However, for most programs the most convenient way to handle the array
is to use a two-dimensional PACKED ARRAY OF BOOLEAN as described
previously.

TEXT AS GRAPHICS:
WCHAR, WSTRING, AND CHARTYPE

Three procedures allow you to put characters on the graphics screen. If
the turtle is at (X,Y) you can use these procedures to put a character
or string on the screen with 1its lower left corner at (X,Y). Each
character occupies a rectangular area 7 dots wide and 8 dots high on the
screen.

These procedures use an array stored in the file SYSTEM.CHARSET on
diskette APPLEl:. This array contains all the characters used, and is
read in by the initialization routine when your program USES
TURTLEGRAPHICS. If you make up an array containing vour own character
set, you should rename the old SYSTEM.CHARSET and then name your new
array SYSTEM.CHARSET (see note at the end of this chapter).

WSTRING and WCHAR use the procedure DRAWBLOCK to copy each character
from the array ontc the screen. The MODE parameter that they use is set
by the CHARTYPE procedure.

The WCHAR procedure has the form
WCHAR (CH)

where CH is a an expression of type CHAR. This procedure places the
character on the screen with its lower left cornmer at the current
location of the turtle. When this procedure is used, the turtle is
shifted to the right 7 dots from its old position. For example, this
puts an X in the center of the screen:

PENCOLOR (MONE);

MOVETO (137,9@);

WCHAR (“X")
In this example, note that it was not necessary to specify a new pen
color before calling WCHAR. The character is not plotted with the

current pen color; rather it depends on the current MODE, just as
DRAWBLOCK does. For details, see CHARTYPE below.

<

The CHAR value passed to WCHAR 1s restricted to the first 128 characters
of the ASCII set as shown in Table 7 of Appendix B.

98 APPLE PASCAL LANGUAGE

T

o e e e e e e e om e o e e e e e e e S e o — — — — e e e —— - — o —— " — i —

oW W W W oW W

i

W R W W R W

A K

A W

W W ox W W

The WSTRING procedure has the form
WSTRING (S)

where § is an expression of type STRING. An entire string of characters
is placed on the screen with the lower left cornmer of the first
character at the current turtle position. The turtle is shifted 7 dots
to the right for each character in the string. This procedure calls
WCHAR for each character in the string.

The characters in the STRING value passed to WSTRING are restricted to

the first 128 characters of the ASCII set as shown in Table 7 of
Appendix B.

The CHARTYPE procedure has the form
CHARTYPE (MODE)

where MODE is an integer selecting one of the 16 MODEs described above
for DRAWBLOCK. MODE defines the way characters get writtem on the
screen; it works for WCHAR and WSTRING just as it works for DRAWBLOCK.

The default MODE is 1ff, which places each character on the screen in
white, surrounded by a black rectangle. MODE 5 is the inverse of MODE
1@: each character is in black surrounded by a white rectangle.

One of the most useful other MODEs is 6, which does an exclusive OR of
the character with the current contents of the screen. If you use MODE
6 to draw a character or string and then redraw it at the same location
with MODE 6, the effect is to erase the character or string, leaving the
original image unaffected. This is especially useful for user messages
in a graphies-oriented program.

e

1f you wish to create your own character set file for use with WCHAR and
WSTRING, 1t must be structured as follows:

- The file consists of 1024 bytes.

~ Starting with the first byte in the file, each character in
the character set is represented by 8 contiguous bytes.

- Each byte represents one row of 8 dots in the character

image. The first byte of each character representation is the
bottom row of the image.

SPECIAL UNITS 99

= The least significant bit of each byte is the leftmost dot in
the row.

= The most significant bit of each byte is ignored; the rows are
only seven dots each.

Such a file can be created either in assembly language or in Pascal. In
Pascal, you can build the character representations in memory as packed
arrays of the type U..255 since each element of such an array is in
effect a byte. For example, you might use the declarations

TYPE CHARIMAGE=PACKED ARRAY [@..7] OF @..255:
CHARSET=PACKED ARRAY[(f..127] OF CHARIMAGE;
CHARFILE=FILE OF CHARSET;

VAR CHARACTERS:CHARSET;
OUTFILE:CHARFILE;

100 APPLE PASCAL LANGUAGE

1

W

PR R RO O RN D NN NN NN NN N

W

w

i

W W R

OTHER SPECIAL APPLE FEATURES:
THE APPLESTUFF UNIT

This section tells you how to generate random numbers, how to use the
game paddle and button inputs, how to read the cassette audio inmput, how
to switch the game—control’s TTL ocutputs and how to generate sounds on
the Apple’s speaker. To use these special Apple features from Pascal,
you first have to place the declaration

USES APPLESTUFF;

immediately after the program heading. Tf you wish to use both turtle
graphics and the Apple features you would say

USES TURTLEGRAPHICS, APPLESTUFF;

since there can only be one USES in a program.

THE RANDOM FUNCTION

RANDOM is an integer function with no parameters. It returns a value
from § through 32767. 1If RANDOM is called repeatedly, the result is a
psuedo~random sequence of integers. The statement

WRITELN (RANDOM)

will display an integer between the indicated limits.

