point numbers before being operated
on. Since this conversion is necessary each time the variableis
accessed, operations on integer variables are actually slower
than operations on floating-point variables.

39

Applesoft Compiler

The only advantage to using integers in the interpreter is that
elements of integer arrays occupy two bytes of memory rather
than five, because Applesoft does not include integer opera-
tions. The interpreter also does not allow an integer variable as
the index to a FOR loop. These problems combine to make the
use of integer variables in interpreted programs of little value.

Integer Arithmetic in Compiled Programs

If real variables are changed to integers, programs compiled
with MS-Applesoft Compiler can be made substantially faster.
However, converting a program by adding a % sign to each
variable name is time-consuming. To eliminate this problem,
the compiler includes the declaration statement INTEGER.
INTEGER allows variables to be defined as integers without
the addition of the normal % sign. As an example, the real
variable I can be declared as an integer by simply including the
statement INTEGER 1.

Integer variables offer faster arithmetic and more compact
storage, but they also limit the range of values that can be
stored. Integer values must be between -32768 and +32767,
inclusive. Integer variables can only store whole numbers, they
cannot store numbers with fractional parts. An assignment
like 1%=3.5 stores 3in 1%. Any fractional part is simply ignored.
Since integers do not have the same amount of precision as real
variables, changing real variables to integers in a compiled
program may affect the computations in the program. Since
only the integer portion of values assigned to the changed
variables is considered, the results of computations that used
the changed variables may be different. The needed precision
must be considered carefully before changing real variables to
integer variables.

The INTEGER Statement

40

Including the INTEGER statement as a normal statement
causes a syntax error if the program is run under the interpre-
ter, since the interpreter does not recognize the INTEGER
statement. To avoid this problem, the INTEGER statement
must be included in a special “active” REM statement. To

Language Enhancements

allow the compiler to distinguish these special REM state-
ments, “active” REMs are distinguished from normal “nonac-
tive” REMs by using an exclamation point after the word
REM. For example, the following statement declares I as an
integer variable:

10 REM! INTEGER |

The other added statements described later must also be dis-
guised in active REMs. The new statements are ignored when
the program is run by the interpreter, but they are recognized
by the compiler and treated as normal statements.

The INTEGER statement can declare either arrays or simple
variables as integers. Arrays are declared by including the
name and dimensions in the same form that they would be used
in a DIM statement. The dimensions specified must be identi-
cal to the dimensions in any other INTEGER, DEFCOMMON,
USECOMMON, or DIM statements. DEFCOMMON and USE-
COMMON are discussed later in this chapter.

Multiple variables can be declared as integers by separating
the variable names with commas. Spaces are allowed between
variable names and commas, but may not be embedded within
variable names or array dimensions.

MS-Applesoft Compiler includes a wild card option for IN-
TEGER, because many programs can declare all their varia-
bles as integers. Using an asterisk (*) as the first nonspace
character following INTEGER causes all numeric variables to
be treated as integers. The effect of including INTEGER *is the
same as putting thename of every real variable and array in an
INTEGER statement.

A variable may be declared as INTEGER several times, but
only the first declaration has any effect. Multiple INTEGER
statements are allowed. The following declarations are all
acceptable:

10 REM! INTEGER I,J,K,L

20 REM ! INTEGER |,J, AB(3,9), R(3)
30 REM!'INTEGER +

41

Applesoft Compiler

The following declarations include spaces embedded within
variable names, and are therefore unacceptable:

10 REM! INTEGERA % ,A2, A3
20 REM! INTEGER BA(3, 7), D %(3,7)

INTEGER statements can follow or be mixed with normal
inactive REMs, but they must precede all other statements in
the program. The compiler scans all REM statements, and
ignores those whose messages do not begin with an exclama-
tion mark. It also ignores REMs that do not contain one of the
keywords INTEGER, COMMON, CLEAR COMMON, or
CLEAR CHAIN. During compilation, the compiler notifies the
user that it has processed an active REM by printing “RE-
COGNIZED” on the screen. This message is displayed even
when the listing option is turned off. These messages must be
monitored carefully, since an incorrect active REM that is not
being RECOGNIZED is otherwise hard to detect.

Integer FOR/NEXT Loops

42

The interpreter does not allow integer variables denoted by a
percent sign (%) to be used as loop variables in FOR/NEXT
loops. The INTEGER statement allows the compiler’s integer
FOR/NEXT loops to maintain compatibility with the inter-
preter.

Instead of modifying Applesoft syntax and allowing normal
integer variables as FOR loop index variables, Applesoft Com-
piler’s integer FOR/NEXTSs use integer variables declared
with the INTEGER statement. For example:

10 REM! INTEGER |
20FOR1=1TO 10: PRINT | : NEXT |

The INTEGER statement solves the problem of interpreter
compatibility, since the control variable is treated as a real
variable by the interpreter. The compiler recognizes the loop
variable as an integer and produces special code for the loop.
Since the loop variable is an integer, the initial, final, and step
values are considered integers, and must be in therange -32768
to +32767. Integer loops are usually about twice as fast as their
real counterparts.

Language Enhancements

Integer Operations

Integer values in an expression cannot always be operated on
ininteger mode. If the operation also contains real variables, or
iftheintegeris used as an argument to a function that expects a
floating-point value, the integer will be converted to floating-
point form.

The use of integer operations is controlled by the setting of the
integer arithmetic option. Addition, subtraction, multiplica-
tion, and negation can generate overflows in the integer
accumulator, so their use is controlled by the integer arithmetic
option.

If the option is on, true integer operations are performed when-
ever both operands are integers. If the switch is off, integer
operations are only performed for comparisons and logical
tests. These operations cannot generate overflows, so their use
is automatic and is not affected by the setting of the integer
arithmetic option.

Integer operations should be turned off only as a last resort. If
including true integer arithmetic causes overflow in only a few
cases, the expressions that produce overflows can be forced into
real mode. For instance, if A can be temporarily assigned to a
real variable before the addition and B can be added to the real
variable instead, the integer mode addition of the two integers
A and B produces an overflow. Since one of the addends is a
real variable, B is converted to floating-point form, and the
addition is forced to real mode. This forcing technique requires
some small modifications to the program, but the added speed
produced by using integer operations elsewhere in the program
usually justifies these changes.

Many Applesoft statements and functions use integer parame-
ters. Since the interpreter treats all values as floating-point
numbers, it must compute the parameters as floating-point
numbers, then convert them to integers. Similarly, a few func-
tions return integer results and the interpreter must convert the
results back to floating-point form. These continual conver-
sions often slow interpreted programs.

Functions and statements that expect or return integer values

can be made much faster by using them with integer expres-
sions, since compiled code can evaluate expressions in integer

43

Applesoft Compiler

44

mode. Graphics statements, string functions, and game con-
trols all expect integer parameters. Using integer expressions
as the arguments to these operations results in a significant
increase in speed. Eliminating the conversions that are nor-
mally necessary often doubles the speed of the operation.
Games and graphics programs usually benefit substantially
from this technique. The compiled code always converts
parameters if necessary, but the conversion makes the opera-
tion slower.

The following operations expect integer values:

CHRS$ POKE (2)
COLOR= PR#
DRAW RIGHTS$
FOR (integer) ROT=
HCOLOR= SCALE=
HLIN SCRN
HPLOT SPC
HTAB SPEED=
IN# subscripts
LEFTS$ TAB

LET (integer) VLIN
MID$ VTAB
ON GOSUB/TO WAIT (2 & 3)
PDL XDRAW
PLOT

Numbers in parentheses indicate which parameters are treated
asintegers when the operation has parameters of mixed types.

The integer arithmetic package always performs integer com-
parisons when both operands are integers. Since division usu-
ally produces fractional results, division is always performed
in real mode. The following operations can be performed in
integer mode when all operands are integers and the integer
math package is turned on:

addition multiplication
negation subtraction

The following operations can take either floating-point or
integer values without forcing conversion:

AND NOT
FRE OR
IF/THEN POS

Language Enhancements

All other operations expect floating-point values. Variables
should be typed as floating-point or integer depending on
which way they are used most often in the program. Failing to
convert variables that can normally be treated as integers will
unnecessarily slow the compiled code. On the other hand, if a
variableis normally needed in floating-point form, it should be
left as a real variable. Matching the types of the parameters
supplied to the types expected will result in appreciable speed
increases.

The following operations return integer values:

ASC PDL
LEN POS
PEEK SCRN

The values returned by these operations should be treated as
integers whenever possible to increase speed and prevent
conversions.

Using theinteger features provided in the compiler will signifi-
cantly improve the execution speed of compiled programs. The
importance of effectively using integers cannot be overem-
phasized.

Chain With COMMON

MS-Applesoft Compiler provides the ability to pass COMMON
variables between chained programs, which is another impor-
tant extension to Applesoft. The addition of COMMON allows
several programs to pass values without having to alternately
store and recall the values to and from disk. The implementa-
tion of COMMON in the compiler is normally referred to as
“blank” COMMON. Blank COMMON uses a single COM-
MON block. COMMON isimplemented by using a static block
of memory for the COMMON variables to occupy. This block of
memory is left protected as the chained programs are BRUN in
succession. Each program refers to the same block of values as
it executes. Variables that are declared as COMMON in a
program are allocated in the block in a specific order, so that
variables in different programs can correspond.

45

Applesoft Compiler

The actual names used to refer to the variables do not matter.
The common memory allocation is responsible for the corre-
spondence. For instance, assume PROGRAM1 declares varia-
ble Al as its first COMMON variable, and PROGRAM2
declares variable A2 as its first COMMON variable. Since the
location of the two variables in the COMMON block is the
same, the valueleftin variable A1 at theend of PROGRAM1 is
the initial value of variable A2 at the beginning of PRO-
GRAM2. “Creating a System of Programs,” in this chapter,
describes a typical use of COMMON variables.

USECOMMON and DEFCOMMON

46

The DEFCOMMON and USECOMMON statements are used
to declare COMMON variables. Both forms of the COMMON
statement are used in an active REM as follows:

10 REM! DEFCOMMON |,J,K

Multiple COMMON statements are allowed. Any INTEGER
declarations must precede COMMON statements, and both
must precede any other statements (except normal inactive
REMSs). Incorrect ordering produces the “DECLARATION”
error during compilation. COMMON may include any type of
variable in either simple or array form, including variables
declared as integers with INTEGER.

Specifying a variable more than once in a COMMON state-
ment generates the “DECLARATION” error during compila-
tion. Arrays are specified in the same way as they are with
INTEGER, and the same rules hold; any DIM statements must
specify the same dimensions for the array.

DEFCOMMON sets up a COMMON block and initializes the
variables in it. USECOMMON accepts a COMMON block
already set up by another program without clearing the block.

DEFCOMMON presents a problem when several programs
chain back to amain menu. Using DEFCOMMON in the menu
would cause information returned from the subprograms to be
erased, but USECOMMON would fail to initialize the COM-
MON block at all.

Language Enhancements

The solution is to add another program containing DEF-
COMMON that chains to the menu program, and then use
USECOMMON in the menu, as Figure 2 illustrates:

Start-up program
with DEFCOMMON

Menu program
with USECOMMON

| |

Subprogram 1 Subprogram 2 Subprogram 3
with USECOMMON with USECOMMON with USECOMMON
Chains back to Chains back to Chains back to
menu program menu program menu program

Figure 2. Using a Start-Up Program With a Menu

The start-up program is initially executed to set up the COM-
MON block. It then runs the menu program and is never
returned to. This arrangement prevents the DEFCOMMON
from erasing the COMMON variables each time you chain
back to the menu.

CLEAR CHAIN and CLEAR COMMON

The compiled version of the Applesoft CLEAR statement does
not clear COMMON variables, since COMMON variables are
normally intended to be passed to a later program. The com-
piler provides an additional statement, CLEAR COMMON,
that clears COMMON variables. CLEAR COMMON does not
affect local variables. The CLEAR COMMON statement must
be used in an active REM.

47

Applesoft Compiler

Programs chained with COMMON are linked as usual by
using the BRUN command. However, an additional CLEAR
CHAIN statement must be included immediately before the
BRUN statement. The CLEAR CHAIN statement sets up
string storage so that strings are properly preserved across the
chain. The CLEAR CHAIN statement reinitializes all local
variables and forces “garbage collection.” Failure to execute a
CLEAR CHAIN statement causes some string values to be lost
ormodified. The CLEAR CHAIN statement should be included
in an active REM on the line before the BRUN command.

How COMMON Variables Work

48

Space in the COMMON block is allocated in the same order
that the COMMON variables are declared. Integers occupy two
bytes. Real numbers occupy five. String variables require two
bytes each; but since they are allocated in a separate portion of
the block, there is no possibility of mixing them with numeric
variables. The compiler’s string format is different from the
interpreter’s. The length byte for a string is stored at the begin-
ning of the string value, rather than with the pointer to the
string.

Arrays are allocated with the rightmost subscript varying
most quickly,i.e, A(1,1) A(1,2) A(2,1) A(2,2). Each element occu-
pies two or five bytes, according to its type.

Space in the COMMON block is divided into two subblocks:
numeric variables and strings. Within each subblock, the order
of variable space allocation is determined by the orderin which
the variables are declared in COMMON statements. When the
compiled codeis executed, it checks to make sure that the size of
the numeric and string COMMON blocks it expects is identical
to the size of the blocks actually passed to it by the previous
program.

This is the extent of the type-checking performed. The compiler
does not protect or prevent the user from accessing the ten
bytes declared as two five-byte real numeric variables in one
program as five two-byte integer variables in another program.
This type of error can be easily avoided by making the COM-
MON declarations in the two programs identical. Mismatched
COMMON block sizes produce the “?TYPE MISMATCH”
error at runtime.

Language Enhancements

COMMON can also be used to pass parameters to machine
language routines. The beginning of the block and the posi-
tions of the variables within the block are fixed, so machine
language programs can reference static locations for the vari-
ables. The compiled program can also POKE the variable
values into a predetermined location before calling the machine
language routine. Machine language routines designed for
interpreted programs often locate variables by looking them up
in the interpreter’s variable list. These routines will not work
with a compiled program, since the variable list is eliminated.
These programs must be modified to use COMMON or POKE
values explicitly.

Notes On COMMON

Space for the COMMON block is allocated at the beginning of
the space declared for program storage. Programs that share a
COMMON block must all be compiled with the same starting
address for the program space. As the compiler scans the
COMMON statements, it increments the starting memory
address of the compiled program to leave room below it for the
COMMON variables. Including a GOTO to one of the REMs
that declare the COMMON block causes the compiled program
to jump into the COMMON block, producing undefined results.

Using the interpreter to debug programs that use the compiled
COMMON statement is difficult, since COMMON is not
included in the Applesoft language. However, DOS provides a
machine language program that can simulate most of the
facilities of the compiled chain with COMMON. See the Apple
DOS Manual under CHAIN for more information.

An alternative debugging method is to simulate the COMMON
block by using disk files. Variable values can be written to a
text file at the end of one program and read in at the beginning
of the next. Using the PRINT and INPUT statements to write
out and read in the COMMON variables in the same order
that they occur in the COMMON block will help to detect
any ordering errors. This method requires modifying the pro-
grams, but it also provides a reasonably good simulation of
the compiled COMMON.

49

Applesoft Compiler

Creating a System of Programs

The DEFCOMMON and USECOMMON statements are de-
signed for creating large systems of programs that communi-
cate with one another. A sample situation is described here to
show possible interactions in a large system of programs.

Consider the following integrated accounting system contain-
ing three packages for general ledger (GL), accounts payable
(AP), and accountsreceivable (AR). Entry into each packageis
controlled by a main menu program. The system structure is
shown below:

Top
DOS
$9600
String space
Local variables
Variable access subroutines
Numeric constants Object
file
Object code space
String COMMON
Numeric COMMON
Runtime Library
$803
Applesoft program zeroes
$800
System memory
Bottom

Figure 3. Typical COMMON Application

50

Language Enhancements

In order to use COMMON effectively, it is important to struc-
ture the system and the COMMON information logically. In
the system shown in Figure 3, the subprograms within each of
the three packages must pass information to one another.

There may alsobe COMMON information between the MENU
and each of the packages. However, because COMMON blocks
must be the same size in programs that communicate with one
another, any information passed in COMMON from the
MENU also has to be included in the COMMON blocks of the
other programs.

There are two possible solutions to this problem of communi-
cating between programs:

1. Usethe same COMMON declarations in all programs so
that all COMMON information can be shared.

2. Use the same set of COMMON declarations within each
of the three packages, with no information shared via
COMMON with the other packages or with the main
MENU program. In this case, there are three sets of
COMMON declarations, one for each package.

For a large, integrated set of programs, the second method
allows more flexibility, since program control is switched from
package to package through the main MENU. Any input
information that would ordinarily be passed from the MENU
would instead be obtained in the main program for each of the
three packages.

51

Applesoft Compiler

The following program fragments demonstrate how the pro-
grams in the figure might be linked. The short fragments also
provide examples of when to use a simple BRUN and when to
use BRUN with COMMON.

MENU

10 D$ = CHR$(4)

1000 INPUT “WHICH PACKAGE? ”; N

1010 IF N =1 THEN PRINT D$ “BRUN GL”
1020 IF N =2 THEN PRINT D$ “BRUN AP”
1030 IF N =3 THEN PRINT D$ “BRUN AR”

GL

10 REM! DEFCOMMON A, B(3,4), C$, D$
20 D$ = CHR$(4)

1000 REM! CLEAR CHAIN
1010 PRINT D$ “BRUN GL1"

GLA1
10 REM! USECOMMON A1, B1(3,4), C1$, D$

1000 REM! CLEAR CHAIN
1010 PRINT D$ “BRUN GL2”

GL2
10 REM! USECOMMON A2, B2(3,4), C2$, D$

1000 REM! CLEAR CHAIN
1010 PRINT D$ “BRUN GL3”

GL3
10 REM! USECOMMON A3, B3(3,4), C3$, D$

1000 iDRINT D$ “BRUN MENU”

52

Language Enhancements

The examples are shown for the GL package. The other two
packages would be similar. Notice that the MENU does not
have a COMMON declaration, since it does not pass or receive
information. GL has a DEFCOMMUON declaration because it
must pass information on to GL1, but it does not receive infor-
mation from the MENU. Declaring DEFCOMMON sets up the
COMMON block and initializes it.

GL uses a CLEAR CHAIN statement before the BRUN, since
GL must pass information on to GL1. GL1 declares USE-
COMMON, since GL1 must receive and not initialize the
COMMON block passed by GL.

GL1 includes a CLEAR CHAIN statement in order to pass
information on to GL2. GL2 is similar to GL1, and passes the
COMMON information on to GL3. GL3 also declares USE-
COMMON so thatit can accept the values passed to it by GL2.
GL3 does not need a CLEAR CHAIN statement before the
BRUN, since no information is passed from GL3 back to the
menu.

53

Chapter 8
How the Compiler Works

This chapter explains how Microsoft Applesoft Compiler
works, and attempts to make the internal operation of the
compiler less mysterious. The primary function of the compiler
is to translate the source program into machine language. This
process is divided into two basic steps:

1. Syntax analysis

Therecognition of Applesoft statements that the compiler
takes as input.

2. Code generation

The production of machine language equivalents for the
Applesoft statements.

Discussion of these two major steps is preceded by a description
of the programs that perform them.

PASSO0, PASS1, and PASS2

Microsoft Applesoft Compileris a “two-pass” compiler, since it
compiles in two major steps. PASS0 simply picks up user input
and sets up compilation parameters, so it is not really part of
the actual compilation process. The Applesoft program APCOM
runs PASSO.

PASSO and PASSI1 chain to PASS1 and PASS2, respectively.

All three passes were written largely in Applesoft, and MS-
Applesoft Compiler was used to compile itself.

55

Applesoft Compiler

56

PASS1 is the first pass. PASS1 performs syntax analysis and
generates most of the code. As it examines the program, PASS1
also collects information about variables and line numbers and
stores the information in a symbol table.

The symbol table is used to store all the information about the
program. “Compiling” all this information and inserting it
where it is needed eliminates the runtime searching that occurs
during interpretation.

PASSI1 cannot allocate variable storage space or know the
addresses of all the line numbers until it has processed the
entire program. Therefore, it cannot insert actual addresses for
variable or line number references into the code it generates.
Instead, it must leave a trail so the addresses can be patched in
later. PASS2 performs this patching after PASS1 has finished
processing the source file.

PASS2 uses the information provided by PASSI1 to allocate
variable storage space. PASS1 keeps a record of variable usage
in the symbol table. PASS2 uses the symbol table to allocate
storage space. PASS2 uses the stored variable types to decide
how much storage space to allocate. PASS2 then saves the
address of the storage space allocated for each variable with
the other information about the variable.

Line numbers are handled differently. Keeping all line num-
bers and addresses in memory requires too much memory, so
PASSI stores the addresses of the line numbers in the disk file
“CLINENUM?” as it generates the code. PASS2 uses this file to

match line number references to their actual addresses.

When the actual addresses are determined, PASS2 must find
all the references left undefined in PASS1. Rather than keeping
a huge list of all the locations in the program where each
variable is used, PASS]1 links all the references for each varia-
ble or line number into a chain. Each reference contains the
address of the previous reference, rather than the unknown
address.

Because the file is processed forward, these chains lead back-
ward from the current position toward the beginning of the file.
PASSI1 keeps the most recent reference in the symbol table. The
most recent reference points backward to the next most recent,
which points to the one before it, and so on.

How the Compiler Works

This linking leaves PASS2 with the end of the chain for each
set of references, and PASS2 uses the chains to trace back-
wards and patch the undefined references. This process is de-
scribed as “backpatching,” and itis the sole purpose of PASS2.
Backpatching disk files is necessarily a slow process, but build-
ing the files on disk eliminates the program length limitations
imposed by RAM-based compilation.

Syntax Analysis

Syntax analysis is the first step in the compilation process,
since the compiler must be able to understand the source pro-
gram before it can generate code. The syntax analyzer must
examine the current line of input and decide what statement it
represents before it can tell the code generator what kind of
code to produce.

The process of recognizing statements can be broken into two
parts: lexical analysis and parsing. These two steps are dem-
onstrated by reading a sentence. Grouping letters into words is
lexical analysis; grouping words into sentences is parsing.

Lexical Analysis

The lexical analyzer looks at the characters in the input line
and separates out the words that are part of Applesoft state-
ments. These words, like PRINT, FOR, etc., are called “key-
words.” A lexical analyzer might take “FORI=ABTOC” and
produce “FOR I1=AB TO C”. The lexical analyzer substitutes
a numeric “token” for each keyword it finds, making the key-

words easy to recognize later. Tokenizing “FOR”, “=” and
“TO” in the previous example might produce “<129> I <208>
AB<193> C”.

The interpreter lexically analyzes each program line as it is
typed in, so Applesoft programs are stored in “tokenized” for-
mat. When a program is listed, the interpreter substitutes the
appropriate word for each token, and the program comes outin
readable form. Programs stored on disk are also in tokenized
format.

57

Applesoft Compiler

Parsing

58

Since the Applesoft interpreter tokenizes programs, the com-
piler does not have to perform lexical analysis. However, the
compiler must still parse the input. Parsing is normally
accomplished by one of two approaches: top-down or bottom-
up. Both methods produce the same result: they take input that
has been lexically analyzed and then identify logical groups of
information. Top-down parsing first assumes that the input is
a certain statement, then attempts to find the parts that should
be there. Bottom-up parsing first examines the parts, then
deduces the type of statement they represent. Most Applesoft
statements can beidentified by looking at the first character, so
the compiler parses statements from the top down.

Arithmetic and string expressions must also be parsed.

Although they are not composed of letters and words, expres-
sions still include symbols that the compiler must be able to
organize and understand. The parser must examine the ex-
pression and decide how it should be evaluated. The parser uses
operator precedence rules and any parentheses present to
decide what operations must be performed first.

The code generator does not consider precedence, so the parser
has to reorder the operations so they can be output sequentially
during code generation. Expressions are parsed bottom-up,
and reordering is accomplished with a stack.

The reordered expressions are passed to the code generator in
the form of “triples.” A tripleis a unit consisting of an operator
and one or two operands. Operations or functions that have
only one operand leave the space for the other unused. The
operand of one triple is often the result of a previous triple. The
following set of triples represents the expression A + B x C:

How the Compiler Works

Triple # Operator Left Operand Right Operand
1 load B

2 load C

3 multiply triple 1 triple 2

4 load A

5 add triple 4 triple 3

Triples #1 and #2 simply indicate that the variables B and C
must be loaded. Triple #3 instructs the code generator to gener-
ate a multiplication of B and C. Triple #4 indicates that the
value for A must beloaded. Triple #5 specifies that A should be
added to the result produced by the multiplication in triple #3.

Code Generation

Code generation takes place in two different ways. Code for
expressions is generated by an explicit call to the code genera-
tor with a set of triples. Code for statements is generated during
syntax analysis. For instance, the call to the CLEAR routineis
generated as soon as the syntax analyzer recognizes the
CLEAR statement. This method is called syntax-directed code
generation. Most statements such as END, GR, and TEXT,
etc., are represented by a single call to a library or Applesoft
routine.

Statements that involve expressions are normally single calls
also. The syntax analyzer recognizes the statement, then
parses the expression. A call to the code generator produces the
instructions to evaluate the expression. The syntax analyzer
then finishes the code for the statement with a machine lan-
guage call to the routine that uses the value.

The interpreter must search lists of variables and line numbers
to find a variable or line number. The compiler, on the other
hand, generates absolute addresses for variables and line
numbers. The compiler is faster than the interpreter because it
uses these absolute addresses instead of searching long lists.

59

Applesoft Compiler

The compiler collects all the information about the program at
compiletime, rather than searching at runtime. Instead of
searching for a line number when it encounters a GOTO 80
statement, the compiled code simply jumps to the address
already provided by the compiler. Compilation allows program
execution without searching through lists. However, the com-
piler must perform all searching and organization at compile-
time.

Special Techniques

MS-Applesoft Compiler was designed with minimal object code
expansion as one of the main objectives. Execution speed of the
object code was also considered, but a slight decrease in speed is
occasionally traded for a worthwhile reduction in object code
size. The compiler is designed for all types of programs, butitis
intended to be especially beneficial for large programs and
systems. Most compilers produce object code that is signifi-
cantly larger than the original source. This may create difficul-
ties when the program to be compiled is already large. Speed is
important, but a fast program that won’t fit in the available
memory is worthless. Therefore, the compiler uses several spe-
cial techniques to generate compact code.

Variable Accessing

60

Variable accessing is a typical cause of code expansion. Com-
piled and interpreted code must both load and store values to
variables. Variable accessing is required almost constantly, so
most compilers use general purpose load and store subroutines.
Using subroutines saves quite a bit of space. The routine used
to transfer a value to and from memory need be included in the
object code only once, rather than being duplicated each time it
1s needed.

Since these subroutines handle the load and store operations
for all the variables in the program, they must be given infor-
mation about which particular variable to load or store. The
information passed to the subroutine is normally the memory
address of the variable. The address of the variable to be oper-
ated on must be passed to the subroutine each time the routine

How the Compiler Works

is called. The address is normally passed in two of the micro-
processor registers. Every time a variableis accessed, the same
process must be repeated: load the registers, call the routine,
load the registers, call the routine.

Setting up the registers to pass the address more than doubles
the amount of code required for each variable access. Thereis a
more space-efficient way to perform the same function. Instead
of passing an address to a general purpose routine, it is more
effective to have a special routine for each variable that per-
forms the load and call.

The special subroutine for the variable takes the same amount
of space as oneload and call to the general purpose routine, but
now each access for that variable can simply call the special-
ized subroutine. The subroutine does not need to be passed an
address toindicate which variable it should operate on, since it
is dedicated to only one variable. With the new specialized
routines for each variable, the address no longer needs to be
loaded before each call.

This technique takes more space if the variable is only refer-
enced once, but saves space if the variable is referenced more
than once. For example, referencing a variable twenty times
takes only 67 bytes instead of the normal 140. Unfortunately,
this technique works well only when the variable is referenced
in one way. Since a variable can be accessed in several ways,
such as loading, storing, and adding, there really should be a
specialized routine for each variable for each operation. This
would substantially reduce the space savings, since several
routines would be required for each variable.

MS-Applesoft Compiler uses a more sophisticated method to
overcome this problem. Rather than generate several routines
for each variable, the compiler generates only one routine for
each variable. This single routine has a different entry point for
each type of operation on the variable.

Each different entry point loads a different number to indicate
what operation is needed. All then use the same code toload the
variable address. However, because the subroutine is now used
to perform several different operations, it can no longer jump
off to a single operation at the end. Instead, the subroutine
jumps to a special library routine, and the library routine uses
the operation number to dispatch and perform the correct
operation.

61

Applesoft Compiler

Specialized variable accessing routines are a very effective way
of solving the code expansion problem. This special accessing
scheme was developed in answer to the need for compact object
code and is one of the major innovations introduced by MS-
Applesoft Compiler.

The Runtime Library

62

The compiler uses other techniques to reduce the size of the
object code. Most operations have been moved out of the object
code and into subroutines in thelibrary. This increases the size
of the library, but substantially reduces the size of the object
code. This also allows extensive use of subroutine calls in the
compiled code, and produces unbeatably compact object code
with a minimal reduction in speed.

The runtime library included with the compiler has a second
advantage. It reduces the amount of disk storage space
required. The compiler produces object code that uses a runtime
library organized in a standard format. This allows all pro-
grams to use a common library, and saves each object code file
from having to include some of the same routines. With many
programs on one disk, this produces a substantial space
savings.