7N

A typical application of this function is to get a pseudo-random number,
say, between LOW and HIGH inclusive. The expression

LOW + RANDOM MOD (HIGH-LOW4+1)

is sometimes used where results are not critical, but the values formed
by this expression are not evenly distributed over the range LOW

SPECIAL UNITS 104

8

through HIGH. If you want pseudo-random integers evenly distributed
over a range, you can use the following function:

FURCTION RAND (LOW, HIGH:INTEGER;

VAR ERROR:BOOLEAN):INTEGER;
VAR MX, C, D: INTEGER;

BEGIN
RAND := {@;
ERROR := UE;

IF LOW > HIGH THEN EXIT(RAND); (*error exit#)
IF LOW <= {§ THEN

IF HIGH > MAXINT + LOW THEN EXIT(RAND); (*error exit#)

ERROK := FALSE; (*no errors¥)
IF LOW = HIGH THEN RAND := LOW
ELSE BEGIN
C := HIGH - LOW + 1;
MX := (MAXINT - HIGH + LOW) DIV C + 1;
MK := MX #* (HIGH - LOW) + (MX = 1);
REPEAT D := RANDOM UNTIL D <= MX;
RAND := LOW + D MOD C
END
END;

If HIGH is not greater than LOW, or the difference between HIGH and LOW
would exceed MAXINT, RAND returns @ and sets the ERROR parameter to

true. Otherwise, RAND returns evenly distributed pseundo-random integer
values between LOW and HIGH (inclusive).

THE RANDOMIZE PROCEDURE

RANDOMIZE is a procedure with no parameters. Each time you run a given

program using RANDOM, you will get the same random sequence unless you
use HANDOMIZE.

RANDOMIZE uses a time-dependent location to generate a starting point
for the random number generator. The starting point changes each time
you do any input or output operation in your program. If you use no
1/0, the starting point for the random sequence does not change.

THE KEYPRESS FUNCTION

This function, which has no parameters, returns true if a key has been

pressed on the keyboard since the program started or since the last time
the keyboard was read (whichever is most recent). KEYPRESS does not

102 APPLE PASCAL LANGUAGE

T OO %1

W OW R W OW W W WO W W W W e W W oW ow W W W u e

read the character from CONSOLE or KEYBOARD or have any other effect on
1/0. The statement

IF KEYPRESS THEN READ(KEYBOARD, CH)

(where CH is a CHAR variable) has the effect of reading the last
character typed on the keyboard. This could be used to retrieve a
character typed while the program was doing something else == for

instance, displaying graphics.

Once KEYPRESS hecomes true it remains true until a GET, READ, or READLN
accesses either the INPUT file or the KEYBOARD file, or until a UNITREAD
accesses the keyboard device.

@.

KEYPRESS does not work with an external terminal connected via a serial
interface card. It will always return FALSE with such a terminal.

PADDLE, BUTTON, AND TTLOUT

The PADDLE function has the form
PADDLE (SELECT)

where SELECT is an integer treated modulo 4 to select one of the four
paddle inputs numbered @, 1, 2, and 3. PADDLE returns an integer in the
range @ to 255 which represents the position of the selected paddle. A
15@K variable resistance can be connected in place of any of the four
paddles.

If you try to read two paddles too quickly in succession, e«g.

WRITELN (PADDLE (P));
WRITELN (FADDLE (1))

the hardware will not be able to keep ups A suitable delay is given by

the loop

FOR I := f TO 3 DO;
The BUTTON function has the form

BUTTON (SELECT)
where SELECT is an integer treated modulo 4 to select one of the three
button inputs numbered @, 1, and 2, or the audio cassette input numbered

3. The BUTTON function returns a BOOLEAN value of TRUE if the selected
game-control button is pressed, and FALSE otherwise.

SPECIAL UNITS 103

When BUTTON(3) is used to read the audio cassette input, it samples the

cassette input which changes from TRUE to FALSE and vice versa at each
zero crossing of the input signal.

There are four TTL level outputs available on the
with the button and paddle inputs.
these outputs on or off.

game connector along
The TTLOUT procedure is used to turp
TTLOUT has the form

TTLODT (SELECT, DATA)

where SELECT is an integer treated modulo 4 to select one of the four
TTL cutputs numbered @, 1, 2, and 3. DATA is a BOOLEAN expression.

If DATA is TRUE, then the selected output is turned on.

It remains on
until TTLOUT is invoked with the DATA set to FALSE.

MAKING MUSIC: THE NOTE PROCEDURE

The NOTE procedure has the form

NOTE (PITCH, DURATION)

where PITCH is an integer from @ through 5@ and DURATION is an integer
from @ through 255.

A PITCH of @ is used for a rest, and 2 through 48 yield a tempered
(approximately) chromatic scale. DURATION is in arbitrary units of
time.
NOTE (1,1) gives a click.
A chromatic scale is played by the following program:

PROGRAM SCALE;

USES APPLESTUFF;
VAR PITCH, DURATION: INTEGER;

BEGIN

DURATION := 1¢9;
FOR PITCH := 12 TO 24 DO
NOTE (PITCH, DURATION)

END.