One disadvantage is that the whole library is used for every
program. For programs that don’t use any strings, for instance,
the string routines are still included. However, large programs
typically use most of the routines in the library, and small
programs have enough memory left over so that including the
extra routines does not present a problem. The library also fits
well below the first HIRES screen, providing a way to effec-
tively use space that might otherwise be wasted.

Chapter 9

Error Messages
and Debugging

This chapter explains the error messages that can occur either
at compiletime or runtime.

Compiletime Error Messages

Microsoft Applesoft Compiler produces two types of error mes-
sages: warnings and fatal error messages. Warnings simply
indicate the use of statements that areignored by the compiler,
such as unsupported Applesoft features or unexecutable code.
Fatal errors indicate problems that prevent successful compi-
lation.

Warnings that indicate unexecutable code are usually caused
by statements following a GOTO or RETURN on the same
program line. Warnings do not prevent an object file from
being created, but no code is generated for the flagged state-
ments. Unsupported statements are simply ignored, and no
code is generated for them. RESUME is ignored unless the
RESUME compilation option is enabled.

Fatal errors yield both a message and an error token. The error
pointer, !ERR!, appears in the incorrect statement at the point
where the error was recognized. Fatal errors cause the incom-
plete object file to be deleted. Compilation continues only so
that any other errors can be detected; code generation does not
continue. The following list describes the fatal errors and their
causes:

63

Applesoft Compiler

DECLARATION

INTEGER or COMMON declarations out of sequence or not at
beginning of program.

USECOMMON and DEFCOMMON both declared in a single
program.

Variable declared as COMMON more than once.

INCOMPLETE

Incomplete expression.
Missing right parenthesis in expression.

OBJECT CODE TOO LONG

Object code or variables for compiled program extend past 48K.
See “Compiling Large Programs” in Chapter 4.

OPERAND

Illegal operand in expression.
Arithmetic constant too large.

REDEFINED

Function defined more than once.
Specified array dimensions different from the first dimensions
specified.

SUBSCRIPT

First subscript missing.

Dimension not an integer constant.

Dimension negative or greater than 32767.

More than 88 subscripts.

Different number of subscripts than in first usage.

SYMBOL TABLE FULL

Compiler out of symbol table space. See “Compiling Large
Programs” in Chapter 4.

SYNTAX

Missing or added character or item.
Line number greater than 65534.

Error Messages and Debugging

TOO COMPLEX

Expression too complex.
IF/THEN nesting too deep.

TOO LONG

Input line longer than 240 characters.
Array larger than 48K declared in COMMON statement.

TYPE MISMATCH

Numeric expression where string was expected, or vice versa.
String expression in IF/THEN.

Undefined line numbers or functions produce fatal errors at the
beginning of PASS2. When possible, the compiler gives the line
number of the reference to the undefined item. The line number
giveninthe error message is the last reference to the function or
line. Any other references must be corrected as well.

Disk errors encountered during compilation cause compilation
to be aborted. The DOS error code for the error encountered is
printed, and compilation is terminated. Refer to the DOS 3.3
Manual for an explanation of the error codes.

The compiler expects a source file that has been tokenized and
has had spaces removed by the interpreter; the compiler does
not allow extra spaces. Additional spaces will cause syntax
errors during compilation. If a file does have added spaces in it,
the spaces can be removed by using the LIST command to list
the program into a text file, then using the EXEC command to
restore the text file back into memory. See the Apple DOS
Manual under EXEC for more information.

Runtime Error Messages

The error messages produced by a compiled program are
nearly identical to those produced by the interpreter. Two error
messages are different with compiled programs. Compiled
programs use the “?TYPE MISMATCH?” error for a different
purpose and also use the new “?MISMATCH” error.

65

Applesoft Compiler

The “?TYPE MISMATCH?” error in its normal sense never
occurs at runtime, since type checking is performed during com-
pilation. The “?TYPE MISMATCH?” error is used instead to
indicate mismatched COMMON blocks. See “CHAIN with
COMMON” in Chapter 7 for more information.

The new “?MISMATCH” error indicates that the program
cannot run with the current library. The “?’MISMATCH” error
occurs if a program compiled with 48K or 64K is run using the
library from 128K MS-Applesoft Compiler. The 128K library
can be used only with 128K object code.

Since the compiled codeis a machine language program, it does
not printline numbers in error messages. However, wheneverit
can, it provides an object code address. This object code address
can be matched with the corresponding line in the Applesoft
source program by using the line-number-to-object-code-address
table offered at the end of PASS2. If a program has errors, it
should be debugged again with the interpreter.

Some errors that occur at runtime cannot include an object code
address. These errors are printed with an address of 0. Using
the ONERR/Debug option makes it possible for the compiler to
always include an object code address. However, including this
option produces a longer and slower object file. For this reason,
program development and debugging should be done with the
interpreter whenever possible.

Runtime errors cause a compiled program to halt without cor-
rectly reinitializing the interpreter. Typing NEW after a run-
time error ensures that the pointers and locations used by the
interpreter are set up correctly.

Sources of Common Problems

66

The compiler is exceptionally compatible with the Applesoft
interpreter, but there are still some problems that may occur
with compiled programs. Chapter 6, “Compiler/Interpreter
Language Comparison,” explains most of the language differ-
ences between compiled and interpreted programs. This sec-
tion is a troubleshooting guide that discusses other problems
that might arise.

Error Messages and Debugging

The Applesoft Interpreter

Compiled programs can only be executed when the Applesoft
interpreter is available at its normal location in memory.
Attempting to execute a compiled program without the Apple-
soft interpreter prevents the compiled code from running.
Attempting to execute a compiled program from Integer
BASIC rather than Applesoft produces the same problems.
The Applesoft interpreter may be present in any form: ROM,
RAMCard, etc. Compiled code will not run with the old version
of Applesoft that loads in as an Integer program.

HIRES Graphics

The compiler fully supports all HIRES graphics without modi-
fication, but the HIRES screens and shape tables often cause
memory conflicts. Applesoft uses two areas of memory that
correspond to the two HIRES “screens,” HGR and HGR2. HGR
resides in the area of memory from 8192 to 16383 (hex $2000-
$3FFF), and the area from 16384 to 24575 (hex $4000-$5FFF) is
used by HGR2. These areas of memory are mapped to the
screen to display the HIRES graphics.

The HGR and HGR2 commands write zeroes through the
appropriate area of memory. This zeroing destroys any part of
a compiled program, library, or variables that extends into this
area. If part of one of these blocks is destroyed, the compiled
code behaves unpredictably. This problem is usually easy to
recognize and correct. The problem occurs only with programs
that use HIRES graphics, and usually occurs shortly after
these programs attempt an HGR or HGR2 statement.

Problems with the HIRES screens can be prevented by examin-
ing the statistics provided at the end of compilation. The
addresses included indicate where the program, library, and
variables reside. If the program uses HIRES graphics, check
the addresses to ensure that they do not conflict with the
addresses given above for the appropriate HIRES pages. If
there is a conflict the program must be recompiled, using the
alternate memory allocation methods discussed in Chapter 4,
“Compilation.”

67

Applesoft Compiler

Shape tables used by HIRES graphics often cause more subtle
problems. Shape tables must be loaded with the BLOAD com-
mand or poked into memory with the POKE statement just like
machine language programs, and often present the same
memory conflict problems. The shape table may reside in the
same place that the compiled code is expected to occupy.

In fact, shape tables for interpreted programs tend to be stored
exactly where programs compiled to fit around the HIRES
pages reside. The interpreted program normally fits below the
HIRES page, so the shape table is often kept just above the
page. However, thisis exactly where the program residesifitis
compiled using the HGR1 and HGR2 memory allocation
options. When shape tables are used, their location can usually
be determined by looking at the addresses specified in the
POKEs that put them in memory. If there is a conflict, it is
usually simpler to relocate the shape table. However, the pro-
gram can also be compiled at a different address by using the
information in Chapter 4, “Compilation.”

Normal LORES graphics do not present a problem. The
memory mapped to the screen by LORES graphics is the same
as the memory mapped in normal text mode. This area is out of
the way of both compiled and interpreted programs.

Machine Language Programs

68

Machine language programs used with Applesoft often depend
on variables or program lines residing in a specific place. Since
compilation totally changes the internal representation of the
program, some machine language programs simply do not
work with compiled code.

When a machine language program does not work because it
depends on characteristics of the interpreted program, the
machine language routine must usually be rewritten. However,
some machine language programs create problems only be-
cause they present memory allocation conflicts.

Machine language programs are usually written and as-
sembled to reside at a certain address. The Applesoft program
normally puts the machine language program in memory
using BLOAD or POKE. CALLs, POKEs, PEEKs, and
BLOADs often indicate the use of a machine language pro-
gram.

Error Messages and Debugging

Some machine language programs are also tacked onto the end
of Applesoft programs, so that the machine language routineis
loaded in with the Applesoft file. These machine language
programs are harder to detect, and make successful compila-
tion difficult. “PENNY ARCADE” on the Apple demonstra-
tion disk is an example of this type of program. The original
author is usually the only one who can easily straighten out
these programs.

Machine language programs are normally called with the
CALL statement from the Applesoft program. The addresses
specified in the CALLs or POKEs are usually a good indication
of whether or not the machine language programs will cause
problems. Most routines are written toresidein page 3, which is
unused by both interpreted and compiled programs. Parts of
page 3 are used by DOS, but the majority of it is free for use.
Page 3 occupies locations 768-1023 (hex $300-3FF).

Routines located in page 3 usually do not cause problems. Page
3 is not used by the compiled code, so the machine language
program should not present a memory conflict. However, some
routines present other compatibility problems.

One common page 3 routineis the stack clear routine used with
ONERR GOTO. CALLs into page 3 (decimal 768-1023, hex
$300-$3FF) from ONERR GOTO handlers are usually calling
this routine. See “ONERR GOTO and the Stack” in Chapter
6 for more information about the ONERR machine language
routine.

Self-Modifying Programs

Some interpreted programs achieve special effects by modify-
ing themselves as they run. PHONE LIST on the Apple dem-
onstration disk is an example of this unusual technique. The
interpreted version of PHONE LIST uses the POKE statement
to modify DATA statements inside itself, saving the data by
modifying itself as it runs. Other programs “hide” parts of
themselves to speed execution. These programs do not work
properly when compiled. These programs must be rewritten to
remove the self-modification before they will run successfully
after compilation.

69

Appendix A

Moving Binary Files
With the ADR Utility

Binary Files

Microsoft Applesoft Compiler compiles Applesoft files to pro-
duce machine languagefiles. Since the machine language files
are not Applesoft programs, their format on disk is different
from that of Applesoft programs. This appendix describes how
to load and save the machine language files.

DOS currently uses three main file types: Applesoft, Text, and
Binary. The type of a file is indicated by a single letter in the
CATALOG (“A,” “T,” or “B”), which represent Applesoft, Text,
and Binary files. The input files to the compiler are Applesoft
programs, so they are indicated by an “A” in the catalog. The
machine language files produced are stored in binary format,
and they are indicated by a “B” in the catalog.

Saving and Loading Binary Files

The usual LOAD <filename>, SAVE <filename>, and RUN
<filename> DOS commands work with Applesoft files, but
they cannot be used with binary files. DOS provides a corre-
sponding set of commands for binary files—BLLOAD, BSAVE,
and BRUN. The “B” prefix to the commands denotes a binary
file. The commands function much the same as the correspond-
ing commands for Applesoft files, but there are some differen-
ces.

The DOS SAVE command stores Applesoft programs on disk
by using information from the Applesoft interpreter. The inter-
preter provides the information about the beginning and
length of the program to be saved, and DOS writes the program

71

Applesoft Compiler

72

to disk. DOS saves the length information with the file so the
program can be loaded back into memory later. The user does
not have to worry about telling DOS where the program starts
or how long the program is: the Applesoft interpreter provides
DOS with all the necessary information.

The Applesoft interpreter cannot provide the information
necessary to load and save machine language programs. The
interpreter keeps track of where the current Applesoft program
resides, but it does not retain information about machine lan-
guage programs. Therefore, the user must specify additional
information to BLOAD and BSAVE machine language pro-
grams.

The BSAVE command is similar to the SAVE command for
Applesoft programs. BSAVE saves a portion of memory to disk
in binary format. Compiled programs are treated like any other
binary data in memory. Since the Applesoft interpreter can no
longer provide the beginning and length information neces-
sary, the user must specify the starting address and length of
the memory to be saved by the BSAVE command. The normal
syntax for the BSAVE command is:

BSAVE <filename>, A <address>, L <length>

The two letters “A” and “L” precede the numbers that indicate
the starting address and length of the memory to be saved. The
numbers can be specified in either hexadecimal or decimal
format. Hexadecimal numbers are base sixteen, and decimal
numbers are the normal base ten. If hexadecimal numbers are
used, they must be preceded by a dollar sign “$”. Decimal
numbers are used without any special characters. The usual
slot, drive, and volume parameters can also be used with
BSAVE, BLOAD and BRUN.

BLOAD and BRUN are similar to the Applesoft file commands
LOAD and RUN. LOAD for Applesoft programs simply moves
the program into memory; RUN loads the program, then runs
it. Similarly, BLOAD loads a section of memory from a binary
disk file; BRUN loads the section, then executes it. Since the
binary files stored by the compiler are machine language pro-
grams, BLOAD willload a compiled program; BRUN loads the
program and runs it. As explained in Chapter 5, “Executing a
Compiled Program,” the runtime library must be in memory
before a compiled program can be BRUN.

Moving Binary Files

BLOAD normally loads the contents of the disk file back into
the same area of memory from which the file was saved with
BSAVE. For instance, loading a machine-language program
with the BLOAD command that was saved with the BSAVE
command starting from location 4000 loads the program back
in at location 4000. However, it is also possible to BLOAD a
disk file to a different location in memory. The “A” parameter
can be used to specify a different starting address for the file.
Typing “BLOAD <filename>, A 6000” always loads the
binary file into memory starting at location 6000.

The “A” parameter cannot be used to load and run an object file
at an address different from the one at which it was com-
piled. Compiled programs will not run correctly if they are
run at a location different from where they normally load.

The “A” parameter with BLOAD is normally used only to
BLOAD the runtime library at an address different from its
default. The default address for the library is 2051 (hex $803),
and because the library was saved with BSAVE to disk from
that address, it normally loads at that address when the
BLOAD command is used. Specifying the “A” parameter
allows the library to be loaded at an address different from its
default. The “A” parameter is also accepted in the BRUN
command, but as just mentioned, compiled programs cannot
be run at an address different from their normal location. Nei-
ther BLOAD nor BRUN can include the “L” parameter, since
the whole disk file is always loaded. See the DOS 3. 3 Manual
under “Binary Files” for more information about binary file
commands.

The ADR Utility

Moving compiled programs from disk to disk is not as simple as
moving Applesoft programs, since the address and length of
the memory range must be specified in the BSAVE command.
The compiled program can still be loaded with BLOAD without
specifying any extra information, but it cannot be saved with
BSAVE without knowing its beginning address and length.
The ADR utility isincluded in the MS-Applesoft Compiler disk
to make finding the required information simple.

73

Applesoft Compiler

DOS saves the address and length of the binary file most
recently loaded. The ADR utility uses the saved information to
print the beginning and length of the most recently loaded file.
ADR is a text file, so it should be executed by typing “EXEC
ADR”. ADR does not affect any program or file in memory; it
simply executes a PRINT statement to provide the needed
information. Since the PRINT statement is only understood by
the Applesoft interpreter, ADR will not work from the monitor.

ADR prints out the decimal beginning address and length of
the most recently loaded file. The numbers printed should be
used with the “A” and “L” parameters to BSAVE the machine
language program to disk. The normal sequence for moving a
program from one disk to another is:

BLOAD <filename>
EXEC ADR
BSAVE <filename>,A<address>,L<length>

The address and length for the BSAVE command are found by
executing the ADR file with EXEC and are simply included in
the BSAVE command, preceded by “A” and “L”. The same

procedure can be used to move the binary files on the compiler
disk—RUNTIME, PASS0, PASS1, and PASS2.

The program CREATE ADR is included so that the ADR file
can be used on other disks. ADR is a text file and cannot be
LOADed and SAVEd or BLOADed and BSAVEA to transfer it

to another disk. Instead, the CREATE ADR program must be
used to write a copy of the text file onto the new disk.

The procedure for transferring the ADR file to a new disk is
simple:

1. Loadthe CREATE ADR program from the MS-Applesoft
Compiler disk.

2. Remove the compiler disk.
3. Insert the disk that the new copy should be created on.

4. Type RUN.

74

Moving Binary Files

The CREATE ADR program opens up a text file called “ADR”
on the disk, writes the PRINT commands into it, then closes the
file and stops. The new ADR file will be identical to the ADR file
on the compiler disk. See the DOS 3.3 Manual under “EXEC”
for more information on EXEC text files.

75

Appendix B
Creating a Turnkey Disk

It is quite simple to make a turnkey disk that runs a compiled
program when the disk is booted. The Applesoft program given
in this section loads the runtime library and runs the desired
file. Typing this program in as the HELLO program on a disk
allows the compiled object code to be executed when the disk is
booted. See the DOS 3.3 Manual for more information on creat-
ing turnkey disks.

The following program loads and executes the binary file
PROGRAM.OBJ. To use it, change PROGRAM.OBJ to the
name of the actual program.

10 PRINT CHR$(4) + “BLOAD RUNTIME” + CHR$(13) +
CHR$(4) + “BRUN PROGRAM.OBJ” + CHR$(13)

CHR$(4) is the disk character <CTRL-D>. CHR$(13) yields a
<RETURN>. The PRINT statement executes two disk com-
mands—a BLOAD and a BRUN. Both <RETURN>s are criti-
cal: the first separates the two commands, the second insures
execution of the BRUN command.

The Applesoft program itself is usually overwritten by the
loaded runtime library, so both the BLOAD and the BRUN must
be in one PRINT statement. If they were in separate PRINTS,
the second PRINT would be destoyed by the BLOAD before it
could be executed. This is also why concatenation (+) is used to
join the strings. If the strings are not actually concatenated,
each substring is output separately, and the same problem
oceurs.

77

Appendix C
Notes on Applesoft

Microsoft Applesoft Compiler is designed to implement the
features of Applesoft as closely as possible, so there are very
few differences between the interpreter and the compiler. The
differences that do exist are explained in Chapter 6, “Compi-
ler/Interpreter Language Comparison.” This appendix further
explains some of the features and peculiarities of Applesoft. It
contains some information about Applesoft statements that is
not included in the Applesoft II BASIC Programming Refer-
ence Manual.

Information is included on the following:

1. TAB and SPC in PRINT statements

Reentry of parameters after an error in INPUT
Screen wrap-around with DRAW and XDRAW
The ONERR GOTO statement

-~ W

TAB and SPC Functions

The operation of TAB and SPC is different than might be
expected. When used as the last item in a PRINT statement,
TAB and SPC act as if they are followed by a semicolon, and
suppress the printing of a carriage return.

For example, the following program lines are equivalent:
PRINT “SAME” TAB(10) : PRINT “LINE”
PRINT “SAME” TAB(10); : PRINT “LINE”
PRINT “SAME” TAB(10) “LINE”
All three forms PRINT:
SAME LINE

79

Applesoft Compiler

The INPUT Statement

The description of the INPUT statementin the Applesoft man-
ual explains the “? REENTER” message in detail. However,
when the “?REENTER” message is displayed, the entire
INPUT statement is reexecuted. Consider the following re-
sponse to the statement “INPUT A,B,C”:

2,3,"NOT A NUMBER”

The “?’REENTER” message is printed because the string
“NOT A NUMBER?” cannot be assigned to the numeric varia-
ble C. However, Applesoft is requesting the reentry of all three
inputs, starting with the value for A. It is not just expecting
another single input for C.

DRAW and XDRAW Commands

DRAW and XDRAW are HIRES commands for plotting
shapes. DRAW and XDRAW require legal X, Y coordinates to
specify the starting point for plotting the shape. However, the
shape is not necessarily a single point, so it can occupy space
on either side of the specified point. As long as the starting
point is on the screen, plotting a shape near the edge of the
screen does not yield an “? ILLEGAL QUANTITY ERROR.”

If the shape extends past the edge of the screen, the Applesoft
DRAW routines wrap the off-screen portion around to the other
side. This is not usually a problem, but it can produce abnormal
displays.

ONERR GOTO Statement

80

The interpreted ONERR GOTO has a problem that causes the
interpreter to ignore any statements following an ONERR
GOTO statement in a given program line.

Notes on Applesoft

The statement PRINT “AND AFTER” in line 10 of the follow-
ing program is never executed:

10 PRINT “BEFORE” : ONERR GOTO 30: PRINT “AND AFTER”
20 STOP
30 PRINT “ERROR”

Placing statements after an ONERR GOTO statement is rea-
sonable, since the ONERR GOTO statement does not neces-
sarily transfer control when it is executed. Unfortunately,
however, the interpreter always ignores them. To avoid any
confusion, the compiler handles ONERR GOTO in the same
way as the interpreter.

81

Appendix D
Runtime Memory Map

Figure 4 shows the default memory configuration for a com-
piled program. The default can be modified by explicitly speci-
fying the memory addresses at the beginning of compilation.
See Chapter 4, “Compilation,” for more information.

String variables point into a string area that contains the
actual string values. The string values grow downward from
the top of memory toward the bottom of the available space.
When the strings fill the available memory, the compiler forces
garbage collection and frees any unused space. If not enough
space is available after garbage collection to store the next
string, the compiled code yields an “?0UT OF MEMORY”
error.

83

84

Applesoft Compiler

MENU

GL AP AR
4

GL1 AP1 ART
4

GL2 AP2 AR2

GL3 AP3 AR3

1

Back to menu

Figure 4. Runtime Memory Map

Appendix E
Zero Page Usage

Compiled programs use routines from the Applesoft interpreter
and the runtime library. Both the interpreter routines and the
runtime library make extensive use of a portion of memory
called the “zero page.” The zero page resides from $00 to $FF
(decimal 0-255).

Both page zero and page 3 ($300-$3FF, or decimal 768-1023) are
also often used by short machine language programs. Com-
piled code changes the Ampersand vector at $3F5 to allow
reexecution of the compiled program, but does not otherwise
modify page 3.

Zero page usage by compiled programs is largely confined to
thelocations that are already used by the Applesoft interpreter.
The only zero-page locations used by compiled programs that
are not normally used by the Applesoft interpreter are loca-
tions $17-$19 (decimal 23-25). The map below shows the zero-
page locations used differently by compiled programs.

85

Applesoft Compiler

Zero Page Usage by Compiled Programs

Hex address Usage

OD-OE Temporaries

10 Temporary

12-13 Address of first DATA string

14-15 Highest location used by library,
program, or variables

16 Temporary

17-19 JMP to library AYINT routine

50-51 Temporary

55-56 Temporary

58-5A JMP to library routine that floats
integer accumulator

5B-5D JMP to code currently handling
ONERR

62-66 Temporaries

69-6A Beginning of COMMON block - 1

6B-6C End of numeric common

6D-6E End of string common

6F-70 Bottom of string storage - 1

71 Input buffer pointer

75-76 Address of object code being executed

7T-TA Temporaries

7B-7C Beginning of local numeric
variables - 1

7D-7E End of local numeric variables

7TF-80 End of local string variables

81-84 Temporaries

8A-8E Temporaries

93-96 Temporary

9E-A3 Integer accumulators

AD-AE Temporary

AF-BO Address of library routine that pops
FOR entries off the stack

B1-C8 Applesoft CHRGET, modified, but still
functions normally

D9 Temporary

DC-DD Temporary

F6-F7 Address of current DATA string

86

Chapter 10

64K Microsoft
Applesoft Compiler

The 64K extended memory version of the Microsoft Applesoft
Compiler disk provides two features not available on the
standard 48K disk. First, the DOSMOVER program included
on the disk relocates DOS from the main 48K of memory,
freeing an additional 10.5K of memory for running compiled
programs.

Second, the 64K version of MS-Applesoft Compiler uses the
memory freed with DOSMOVER to speed compilation, produc-
ing the same object code as the 48K compiler in about half the
time. These added features are important for developing large
programs since they increase the amount of runtime memory
and shorten compilation time.

The 64K version enhancements use the extra 16K bank of
memory available in a 64K machine. The extra 16K allows
DOSMOVER to relocate Apple DOS out of the main 48K and
into the extra 16K bank. This relocation is not possible on
Apple computers with less than 64K of memory. Apple compu-
ters that have 64K of memory and can therefore take advan-
tage of these features include the 48K Apple II or II Plus
machine with unused 16K memory cards, and Apple Ile, which
comes standard with 64K of RAM.

The 64K version compiler disk contains the following files:
1. APCOM—64K version of Microsoft Applesoft Compiler.

2. PASSO0, PASS1, PASS2—Internal subprograms of 64K
Applesoft Compiler.

3. RUNTIME—Runtime library, same as 48K APCOM.

87

Applesoft Compiler

4. DOSMOVER—DOS relocation program.

5. RENUMBER.UPDATE—Updated version of Apple’s
Applesoft RENUMBER program.

6. BALL—Demonstration program.

These files and their uses are described in Part 2.

88

Chapter 11
The DOSMOVER Program

Apple DOS normally loads into the top of the main 48K of
memory. This leaves the last 16K of memory on 64K Apple
computers free. DOS normally occupies 10.5K of the main 48K,
so moving DOS into the extra 16K frees up 10.5K of main
memory. The main memory freed allows faster compilation
and the execution of larger compiled programs. This relocation
is the function of the “DOSMOVER” program provided on the
64K compiler disk. The DOSMOVER program moves DOS into
the extra 16K, freeing the memory normally occupied by DOS.
In addition, the DOSMOVER program also modifies DOS, as
described in the next two sections.

Speed Improvements

Normal Apple DOSis slow in loading and saving large files, so
DOSMOVER modifies DOS to increase its speed. The modifi-
cations affect the LOAD, SAVE, RUN, BLOAD, BSAVE, and
BRUN commands, increasing their speed by several times
without otherwise changing their operation. The modifications
do not affect text file I/0.

Using DOSMOVER

DOSMOVER is simple to use. Running DOSMOVER with
DOS in its normal position moves DOS into the extra 16K of
RAM. Executing DOSMOVER with the BRUN command
when DOS is not in its normal location prints “DOS NOT AT
NORMAL ADDRESS” and leaves DOS unmodified. In either
case, DOSMOVER overwrites any program in memory.

89

Applesoft Compiler

90

Relocating DOS frees up the top of main memory, so DOS-
MOVER sets HIMEM to 49152 (hex $C000). This allows the
newly available memory to be used by both interpreted and
compiled programs. The main memory from 0-2047 ($0-$800
hex)is used by the system and text screen, so this 2K is always
occupied. This leaves 46K of the main 48K available. DOS
normally occupies 10.5K of memory. When DOS has not been
relocated, there is only 35.5K (46K - 10.5K) of usable memory.
When DOS has been relocated, the full 46K is available.

The 10.5K of main memory gained by relocating DOS can be
important for several reasons. Long compiled programs may
need the extra space for object code or variables. The extra
space is also useful as string space. Some programs “garbage
collect” often because of frequent string operations or small
string space. Increasing the size of the string space decreases
the frequency of garbage collection.

When DOS has been relocated with DOSMOVER, it is accessed
like normal DOS in most instances. Relocated DOS is compati-
ble with compiled or interpreted programs that access DOS
through the normal command interface. The normal interface
from an Applesoft program is

PRINT <CTRL-D> <command>
Most programs use this interface.

Disk utility programs often do not use the normal interface.
Utilities like the Apple COPY, FID, and MUFFIN programs
access DOS at alow level. Instead of using PRINT <CTRL-D>
statements, these programs use machine language routines
that call entry points in DOS. When DOS is relocated, these
entry points are moved.

Utilities that depend on these entry points do not run correctly
when DOS is relocated. Usually such programs will hang, but
they might also execute incorrectly. If DOSMOVER has been
used to relocate DOS, DOS must be rebooted before running
programs that access DOS at a low level. Since rebooting is
inconvenient, grouping the use of these programs saves time.

The DOSMOVER Program

The DOS INIT command is absent in the relocated DOS to
provide space for the added features. The relocated DOS cannot
initialize disks, so normal DOS must be rebooted if the INIT
command is needed. Initialization should be grouped together
with copying, etc., to reduce the need for rebooting.

Therelocated DOS requires additional routines to switch in the
extra 16K of memory whenever DOS is needed. These routines
occupy part of page 3 in main memory. This is the only main
memory space taken up by the relocated DOS (see Appendix B,
Part 2, “DOSMOVER Technical Notes,” for more information).

The maximum number of files that can be open simultaneously
(MAXFILES) is restricted to five with relocated DOS. Request-
ing a MAXFILES allocation of more than five generates a
range error. Few programs access more than five files simul-
taneously. Those programs that do should be modified or exe-
cuted with unrelocated DOS.

The ADR Command

The locations for the beginning and length of BLOADed files
are no longer easily accessible when DOS is relocated. Using
the PEEK statement or using the ADR utility from the 48K
MS-Applesoft Compiler disk no longer gives the desired infor-
mation. To overcome this problem, DOSMOVER modifies the
relocated DOS to include a binary address print command,
?ADR.

The ?ADR command prints out the beginning address and
length of thelast binary fileloaded. The ?ADR command gives
the same information as executing the ADR file with EXEC
with unrelocated DOS, and is used in the same fashion. After
loading or running a file with BLOAD or BRUN, just type
?ADR instead of EXEC ADR. The name ?ADR is identical to
the short form of the BASIC statement PRINT ADR, and is
therefore easy to remember.

91

Applesoft Compiler

92

The address and length reported by ?ADR are printed in hex-
adecimal, asindicated by the dollar sign preceding the number.
The addresses are printed as A$<hex address>, L$<hex
length>, instead of A<dec address>, L<dec length>, as with
the ADR exec file. DOS accepts hexadecimal addresses, so no
conversion to decimal is necessary—just use the dollar sign
and hex numbers in the same way as the decimal numbers
printed by executing ADR with EXEC.

Chapter 12

Compiling With the
64K Version of
Microsoft Applesoft Compiler

Compiling with the 64K extended memory version of Microsoft
Applesoft Compiler is very similar to compiling with the 48K
version. Both compilers look the same, but the internal process
used in the 64K version takes advantage of the memory freed
by relocating DOS. The 64K version of MS-Applesoft Compiler
uses the additional memory for disk buffering, allowing faster
compilation than with 48K MS-Applesoft Compiler. However,
although the compilation process used in the 64K extended
memory version is different from the process used in the 48K
standard version, the object code files that result from the two
compilers are exactly the same.

Since the object code produced by the 48K version and the 64K
version is the same, the runtime libraries on the disks of 48K
and 64K versions of MS-Applesoft Compiler are identical. The
runtime library is included on both disks because it is used by
the compilers during compilation.

Using the 64K extended memory version of the compiler is
different from using the standard 48K version in one very
important way. Since the 64K version needs the memory used
by DOS, DOSMOVER must be used to relocate DOS before
using 64K MS-Applesoft Compiler. The 64K version cannot
compile if DOS has not been relocated. Running the 64K com-
piler when DOS has not been relocated causes “DOS NOT
RELOCATED—CAN’T COMPILE” to be displayed as soon as
the compiler begins to run. When this occurs, either use 48K
MS-Applesoft Compiler without relocating DOS, or relocate
DOS with DOSMOVER and restart the 64K version of the
compiler.

93

Applesoft Compiler

94

DOSMOVER must be used to relocate DOS before you use the
64K version to compile a program. No other DOS relocation
program is recognized by 64K MS-Applesoft Compiler. Run-
ning the 64K version when DOS has been relocated by some
method other than running DOSMOVER with the BRUN
command generates the “DOS NOT RELOCATED—CAN’T
COMPILE” error message.

The comments in this chapter about using DOSMOVER with
the 64K extended memory version of the compiler concern
compilation only. DOS must always be relocated to compile
with 64K MS-Applesoft Compiler. Only long compiled pro-
grams that would overwrite DOS require execution with relo-
cated DOS. The next section discusses executing compiled pro-
grams with relocated DOS.

Chapter 13

Executing Compiled Programs
With Relocated DOS

This section discusses executing programs with relocated
DOS. It does not discuss differences between executing pro-
grams compiled with the 64K version and the 48K version of
Microsoft Applesoft Compiler. The object code produced by the
64K extended memory version is identical to the object code
produced by the standard version. Executing programs com-
piled with the 64K version is no different from executing pro-
grams compiled with the 48K version.

There are two likely sources of problems in executing compiled
programs when DOS has been relocated. First, only programs
that access DOS through the normal command interface
(PRINT <CTRL-D> <command>) execute correctly when
DOS has been relocated. This limitation is caused by the low-
level differences between normal and relocated DOS. This re-
striction applies to both interpreted and compiled programs.
Compiling a program does not introduce any additional
restrictions.

Therestriction on the type of DOS access permitted is the most
likely source of problems when DOS is relocated. If a compiled
program does not run with relocated DOS, try running the
program with normal DOS. If the program runs correctly with
normal DOS but does not run with relocated DOS, the program
must access DOS at a level lower than the command interface.
The program must be modified or run with unrelocated DOS.

The second common problem is forgetting to relocate DOS

before running a program that uses the memory normally
occupied by DOS.

95

Applesoft Compiler

96

Warning

When a compiled program or its variables extend into the
area normally occupied by DOS, running the program
without relocating DOS destroys DOS. If the program
object code loads in over DOS, then DOS usually fails
while executing the BRUN or BLOAD commands. If only
the variables overwrite DOS, the problem usually occurs
after the program starts running. The initial zeroing of
variables may destroy DOS, or DOS may destroy varia-
bles during program execution.

Conflicts with DOS are particularly dangerous, since destroy-
ing DOS usually hangs the computer and may destroy a disk.
Check the memory usage information provided at the end of
compilation to see if the program or variables extend into the
space normally occupied by DOS (memory locations 38400-
49151, $9600-$BFFF hex). Programs that extend into this space
must be run with DOS relocated. Adding a suffix like . LONG
to the object filename (specifying PROGRAM.OBJ.LONG)
helps keep track of programs that must have DOS relocated.

Appendix A
RENUMBER.UPDATE

RENUMBER.UPDATE is a slightly modified version of the
Applesoft RENUMBER program supplied on the Apple DOS
3.3 System Master disk. The original Applesoft RENUMBER
program works only when HIMEM is set at 38400 (hex $9600),
the value for a 48K Apple with DOS. The value of HIMEM
changes when DOS is relocated, and the uncorrected Applesoft
RENUMBER program does not function correctly.

RENUMBER.UPDATE works with the HIMEM values for
both normal and relocated DOS. RENUMBER.UPDATE also
works with any other HIMEM values that are multiples of 256
(hex $100). Be sure to use only the corrected copy, since the
uncorrected RENUMBER program does not work properly
when DOS is relocated.

Using the uncorrected RENUMBER program by accident is
inconvenient but not usually fatal. The uncorrected RENUM-
BER program jumps into the monitor with a beep instead of
returning to Applesoft after renumbering. To recover, type
<CTRL-C> <RETURN>, then type <CLEAR>. List the pro-
gram to make sure it is intact. If the program is destroyed, it
must be reentered or reloaded from disk.

RENUMBER.UPDATE prints “RELOCATION UPDATED”
just below the normal “APPLESOFT RENUMBER?” line in
the header displayed when running the RENUMBER pro-
gram. Checking the header is an easy way to determine
whether a particular copy of the RENUMBER program is an
original or corrected version. Name the original and corrected
versions of the RENUMBER program differently to prevent
mistakes.

97

Appendix B
DOSMOVER Technical Notes

This appendix provides detailed technical information about
the relocation methods used in DOSMOVER. An understand-
ing of the information in this appendix is not required to use
DOSMOVER.

Relocation Information

DOSMOVER accomplishes two tasks. First, DOSMOVER
modifies DOS to increase the speed of the load and save rou-
tines. These modifications are discussed as “speed changes.”
Second, DOSMOVER modifies and moves DOS into the top
16K of bank-switched memory. The modifications necessary
for relocation are discussed as ‘“banking changes.”

DOSMOVER performs the relocation in the following order:
1. Insures DOS is in normal position by checking that I/0
hooks in page zero point to DOS routines at $9E81 and
$9EBD. If not, generates the following error message:
DOS NOT AT NORMAL ADDRESS
2. Disconnects DOS.

3. Installs patches in DOS, page 3, and $9000-$912B ($9000
maps to $D000, the speed changes).

4. Changes addresses in DOS code segments to relocated
addresses.

99

Applesoft Compiler

100

5. Changes addresses in DOS data segments to relocated
addresses.

6. Moves DOS image into final position in bank-switched
memory.

7. Coldstarts new DOS.

Patches are installed before DOS is relocated, so the addresses
in the patches are for unrelocated DOS. The address relocation
includes both the unmodified parts of DOS and the new
patches.

DOS is relocated to reside in the bank-switched memory that
lies in the address space $D000-$FFFF. Bank 2is selected in the
$D000-$DFFF address space; bank 1 is left unused. The main
DOS routines normally residing at $9600-$BFFF are moved to
$D600-SFFFF. The space from $D15A-$D5FF is left for two
additional file buffers, allowing a maximum of five. The space
from $D000-$D12B is occupied by code for the speed changes.
$D12C-$D159 is left unused.

Most patching is accomplished in-line in DOS. Short patches
simply replace the old code they modify. Patches that will not
fit are put in one of two large “patch areas,” and are jumped to
from the code they modify. The first large patch area is in the
space from the file manager INIT handler (SAES8E-$AF07).
The second large patch area is in the space from the routine to
write DOS to tracks zero through two ($B700-$B78C).

Additional spaceis used in page 3 for the banking patches. The
normally free space from $396-$3CF is occupied by patch code,
and the usual DOS entry code at $3D0-$3EE is heavily modi-
fied. These patches in page 3 are vital and must not be overwrit-
ten. Only three of the normal page 3 entry calls are preserved—
coldstart ($3D0), warmstart ($3D3), and reconnect ($3EA).

The file manager and RWTS calling points in page 3 are dis-
abled with BRK instructions. The file manager and RWTS still
existin therelocated DOS, at the corresponding addresses (add
$D600-$9600=$4000 to get the relocated addresses). Modifying
the parameter lists is no longer simply a matter of storing the
desired values. Instead, modification requires switching in the

DOSMOVER Technical Notes

relocated DOS, modifying the lists, and switching the ROM
back in. Similarly, calls to the relocated DOS must switch in
DOS, call, then restore the ROM. The BRK instructions are
substituted to force programs that do not take the relocation
into account to break.

Speed Modifications

The speed increase in the LOAD, SAVE, and RUN commands
results from improvements to the file manager. The commands
use the file manager “read/write a range of bytes” routines, so
these routines are modified. The single-byte read/write rou-
tines are not changed.

The unmodified file manager performs the 1/0 n byte com-
mands by doing n single-byte I/O operations. This introduces a
substantial amount of overhead. In the relocated DOS, theI/O
n byte requests are vectored to the special routine at $D000-
$D12B. Complete sectors are read or written directly between
memory and disk without intermediate buffering. Partial
beginning or ending sectors are handled with normal DOS
buffering. This speeds up the I/O n byte routines considerably.

Normal DOS 3.3 verifies after writing to insure that the data
was written correctly. This verification slows down writing to
disk somewhat, but also makes it more reliable. The modified
DOS leaves this verification intact. Note that the normal rou-
tine in the file manager to write n bytes, actually writes n+1
bytes. The modified DOS also writes n+1 bytes to insure
compatibility.

101

Chapter 14

128K Microsoft
Applesoft Compiler

128K MS-Applesoft Compiler provides several new features
that take advantage of the additional memory available on the
128K AppleIle. First, the 128K compiler uses the extra memory
to compile faster and provide more symbol table space. The
larger symbol table allows compilation of even longer pro-
grams. Second, the 128K compiler produces special object code
that allows variables and strings to be stored in the extra
memory.

The 128K version disk is intended for use on an Apple Ile with
128K RAM. The Apple I1le comes standard with 64K RAM. In
order to have 128K, the basic Apple Ile must be equipped with
an extended 80-column card containing an additional 64K
bank of memory. Note that a plain 80-column card does not
provide an additional 64K bank of memory; only the extended
card includes the auxiliary 64K bank.

128K MS-Applesoft Compiler generates special object code to
allow compiled programs to access the auxiliary memory. The
object code produced allows variables and string space to reside
in the auxiliary bank of memory. Moving variables to the extra
bank frees up main memory for use by the object code. In
addition, DOSMOVER can free even more main memory by
relocating DOS.

To appreciate the increase in program size that the 128K ver-
sion of the compiler allows, consider the space available for
object code on 48K, 64K, and 128K systems. With 48K of
memory, object code, variables, and DOS must all fit into the
48K of available main memory. With 64K of memory, DOS-
MOVER can remove DOS into the top 16K so that only object
code and variables must fit into the main 48K of memory.

103

Applesoft Compiler

104

With 128K of memory, DOSMOVER and 128K MS-Applesoft
Compiler can be used together to free the entire main 48K for
use by object code. The 128K Apple Ile extended memory ver-
sion frees part of main memory by allowing variables and
string space to reside in the auxiliary memory. DOSMOVER
frees the rest of main memory by relocating DOS into the top
16K. 128K MS-Applesoft Compiler and DOSMOVER together
allow the main 48K to be used entirely for object code, making it
possible to compile extremely long programs.

128K MS-Applesoft Compiler is even more useful because the
Applesoft interpreter does not use the auxiliary bank of
memory. Interpreted programs can use only the main bank of
memory. Programs compiled with the 128K version of the com-
piler not only execute more quickly, but also allow the use of the
otherwise unavailable auxiliary memory.

The 128K MS-Applesoft Compiler disk contains the following
files:

1. APCOM—128K version of the Microsoft Applesoft Com-
piler.

2. PASS0, PASS1, PASS2—Internal subprograms of 128K
Applesoft Compiler.

3. RUNTIME—Runtime library, different from 48K
RUNTIME.

4. DOSMOVER—DOS relocation program.

5. RENUMBER.UPDATE—Updated version of Apple’s
Applesoft RENUMBER program.

6. BALL—Demonstration program.

These files and their use are described in Part 3.

Chapter 15

Default Compilation With
128K MS-Applesoft Compiler

128K MS-Applesoft Compiler is quite easy to use. Defaults
allow basic compilation without requiring knowledge of the
memory configuration of the Apple Ile. Just as with the 48K
version, only the source filename must be provided to compile
in the default mode. In addition, of course, there are options to
specify different memory configuration and compilation modes.
This chapter provides the information necessary to compile in
default mode with 128K MS-Applesoft Compiler.

Using the 128K Apple Ile extended memory version of the
Applesoft Compiler is basically the same as using the 48K
version. Remember, though, that the 128K version requires
relocated DOS. If DOS is not already relocated, relocate DOS
with DOSMOVER before running the 128K version. See
“Using DOSMOVER?” in Chapter 11 for details on using the
DOSMOVER program. Once DOS is relocated, everything is
set for compilation. The 128K compiler is invoked with RUN
APCOM. After the compiler finishes loading, a header appears
on the screen and the compiler requests the source filename.

Two possible mistakes may cause error messages before the
compiler requests the source filename. “MISMATCH” indi-
cates that MS-Applesoft Compiler is not being run on a 128K
AppleIle. 128K MS-Applesoft Compiler can be used only on the
128K Apple Ile. Second, “DOS NOT RELOCATED—CAN’T
COMPILE” indicates that DOS has not been relocated with
DOSMOVER.

From this point on, using the 128K compiler with defaultsis the
same as using the 48K compiler with defaults. To appreciate
the similarity to 48K Applesoft Compiler, try actually compil-
ing BALL, the demonstration program, with the 128K version.
When the compiler prompts for the source filename, follow the
instructions in Chapter 1, “Demonstration Run,” for instruc-
tions on running BALL.

105

Applesoft Compiler

106

Follow the instructions that begin after the direction to type
“RUN APCOM”. Note that the compilation information printed
at the end of PASS2 now includes information for both the
main and auxiliary banks.

Try running the compiled version of BALL. Remember that
some of BALL’s variables reside in the auxiliary memory.
BLOAD the runtime library from the 128K disk, and BRUN
the new BALL.OBJ program. There is little visible indication
that the object code accesses the auxiliary bank. This is the
power of the Microsoft Applesoft Compiler; Applesoft pro-
grams the extra memory without the problems of getting over
to the auxiliary bank.

Despite the added power of the 128K Apple Ile extended
memory version, compiling with the 128K compiler is much the
same as compiling with the 48K compiler. On the outside, the
128K compiler looks a lot like the 48K compiler. The object files
produced are quite different, though, since the object code from
the 128K compiler handles the auxiliary bank of memory. This
chapter has shown how simple it is to use 128 K MS-Applesoft
Compiler in default mode. The following chapters give addi-
tional information about the 128K version.

Chapter 16
Executing 128K Programs

Executing programs compiled with 128K Microsoft Applesoft
Compiler is similar to executing programs compiled with the
48K compiler, but there are a few differences. This section
discusses those differences. Refer to Chapter 5, “Executing a
Compiled Program,” for general information about executing
compiled programs.

The object code produced by the 128K compiler is substantially
different from the object code produced by the 48K compiler.
The runtime libraries used by 128K and 48K object code are
also different. The differences in the 128K object code and
runtime library enable 128K object code to access variables and
strings in the auxiliary bank.

128K object code can only be executed with the 128K RUN-
TIME library file, and 48K object code can only be executed
with the 48K RUNTIME file. Mismatching object code and
library generates an error message as soon as the object code
begins executing. Running object code compiled with one ver-
sion using the runtime library from the other version generates
the “?’MISMATCH?” error. Load the correct RUNTIME file,
and reload the object code. The runtime libraries for the two
versions are different lengths, so part of the object code may be
destroyed in a mismatch.

128K object code requires the presence of the auxiliary bank.
Even if memory allocation has been reassigned so that all
variables reside in the main bank, string space still resides in
the auxiliary bank. In addition, the RUNTIME file copies itself
into the auxiliary bank at the beginning of execution. Attempt-
ing to run object code compiled by the 128K compiler on a
machine that is not a 128K Apple Ile also generates the
“YMISMATCH?” error. The object code produced by the 128K
compiler can only be run on a 128K machine. If the object code
must be run on some machine other than a 128K Apple Ile,
compile with 48K or 64K MS-Applesoft Compiler.

107

Applesoft Compiler

108

The default memory allocation of the 128K compiler assumes
that the whole main bank is free for use by the compiled code.
This assumes that DOS has been relocated. The 128K compiler
in default mode may produce object code that extends into DOS
space. If the compiled code occupies part of the space occupied
by DOS and DOS has not been relocated, then either the com-
piled program or DOS is destroyed.

There are several ways to prevent this. The most simple way is
to use relocated DOS. Relocated DOS can be used whenever
disk utility programs do not require the normal DOS. When
DOS has been relocated, there is no chance that compiled
programs will conflict with DOS. Another approach is to check
the compilation information provided at the end of PASS2 each
time a program is compiled. If the program or its variables
extend into the area normally occupied by DOS (locations
38400-49151, $9600-3BFFF hex), then specially name the pro-
gram as suggested in Chapter 13, “Executing Compiled Pro-
grams With Relocated DOS.”

Still another option is to explicitly reserve the space occupied
by DOS. The memory allocation options in the 128K Apple I1e
extended memory version can be used to set the highest
memory location in the main bank used by the compiled code.
Setting the highest available location below DOS insures that
the compiled code will not overwrite DOS. Chapter 20, “Speci-
fying Different Memory Configurations,” explains how to limit
the space used by compiled code.

Chapter 17
Banked Memory

128K Microsoft Applesoft Compiler is designed specifically for
the Apple ITe. MS-Applesoft Compiler is designed so that com-
pilation requires a minimum of knowledge about the memory
layout of the Apple computer. Still, specifying nondefault
memory allocation requires some understanding of the memory
layout of the ITe. This chapter introduces banked memory, one
of the concepts important in understanding the Apple Ile. This
chapter combined with the next explain how the memory in the
Apple Ile is organized.

The Apple Ile

The Apple Ile comes standard with 64K of RAM. The AppleIle
can be extended by adding 80-column capability and extra
memory. There are two types of 80-column cards available:
those that offer only 80-column capability, and those that offer
80-column capability plus an additional 64K of RAM. The extra
64K of RAM available on these cards extends the total amount
of RAM to 128K. 128K of memory is required to use 128K
MS-Applesoft Compiler.

The memory layout in the Apple Ile is not fully described by
saying that the Apple IIle has “128K” of memory. There are
several important aspects of computer memory. The aspect
most commonly discussed is simply the amount of memory
available. Most computers are identified as having “16K,”
“48K,” “256K,” etc., of memory.

The amount of memory is only part of the story. The configura-
tion of the memory is also very important. The amount of RAM
available in a 128K Apple Ile is 128K, but the RAM is config-
ured as “bank-switched” memory. “Bank-switched” memory

109

Applesoft Compiler

must be accessed differently than “plain” memory. Bank-
switched memory and its use on the Apple Ile are described in
the following sections.

Bank-Switched Memory

110

The basicidea of “memory” is easy to understand. Memory is a
way to save things: things can be stored in memeory and
recalled from memory. Most memories can store more than one
item, so memories are usually divided into a number of “one-
item memory locations.” Each memory location stores exactly
one item, and “accessing” (storing to or recalling from) the
location changes or recalls the single item stored there.

To make storing in or recalling from a particular location
easier, memory locations are usually assigned names or
numbers to help distinguish between them. As an example,
suppose four items are to be stored in memory. Since each item
requires a separate location, there must be four locations. To
make storing and recalling easier, each location needs a name.
Suppose the names are the four letters ‘A’, ‘B’, ‘C’, and ‘D’.

In this four-location memory, each location has a different
name. ‘A’ corresponds to the first location, ‘B’ to the second, ‘C’
to the third, and ‘D’ to the fourth. The names ‘A’, ‘B’, ‘C’, and ‘D’
serve as the “addresses” of thelocations. The item stored in the
first location can be accessed by specifying address ‘A’, the
item stored in the second location can be accessed by specifying
address ‘B’, and so on. Each address specifies a location, and
each location contains one item.

If each location is to have a unique address, there must be at
least as many possible addresses as there are locations. Thisis
not always the case. Suppose that addresses must be single
capital letters: ‘A’, ‘B’, ‘C’, ... ‘Z’. Since there are 26 letters in the
alphabet, this provides 26 possible addresses. As long as there
are 26 locations or less, each location can have a different
address.

Banked Memory

Suppose there are 52 locations and still only 26 addresses. Since
there are more than 26 locations, there are not enough
addresses for each location to have a different address. Sup-
pose each address is paired with two locations. Imagine the
first 26 locations have addresses ‘A’ through ‘Z’, and the next
26 locations also have addresses ‘A’ through ‘Z’. Now each
address is shared by two locations.

With this identification scheme, each location has an address,
but each location no longer has a unique address. The address
‘A’ is paired with both the first location and also the twenty-
seventh location. The address ‘B’ is paired with both the second
and twenty-eighth locations, and so on. Specifying an address
alone no longer singles out a certain location.

This addressing scheme is difficult to use. With only 26
addresses and 52 locations, it is no longer possible to specify an
address and be sure which location is being accessed. There
clearly needs to be some additional distinction between the first
26 locations and the second 26 locations.

Suppose that the first 26 locations are considered to be “bank
one” and the next 26 locations are considered to be “bank two.”
Bank one therefore includes locations 1 through 26, and bank
two includes locations 27 through 52.

Dividing the memory into two banks provides a way to distin-
guish between the two different locations that are paired with
the address ‘A’. Locations 1 and 27 lie in different banks.
Saying, “address ‘A’ in bank one” specifies location 1, and
saying, “address ‘A’ in bank two” specifies location 27. Loca-
tions 1 and 27 still share the same letter address ‘A’, but the two
locations can now be distinguished by the bank they are in.

The 52-location memory is now divided into two banks. Bank
one includes locations 1 through 26, and bank two includes
locations 27 through 52. Within each bank, locations are dis-
tinguished by their address; ‘A’, ‘B’, ‘C’, etc. Each of the 52
locations can be accessed individually by first specifying the
bank the location is in, then the address of the location:

A B C D... X Y V4

bank 1: loc1 loc2 loc3 loc4... loc24 loc25 loc26
bank 2: loc27 loc28 l1oc29 10c30...loc50 loc51 loc52

111

Applesoft Compiler

112

Separating memory into banks allows a limited number of
addresses to be used with a larger number of locations. Each
address represents several locations, but the locations are in
different banks. This type of memory configuration is often
called “banked,” or “bank-switched,” since the memory is
divided into several different “banks.” Chapter 18, “Apple Ile
Memory,” discusses how memory banking is used on the Apple
Ile.

Chapter 18
Apple IIe Memory

Understanding bank-switched memory is important in under-
standing how the Apple Ile can provide 128K of memory. The
Apple Ile uses bank-switched memory to get around some of its
built-in limitations.

Computers generally access their memory by using numbers
as the addresses of memory locations, and the Apple is no
exception. For instance, a 48K Apple has 49152 (48 times 1024)
locations of RAM. These 49152 locations are assigned ad-
dresses 0 through 49151, and each location has a unique
address. Since there are as many addresses as memory loca-
tions, thereis no need to use a banked memory configuration on
a 48K Apple.

The heart of the Apple is its 6502 microprocessor, a complex
chip on the main circuit board. The 6502 performs most of the
operations needed to run the computer, and one of its common
jobs is accessing the memory. The 6502 limits memory ad-
dresses to the range 0 through 65535. This means that the 6502
can address 65536 locations (64K=65536 divided by 1024). This
figureis normally expressed by saying that the 6502 has 64K of
“address space.”

Since the 6502 in the Apple can address only 64K of memory,
there is clearly a problem in trying to address the 128K of
memory in the 128K Apple Ile. This problem is solved by
dividing the 128K RAM into two 64K banks. The 128K is
divided in the same way that the 52-location memory in the last
chapter was divided into two 26-location banks. The Apple Ile
contains 128K of memory, but the memory must be ‘“banked.”

A 128K Apple Ile uses two 64K banks. A 64K Apple Ile can get
by with the 64K of address space provided by the 6502, so a 64K
AppleIlejust uses one bank of 64K. Adding an 80-column card
with the additional 64K of memory simply adds a second 64K
bank to the first 64K bank. Together, the two banks provide
128K of memory.

113

Applesoft Compiler

The extra bank of memory in the Apple Ile increases the total
amount of memory in the computer, but, in practice, the extra
bank is difficult to access. Only one bank can be accessed at a
time. Accessing the extra bank requires first switching out the
main bank. However, the program accessing the extra bank
normally lies in the main bank. So, accessing the extra bank
requires switching out the main bank, but switching out the
main bank also switches out the program. With the program no
longer available, the computer hangs.

There are several ways to get around this problem, but none of
them is directly available to the Applesoft user. Without MS-
Applesoft Compiler, only specially written applications pro-
grams can take advantage of the extra bank of memory. With
Applesoft Compiler, however, the problem of accessing the
extra bank is taken care of by the compiler. 128 K MS-Applesoft
Compiler generates special code that takes care of all the bank-
switching overhead, allowing the normally unavailable extra
bank to be used by compiled Applesoft programs.

The 64K Apple Ile Memory Configuration

114

The exact memory configuration of the 128K Apple Ileis easier
to explain after first examining the 64K Apple ITe. The memory
in a 64K Apple Ile includes more than just the 64K of user
RAM. In addition to the 64K of RAM, there is also 12K of
dedicated ROM and 4K of I/0 space. The ROM contains the
Applesoft language and the system monitor, and the I/O space
includes special locations such as the keyboard strobe and
game controller locations.

To simplify the discussion of memory, the ROM and I/0 space
will simply be grouped together as 16K of “ROM.” An addi-
tional 2K of space at the bottom of RAM is reserved for the
system and screen memory. The overall picture for the 64K
Apple Ile is illustrated in Table 3.

Apple Ile Memory

Table 3
Memory Configuration for 64K Apple Ile

RAM HARDWARE
$CO000-$FFFF (16K) B/SRAM “ROM”
$800-$BFFF (46K) RAM none
$0-$7FF (2K) SYSRAM none
(B/S: Bank-switched SYS: system)

The “ROM?” is required for the internal operation of the Apple
and is not directly available to the user. Similarly, although the
bottom 2K of memory is RAM, it is used by the system for
Applesoft, the monitor, and the text screen. Only a few parts of
this memory are free for use, mainly the lower part of page 3
(decimal 768-1023, hex $300-$3FF). Most of the bottom 2K is off
limits to the user.

In the diagram above, the top 16K of space is occupied by both
RAM and the “ROM.” The RAM and “ROM?” in this space are
bank-switched; either the RAM or the “ROM” can be accessed
at any given time, but not both. Usually the “ROM” is switched
in so that Applesoft and the system monitor are available. The
16K of RAM in this area is awkward to use, since accessing the
RAM requires switching the “ROM” in and out.

The 16K of RAM in this area corresponds to the RAM added to
a 48K Apple Il by using a RAMCard. RAMCard memory is not
directly accessible to Applesoft, and so it is usually used for
special purposes. Applications or machine language programs
sometimes use the RAMCard, and languages that are not in
ROM are also often loaded into the RAMCard memory. The top
16K of RAM in a 64K Apple Ile acts just like a RAMCard in a
48K Apple II or II Plus; it is switched in and out in the same
fashion, and is available for the same uses.

While the top 16K of address space can contain either the ROM
or the RAMCard RAM, the address space for the first 48K is
occupied only by RAM. This 48K of RAM is directly available
since there is no bank-switching necessary to access it. This is

the memory normally used for Applesoft programs and varia-
bles.

115

Applesoft Compiler

In summary, the memory configuration of a 64K Apple Ile is
the same as the memory configuration of a 48K Apple Il with a
RAMCard. The first 2K of the main 48K of RAM is reserved for
system functions, and the next 46K is directly available to the
user. The last 16K of address space is occupied by the “ROM”,
but 16K of bank-switched RAM can also be switched in to
occupy this space.

To avoid confusion, this 16K of bank-switched RAM will be
called “RAMCard” memory. This name is logical, since the
16K of “RAMCard” memory in a 64K Apple Ile acts like the
16K of RAM that a RAMCard adds to a 48K Apple IIL
Remember, though, that the “RAMCard” memory in the Apple
IIe is really just a part of the built-in 64K.

The 128K Apple I1e Memory Configuration

The 128K Apple Ile memory configuration is fairly easy to
understand once you understand the configuration of the 64K
Apple ITe. The 128K Ile has an additional 64K of RAM on the
extended 80-column card, but this additional 64K of RAM is set
up as an exactimage of the first 64K. In a 128K Apple Ile, there
are just two copies of the 64K of RAM, as shown in Table 4.

Table 4
Memory Configuration for 128K Apple Ile

COPY 1 COPY 2 HARDWARE
$C000-$FFFF (16K) B/S RAM B/S RAM “ROM”
$800-$BFFF (46K) RAM RAM none
$0-$7FF (2K) SYSRAM SYSRAM none
(B/S: Bank-switched SYS: system)

116

Notice how the two copies of RAM are set up identically. They
both have the first 2K of the main 48K as system RAM, and the
next 46K as free RAM. Both have 16K of “RAMCard” bank-
switched memory in the same address space as the “ROM.”
Thus, each 64K copy of RAM has 48K of “main” memory, and

Apple Ile Memory

16K of “RAMCard” memory. Since the two 64K copies cannot
both be used at the same time, the two 64K copies are actually
“bank-switched.” The first copy (main bank) and the second
copy (auxiliary bank) cannot be accessed at the same time;
accessing one requires switching the other one out.

The reason for specially naming the 16K of bank-switched
memory at the top of each bank as “RAMCard” memory should
now be clear. The main and auxiliary 64K banks are them-
selves bank-switched, but each also contains 16K of “RAM-
Card” memory that is bank-switched in another sense. The
special name “RAMCard” is used to avoid confusion between
the two 64K banks of memory and the 16K of separately bank-
switched memory within each bank.

There are five areas of memory that are important for compila-
tion. To avoid phrases like “the ‘RAMCard’ memory in the
auxiliary bank,” or “the 46K of user memory in the main
bank,” each important area will be referred to by a fixed name.
The names are shown in Table 5.

Table 5
Memory Area Names for 128K Apple Ile

COPY 1 COPY 2 HARDWARE
$C000-$FFFF (16K) MAIN RAMCard AUX RAMCard “ROM”
$800-$BFFF (46K) MAIN BANK AUX BANK none
$0-$7FF (2K) unnamed unnamed none

Now, for instance, ““RAMCard’ memory in the auxiliary
bank” becomes the “auxiliary RAMCard,” and “the 46K of
user memory in the main bank” is just the “main bank.” If at
some point these shortened terms do not provide enough
information, refer back to this explanation to recall what they
represent.

117

Chapter 19
Default Memory Allocation

The default memory allocation provided by the 128K version is
intended to be suitable for most uses. Still, there are situations
where a particular area of memory needs to be protected from
use by the compiled code. Memory might be reserved to allow
use of the HIRES screens or machine language programs. Like
the 48K version, the 128K version provides several features
that allow special memory configurations.

Memory usage on the Apple Ile is much easier to describe with
the terms explained in Chapter 18, “Apple IIe Memory.” DOS-
MOVER relocates DOS out of the “main bank” and into the
“main RAMCard.” Compiled programs use the “main bank”
and the “auxiliary bank” of memory. The “auxiliary RAM-
Card” is the only section of memory left unused. Machine
language programs or data might be located in the auxiliary
RAMCard, but the auxiliary RAMCard is difficult to access. It
is much easier to simply set aside space in the main bank.
Chapter 20, “Specifying Alternate Memory Configurations,”
discusses how to reserve main memory space.

The default memory allocation provided by the 128K compiler
uses both the main and auxiliary banks. Object code and local
(notin COMMON) numeric variables are assigned to the main
bank. String space and local string variables are assigned to
the auxiliary bank. The COMMON block defaults to the auxil-
iary bank. The runtime library must be available regardless of
which bank is switched in, so the RUNTIME fileis kept in both
banks.

119

Applesoft Compiler

120

The runtime library in the 128K version is assigned to a fixed
address. The runtime library resides at the bottom of memory,
at 2051 (hex $803). The copies of RUNTIME in the main and
auxiliary bank must be at the same address. RUNTIME is
assigned to the bottom of memory in the auxiliary bank to
prevent conflict with any variables in the auxiliary bank. This
forces the runtime library in the main bank to also reside at the
beginning of the bank. The runtime library will not function
properly if used at a different address. The runtime library
copies itself into the auxiliary bank at the beginning of
execution.

Chapter 20

Specifying Different
Memory Configurations

The memory allocation features in the 128K Apple Ile version
allow a great deal of flexibility. Only a few general require-
ments must be satisfied. This chapter discusses those require-
ments and how to specify alternate memory configurations.

The general requirements are fairly easy to meet. First, the
runtime library must reside at the bottom of both the main and
auxiliary banks. The runtime library will not function from
any other location. Object code must reside in the main bank.
String space and local string variables must reside in the auxil-
iary bank. The auxiliary bank must be totally free for use by the
compiled code. Spacein the auxiliary bank cannot be explicitly
reserved.

This is the full extent of the general requirements. The flexibil-
ity remaining is more than sufficient in most cases. A program
can be compiled to start at any address in the main bank. This
allows the program to start after either of the HIRES screensin
case HIRES graphics are used.

If the program uses a COMMON block, the block can reside in
either the main or auxiliary bank, and can start at any address.
This allows the COMMON block to be moved to the auxiliary
bank ifitis toolarge to fitin the main bank with the object code.
Note that the COMMON block includes both COMMON
numeric and string variables. “Local” (non-COMMON) string
variables must reside in the auxiliary bank, but there is no such
restriction on the COMMON string variables in the COMMON
block.

The top of usable memory in the main bank can be set to
reserve space—for machine language programs, for example.
The top of main memory available to the compiled code
defaults to the beginning of ROM. This default allows the

121

Applesoft Compiler

122

compiled program to use all of the main bank. The default does
not reserve any space for DOS or other uses. Space can be
reserved by explicitly setting the top of usable memory below
the needed space.

Local numeric variables are allocated automatically by the
compiler. This allocation is controlled by the address specified
as the top of usable memory in the main bank. The compiler
allocates local numeric variables from the beginning of local
numeric variable space (usually the end of the object code) up to
the specified end of usable memory. If still more space is
needed, the compiler allocates the remaining local numeric
variables in the auxiliary bank.

This ability to allocate local numeric variables in both banks
makes the most use of the available memory. If the object code
“almost” fills the main bank, the leftover space is not wasted.
The compiler automatically puts as many of the local numerics
as possible in the main bank, and assigns the rest to the
auxiliary bank.

The flexibility of 128K MS-Applesoft Compiler becomes impor-
tant for long programs. Long programs typically produce even
longer object code, so object code space is usually the biggest
limitation. The requirements for memory use are set up so that
the object code can occupy the entire main bank if need be.

Local string variables and string space are always stored in the
auxiliary bank. Local numeric variables are automatically
assigned to the auxiliary bank if the main bank is full. Finally,
even the COMMON block can be pushed off into the auxiliary
bank. Only the runtime library and the object code must fit into
the main bank. The runtime library is only about 4K long.
Since the main bank minus the 2K of system memory is 46K
long, this allows 42K of object code space.

Long programs often require a great deal of variable space.
Large arrays, big common blocks, or numerous strings all
require substantial variable and string space. The 128K com-
piler is able to provide the needed space by allowing variables
and string space to reside in the auxiliary bank. Again, there is
42K (46K minus 4K) of space for variables and strings. Even if
the main bank is totally filled by 42K of object code, there is still
an additional 42K available for variables and strings. If the
main bank is not full, the available variable space is even
larger.

Specifying Different Memory Configurations

Needless to say, it is fairly difficult to write intelligible Apple-
soft programs that exhaust all the memory made available by
MS-Applesoft Compiler. Considering the additional chain with
COMMON features, there are very few programs that cannot
be compiled with the 128K Apple Ile extended memory version.

The memory allocation options in the 128K version are power-
ful and convenient to use. To specify a memory configuration
different than the default, answer N or NO when the compiler
prompts:

MEMORY USAGE:
NORMAL CONFIGURATION:
(DEFAULT YES)?

When the default is not used, the next few prompts request
information about the desired configuration. The first two
prompts request the bank and address for the COMMON block.
These prompts must be answered even if the program about to
be compiled does not use COMMON variables. If the program
does not have a COMMON block, the responses will not be
used, so the default COMMON bank and address are sufficient.

The bank for the COMMON block defaults to the auxiliary
bank, but either bank may be used. If the COMMON blockisin
the auxiliary bank, its location defaults to the end of the
library. This location is also the default if the COMMON block
isin the main bank, but alternate addresses may be specified if
the COMMON block is in the main bank. Possible responses to
the COMMON block address prompt are pressing <RETURN>
to accept the default, entering a numeric address, or typing

HGR1
or
HGR2

“HGR1” and “HGR2” set the beginning of the COMMON
block immediately above the corresponding HIRES screen.

The next prompt requests the starting address for the object
code. The object code always resides in the main bank, so only
the address for the object code must be specified. The possible
responses are the same as they were for the COMMON block
address; press <RETURN>, enter a number, or type

123

Applesoft Compiler

124

HGR1
or
HGR2

The compiler next requests the address for the beginning of
variables in the main bank. Remember that the variables con-
cerned are local numerics only. Local string variables are
always assigned to the auxiliary bank, and the location of
COMMON variables is determined by the COMMON block
address. Local numerics are allocated from the specified
address up to the top of usable main memory. Any variables
that do not fit are assigned to the auxiliary bank.

The last prompt requests the bottom of reserved main memory.
The address specified should be the first location that is not
available to the compiled code. The default is the beginning of
ROM (decimal 49152, hex $C000). The default assumes that no
space needs to be reserved, and that DOS will be relocated at
runtime.

After the prompts have all been answered, the compiler lists
the specified addresses and requests confirmation. Examine
the addresses carefully, since this is the last chance to discover
an error until the final addresses are listed at the end of PASS2.
Notethatthe “END OF MAIN MEMORY” is determined from
the response to the “BOTTOM OF RESERVED MAIN MEM-
ORY” prompt. The end of usable main memory is considered to
be one less than the bottom of reserved main memory.

Several error messages may occur during compilation if the
specified memory configuration cannot be satisfied. “TOO
LONG” is generated if an array larger than 48K is declared in
COMMON. “OBJECT CODE TOO LONG” is generated if the
object code extends past the declared top of usable main
memory. “OUT OF VARIABLE SPACE” is generated when
all the available variable space in both banks has been
exhausted. The only one of these errors that is likely to occur is
the “OBJECT CODE TOO LONG” error. This error may occur
if the address for the beginning of the object code is set abnor-
mally high. If the object code address is left at its default, the
maximum of 42K for object code space is available.

Specifying Different Memory Configurations

When compilation is complete, PASS2 prints the resulting
memory addresses for object code, variables, and string space.
Check to make sure that the addresses are as intended. If DOS
will not be relocated when the object code is run, and the space
occupied by DOS was not explicitly reserved, check to make
sure that the compiled code does not extend into the area occu-
pied by DOS.

If a nondefault address for the beginning of variables in the
main bank was specified, check to insure that the address
specified does not force an overlap between the variables and
object code. Finally, remember that if the program uses HIRES
graphics, the object code addresses must have been set so that
the memory mapped to the appropriate screen is free. If no
conflicts are apparent in any of the memory information, then
the memory usage by the compiled program should not cause
any problems. If problems are apparent, recompile using the
correct addresses.

125

Chapter 21

Additional Differences
From 48K Microsoft
Applesoft Compiler

The basic information needed to use the 128K version is dis-
cussed in the previous chapters. The previous chapters outline
the basic differences between the standard version and the
128K version, but assume a working knowledge of the 48K and
64K versions. Part 1, the 48K section, covers basic compilation
issues, and Part 2, the 64K section, discusses the use of DOS-
MOVER and RENUMBER.UPDATE.

This chapter lists additional minor differences between 128K
and 48K MS-Applesoft Compiler. Each of the following sec-
tions discusses the changes that affect a particular chapter in
Part 1, the 48K section.

Compilation (Chapter 4)

This section discusses additional changes affecting Chapter 4,
“Compilation.”

Memory Usage

Programs compiled with 128K MS-Applesoft Compiler no
longer use the HIMEM pointer. Strings are kept in the auxil-
iary bank, so string space always starts at the top of the auxil-
iary bank rather than at HIMEM. The HIMEM statement is
ignored by the 128K compiler.

127

Applesoft Compiler

Compiling Large Programs

Long compiled programs are less likely to present problems
with the 128K Apple Ile extended memory version. The 128K
compiler has about twice as much symbol table space as the
48K compiler, so “SYMBOL TABLE FULL” errors are rare.
Programs are less likely to need separation into chained parts,
since there is substantially more space available at runtime. If
a long program does present problems, refer to “Compiling
Large Programs’ in Chapter 4. Also consider trying a different
memory allocation scheme, as discussed in Chapter 20, “Speci-
fying Different Memory Configurations.”

Compiler/Interpreter Language
Comparison (Chapter 6)

This section discusses additional changes affecting Chapter 6,
“Compiler/Interpreter Language Comparison.”

Statements Not Implemented

As discussed in the previous section, HIMEM is no longer
needed when string space is in the auxiliary bank. HIMEM
statements are simply ignored.

Using MAXFILES From Within
a Compiled Program

128

MAXFILES no longer requires an additional HIMEM state-
ment to function correctly from a compiled program. MAX-
FILES still resets certain pointers, but these pointers are no
longer used by the compiled code. However, since MAXFILES
changes the amount of space occupied by DOS, changing
MAXFILES may cause memory conflicts between DOS and
the compiled code.

Additional Differences from 48K

MAXFILES determines the number of file buffers allocated by
DOS. With DOS relocated, the space used by the file buffers is
in themain RAMCard. Since the compiled code does not use the
main RAMCard, thereis no possibility of conflict when DOSis
relocated.

When DOS is not relocated, both DOS and its file buffers
occupy the upper part of the main bank. The normal DOS
beginning of 38400 (hex $9600) assumes three file buffers are
allocated. Additional buffers require another 595 (hex $253)
bytes each. With four buffers (one additional), the bottom of
DOS is at 37805 (hex $93AD). With five buffers (2 additional),
the bottom of DOS is at 37210 (hex $915A), etc.

If DOSis notrelocated at runtime, both DOS and the compiled
code share the main bank. If DOS is not relocated, the appro-
priate amount of space for DOS must be protected from use by
the compiled code. Since increasing MAXFILES increases the
amount of space used by DOS, the space reserved must be
adequate for the maximum value of MAXFILES used by the
program. See Chapter 20, “Specifying Different Memory Con-
figurations,” for information on how to set the top of main
memory used by compiled programs.

Applesoft Pointers Preserved by Compiled Code

The HIMEM pointer is no longer directly affected by compiled
code. The HIMEM statement is ignored in the 128K version, so
the HIMEM pointer is left unused. However, remember that the
DOS MAXFILES command does change HIMEM.

String Operations

The 128K version assigns string space to the auxiliary bank.
Any spacein the auxiliary bank that is not used by variablesis
allocated as string space. With the 2K of system memory, and
4K for the runtimelibrary, there is about 42K of memory avail-
able in the auxiliary bank. Unless variables occupy an unusu-
ally large amount of space, the remaining string space should
be quite large. A large string space reduces the frequency of
garbage collection. Garbage collection should occur far less
frequently with 128K object code than with 48K object code.

129

Applesoft Compiler

Reducing DOS MAXFILES no longer provides more string
space, since DOS does not use space in the auxiliary bank. The
amount of string space available in the auxiliary bank can
only be increased by decreasing the amount of auxiliary bank
space occupied by variables. Variable space can be reduced by
moving the COMMON block to the main bank, cutting down
the size of arrays, or reducing the number of variables. Increas-
ing the available string space does not affect the time required
for an individual garbage collection, it only reduces the fre-
quency of garbage collection.

PEEK and POKE

The PEEK and POKE statements access only main bank
memory. The auxiliary bank is not directly accessible to Apple-
soft programs. Compiled programs can use the auxiliary bank
for variables and string space, but the PEEK and POKE
statements do not affect the auxiliary bank.

Language Enhancements (Chapter 7)

This section discusses additional changes affecting Chapter 7,
“Language Enhancements.”

How COMMON Variables Work

130

The COMMON block is no longer allocated at the beginning of
the compiled program. In the 48K version, space for the COM-
MON block is set aside starting at the address specified for the
beginning of object code. The beginning of the object code is
pushed up in memory to provide the needed space. In the 128K
version, the COMMON block location is independent of pro-
gram location, though the defaultis still at the beginning of the
program.

Remember that programs that pass variables in COMMON
must use the same COMMON block address and configura-
tion. The COMMON blocks must be in the same bank and at
the same address. Mismatching COMMON blocks generates
the “?TYPE MISMATCH” error at runtime, as with the 48K

version.

Additional Differences From 48K

Error Messages and Debugging (Chapter9)

This section discusses additional changes affecting Chapter 9,
“Error Messages and Debugging.”

Compiletime Error Messages

The “OBJECT CODE TOO LONG” error message in the 48K
version indicates that the combination of object code and vari-
able space is too long. In the 128K version, the object code can
overflow the main bank while thereis still variable spaceleftin
the auxiliary bank, and vice versa. A new error message helps
to distinguish between the two overflow conditions. The new
“OUT OF VARIABLE SPACE” error is generated if the auxil-
iary bank is filled with variables. The old “OBJECT CODE
TOO LONG” is generated only if the object code itself over-
flows the main bank.

Runtime Error Messages

The 128K object code requires the presence of the extra 64K
bank. The “?MISMATCH” error is generated at the beginning
of execution if 128K object code is executed on a machine
without the extra bank.

128K object code must be executed with the 128K runtime
library. Mismatching the object code and library also gener-
ates the “’MISMATCH” error at the beginning of execution.
As mentioned in Chapter 16, “Executing 128K Programs,” be
sure to reload both the runtime library and the object code to
insure that both are undamaged.

Zero Page Usage (Appendix E, Part 1)

The zero page usage by 128K object code differs from the 48K
zero page usage. The map below shows zero page use by 128K
object code. Asterisks mark the differences from 48K usage.

131

Applesoft Compiler

132

Table 5

Zero Page Usage by Compiled Programs

Hex Address Usage

OD-OE Temporaries

10 Temporary

12-13 Beginning of local string variables—1

14-15 End of local string variables

16 Temporary

17-18 Bottom of string storage—1

19 Unused

50-51 Temporary

55-56 Temporary

58-5A JSR to library routine to set main bank
of memory

5B-5D JMP to code currently handling ONERR

62-66 Temporaries

69-6A Beginning of COMMON block—1

6B-6C End of numeric common

6D-6E End of string common

6F-70 Unused

71 Input buffer pointer

72 Memory bank for COMMON block

73-74 Applesoft HIMEM (not used)

75-76 Address of object code being executed

77-7TA Temporaries

7B-7C Beginning of local numeric variables—1

7D-TE End oflocal numeric variables in main bank

TF-80 End oflocal numeric variables in aux. bank

81-84 Temporaries

8A-8E Temporaries

93-94 Temporary

9E-A3 Integer accumulators

AD-AE Temporary

AF-B0O Address of first DATA string

B1-C8 Applesoft CHRGET, modified, but still
functions normally

D9 Temporary

DC-DD Temporary

F6-F7 Address of current DATA string

Index

“A” parameter, 73
A prefix, 71
ABS function, 34
Address print utilities,

ADR program, 71, 73, 74
Addresses, memory, 110
?ADR command, 91
ADR utility, 73
Ampersand command, 22, 85
APCOM program, 1, 55
AppleIle, 9,103,113,114, 115,116
Applesoft

differences, 25, 29, 128

enhancements, 39, 130

notes, 79

references, xiii

statements not included

in compiler, 25

Arrays, dimensioning, 27, 41, 48

B prefix, 5, 21, 71
BALL program, 2, 106
Bank-switched memory, 100, 110
Banking patches, in page 3, 100
Banks

accessing, 114

explained, 111, 112
Binary files, 21
“Blank” COMMON, 45
BLOAD command, 15, 68, 71, 72
BRUN command, 21, 37,52, 71, 72
BSAVE command, 71, 72

CALL statement, 22, 68, 69

CALIL-3288, 32

CLEAR statement, 33, 34

CLEAR CHAIN statement,
39, 47

CLEAR COMMON statement, 33,
34, 39, 47

CLINENUM file, 56

Code generation, 59

Commands
?ADR, 91
Ampersand, 22
BLOAD, 15, 71, 72, 77
BRUN, 21, 37, 52, 71, 72, 77
BSAVE, 71, 72
DOS, 2, 3, 37,71, 90, 95
DOS SAVE, 71
DRAW, 80
INIT, 91, 100
MAXFILES, 33
NEW, 22 to 23, 28, 35
RUN, 34, 37
XDRAW, 80
COMMON
blank, 44
block, 48, 49, 121, 130
debugging, 49
description, 20, 45
example, 50
simulation, 49
strings, 33
variables, 34, 37, 48, 49,
121, 123, 130
Communicating between
programs, 51
Compilation
advantages, ix, 60, 87, 103,
104,114
disk-based, ix
errors, 16, 63, 93, 124, 131
explanation, 8, 13, 93, 105, 127
information listing, 3, 67
internal process, 55, 93
interpretation comparison, 6
introduction, 5
large programs, 18, 122, 128
listing, 16
options, 3, 13, 16 to 18
PASSO, 1, 55
PASS1, 1, 3,55
PASS2, 1, 3,55
starting, 2, 93, 105
termination, 18

133

Index

Compiled programs
execution, 21 to 23, 93, 95, 107
linking, 37
operational differences, 30
saving and loading, 71
termination, 22, 28, 35
Compiletime, definition, 5
Concatenation, 77
Constants, 17
Compiler package, contents of, x
Copying
COPY utility, 90
copyright, xiii
runtime library, xiii
source code security, ix
CREATE ADR program, 74
CTRL-C, 18, 22, 28

Debugging
code option, 17
COMMON, 49
common problems, 66, 95
methods, 9, 11 to 12
DEF FN statement, 26
DEFCOMMON statement, 39, 46
Demonstration run, 1 to 4, 105
DIM statement, 27
Disk
contents, 1, 87, 104
files, 1 to 2, 56
format conversion, vii
program storage, 21
text files, 89
turnkey, 77
DOS
chain utility, 49
commands, 2, 3, 37, 71, 90, 95
memory usage, 90, 108, 129
relocation, 94, 95, 99
speed improvements, 89, 101
utilities, 90, 108
DOSMOVER program
compiled programs, 108, 129
compiler use, 89, 93, 105
description, 89, 103, 119
technical information, 99
DRAW command, 80
Drive specification, 2

134

Editing programs, 8, 11
80-column card, viii, 103, 109,
113,116
END statement, 35
'ERR!, 63
Error handling routine, 31
Error messages
BREAK IN, 28, 35
DECLARATION, 46, 64
DOS NOT AT NORMAL
ADDRESS, 89, 99
DOS NOT RELOCATED—
CAN'T COMPILE, 93, 94,
105
FILE TYPE MISMATCH, 21
FORMULA TOO COMPLEX,
29
INCOMPLETE, 64
MISMATCH, 65 to 66, 105, 107,
131
OBJECT CODE TOO LONG,
64, 124, 131
OPERAND, 64
OUT OF MEMORY, 83
OUT OF VARIABLE SPACE,
124, 131
REDEFINED, 64
REENTER, 30, 80
SUBSCRIPT, 64
SYMBOL TABLE FULL, 19, 64
SYNTAX, 64
SYNTAX ERROR, 30, 36
TOO COMPLEX, 65
TOO LONG, 65, 124
TYPE MISMATCH, 65 to 66, 130
Error messages
compiletime, 16, 63 to 65, 93 to
94, 105, 131
runtime, 65 to 66
Errors
compilation, 16, 63
messages. See Error messages.
ONERR routine, 32
Expression typing, 29, 43
Extended 80-column card

Fatal errors, 64
FID utility, 90
Floating-point values, 44

Floating-point variables, 39
FOR/NEXT statement, 31, 42
Functions

definition, 26

integer, 44

Garbage collection, 37, 48, 83,90, 129
GET statement, 30
GL package, 53
GOSUB statement, 31
Graphics
memory conflicts, 15,67,121,125
wrap-around, 80

HELLO program, 77
HGR and HGR2, zeroing, 67
HGR1 and HGRZ2, described, 15,123
HIMEM statement
MAXFILES command, 33
RENUMBER program, 97
resetting, 33, 36, 129
strings, 33, 127
HIRES screens, problems, 67

IF/THEN statement, 29
Ignored statements, 25, 63, 80, 128
Information sharing, 51
INIT command, 91, 100
INPUT statement, 28, 35, 80
Integer BASIC, 22, 67
INTEGER statement, 40
Integer values, 44
Integer variables, 40
Integers
arithmetic, 17, 39, 40, 43
constants, 17, 19
FOR/NEXT variables, 42
functions, 44
INTEGER statement, 40
interpreted, 8
statements, 44
variables, 40
wild card, 41
Interpreter
debugging, 11
explanation, 7
immediate commands, 23
integers, 8, 40, 43
line numbers, 7

Index

Interpreter (continued)
memory usage, 104
ONERR routine, 32
pointers, 36
ROM, 67, 114
variables, 7

Keyboard strobe, 28

“L” parameter, 73
Lexical analysis, 57
Line numbers
address listing, 4
compilation, 56
error messages, 66
undefined, 65
Listing
compilation information, 3
line number addresses, 4
program, 16
Loading and storing, 60
Locations, memory, 110
LORES graphics, 68

Machine language routines, 32,
49, 68
“Main” memory, 91, 116
Manual, organization of, xi
MAXFILES command, 33, 38,
128, 130
Memory
addresses, 8, 110, 113
allocation, 3, 13, 108, 119, 121,
123
amount, 109
banked, 109, 110
cards. See Memory cards
configuration, 109
conflicts, 67, 96
explained, 110
reserved, 115
usage, 14, 83, 127
zero page, 35, 85, 131
Memory cards, viii
MEMSIZ, 36
MENU, 51
Microcoprocessor, 6502, 113
MUFFIN utility, vii, 90

135

Index

NEW command, 22 to 23, 28, 35
NEW statement, 35

Object code, size reduction, 62
Object file

definition, 5

names, 2, 96

prompt, 2
ONERR GOTO statement, 31,

69, 80

ONERR/Debug option, 66
Options. See Compilation, options.

Page 3, 69, 85, 91, 100
Parsing, 58, 59
Patches, in DOS, 99, 100
PEEK statement, 68, 130
Pointers, 36
POKE statement, 68, 130
PRINT statement, 31, 74, 79
Printers, 3
Program
development, 8
self-‘modifying, 69
systems, 50
Programs, compiled. See Compiled
programs.

RAMCard, 67, 87, 115, 117
RAMCard memory, 116, 117
READ statement, 30
RECOGNIZED message, 42
References, Applesoft, xiii
Relocating DOS, 94, 95, 99
REM statement, 40 to 41, 42
RENUMBER.UPDATE program,
97
RESET key, 18, 28, 22, 35
RESUME statement, 17, 31, 32
RESUME/Debug code option, 17
to 18, 32

RUN

Applesoft statement, 34

DOS command, 21, 37
Runtime library

address, 14, 36, 120

definition, 5

description, 62

136

Runtime library (continued)
loading, 21, 73
loading with BLOAD, 15
versions, 93, 105, 107
Runtime
definition, 5
error messages, 65

Shape tables, 68
Slot specification, 2
Source code security, ix
Source file
definition, 5
prompt, 2
SPC function, 79
Stack, 31
Statements
added, 41
CALL, 22, 68, 69
CLEAR, 33, 34
CLEAR CHAIN 39, 47
CLEAR COMMON, 33, 34,
39, 47
DEF FN, 26
DEFCOMMON, 39, 46
DIM, 27
END, 35
FOR/NEXT, 31, 42
GET, 30
GOSUB, 31
IF/THEN, 29
ignored, 25, 63, 80, 128
INPUT, 28, 35, 80
integer operations, 44
INTEGER, 40
NEW, 35
ONERR GOTO, 31, 69, 80
PEEK, 68, 130
POKE, 68, 130
PRINT, 31, 74, 79
READ, 30
REM, 40 to 41, 42
RESUME, 17, 31, 32
STOP, 35
USECOMMON, 41, 46
STOP statement, 35
STRS$ function, 31
String
chaining, 47

String (continued)
expressions, 29
garbage collection, 37, 48,90, 129
IF/THEN values, 29
operations, 37
storage, 15, 48, 83, 103, 122,
127,129
variables, 121, 122
Subroutines, load and store, 60
Symbol table, 19, 56
Syntax, xii
Syntax analysis, 57, 59
Syntax-directed code generation,
59
System requirements, vii

TAB function, 79
Tokenized format, 57
Triples, definition, 58
TXTTAB, 36

Index

USECOMMON statement, 41, 46

Variables
accessing, 60
clearing, 34
interpreter, 7
storage, 103

Warnings, described, 63

XDRAW command, 80

Zero page, 35, 85

137

MICRSSOFT. Software

10700 Northup Way, Bellevue, WA 98004 Problem Report
Name

Street

City State Zip

Phone Date

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category
Software Problem Documentation Problem
t#
Software Enhancement (Beclimen)
Other
Software Description
Microsoft Product
Rev.__ Registration #
Operating System
Rev._ Supplier
Other Software Used
Rev. Supplier
Hardware Description
Manufacturer CPU Memory KB
Disk Size " Density: Sides:
Single Single
Double Double

Peripherals

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only

TechSupport Date Received
Routing Code Date Resolved

Report Number

Action Taken:

Part no.: SPR0O0