104 APPLE PASCAL LANGUAGE

AW N W W W W W N W W W WO W W W WWwWwea

TRANSCENDENTAL FUNCTIONS:
THE TRANSCEND UNIT

ions are not built into the
e Pascal, the transcendental funct
iﬂn:ﬂﬁie. To u;E this set of functions you must place the declaration

USES TRANSCEND;

immediately after the FROGRAM heading. If you wish to use, say,
APPLESTUFF with the transcendental functions, you would write

USES TRANSCEND, APPLESTUFF;

A1l ANGLE and NUMBER arguments are real, and the ANGLE arguments are in
radians. All of these functioms return real values, and values returned
by the ATAN function are in radians. The following functions are
provided:

SIN (ANGLE)
COS (ANGLE)
EXP (NUMBER)

(Note: this is the same function
as Standard Pascal”s ARCTAN)

ATAN (NUMBER)

LN (NUMBER)
LOG (NUMBER)

SQRT (NUMBER)

SPECIAL UNITS 105

|

APPENDIX A
DEMONSTRATION PROGRAMS

AEEEEAAT AN RN NN NN D WD

106 APPLE PASCAL LANGUAGE

INTRODUCTION

This appendix presents a graphics program which is fully annotated, both

by a narrative explanation and by copious comments in the source Lext.

This program is followed by commentaries on the demonstration programs
supplied with Apple Pascal.

A word of caution i{s in order regarding all of these programs. They are
presented so as to give you examples that you can run without any
modification, and also study the source text to see how it works.
are not Intended to be models of the best possible programming
technique; that would be entirely beyond the scope of this manual.
do work, and they do demonstrate ways of doing certain useful things in
Apple Pascal. With this caution in mind, use the programs as learning
toels. One of the best ways to learn might be to try introducing
modifications into one of them.

They

They

A FULLY ANNOTATED GRAPHICS PROGRAM

The following demonstration program, PATTERNS, is intended to illustrate
some helpful points about Apple Pascal. The program creates pleasant
graphics by drawing a triangle on the screen and then repeatedly
rotating it by a few degrees and redrawing it. The points of the
triangle are always on the edge of an invisible circle of radius 95
(which fills the height of the screen) but apart from that it is a
random triangle. The angle by which it is rotated each time it is drawn
is also random, though it is always between 3 and 15 degrees.

The color used to draw the triangle is REVERSE, which has intriguing
effects when one image is drawn over another and the lines intersect at
small angles. Also, as the triangle is repeatedly rotated and redrawn a
circular pattern is built up; but eventually the triangle gets rotated
back to its original position. When this happens, each new image is
exactly superimposed on an old one. Because of the REVERSE color, this

erases the old image! When all the old images have been erased, the

program clears the screen, generates a new triangle with a different
shape, and starts all over.

This repetition continues until the user signals it to halt by pressing
any key. The KEYPRESS function, in the APPLESTUFF unit, can be used to

find out whether the user has pressed a key. (KEYPRESS is described in
Chapter 7.)

The program is given in full, with comments, at the end of this

appendix. What follows is a description of how a program like this can
be developed. Of course, in real life there are mistakes and false
SCarts.

Here, for the sake of learning some principles, we pretend that
the development of the program proceeds without a hitch.

108 APPLE PASCAL LANGUAGE

R T

i i

/)

Ao W W oA e WA W W R W W R R W

This is a fairly complicated program, so we will develop it in
sections. First we can write a sketchy outline of the program:

BEGIN

REPEAT
(*Create a random triangular pattern¥®);

THETA:={*random number from 3 to 15%)
REPEAT
(*Rotate the triangle, using the angle THETA¥*);
(*Draw the rotated triangle on the screen¥)
UNTIL (*Complete pattern has been erased®)
UNTIL KEYPRESS
END «

To fill in this outline, we begin with a program heading, a USES
declaration, some useful constants, two variable declarations, and a
skeleton of the inner REPEAT statement:

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,APPLESTUFF;

CONST MAXX=28¢; MAXY=191; (*Maximum X and Y coordinates%*)
RADIUS=95; (*Radius of pattern*)

VAR CYCLES:@..2:
THETA:3..15;

BEGIN
REPEAT
(*Create a random triangular pattern¥};
THETA:=(*random number from 3 to 15%);
CYCLES:=§
REPEAT
(*Rotate the triangle, using the angle THETA¥);
PENCOLOR (REVERSE) ;
(*Draw the rotated triangle on the screen*);
IF (*the rotated triangle matches the original triangle*)
THEN CYCLES:=CYCLES+]
UNTIL CYCLES=2
UNTIL KEYPRESS
END .«

The wvariable CYCLES is a counter for the number of times the triangle
has been rotated back to its original position. When CYCLES=1, the
circular pattern begins to be erased because each new triangle is drawn
in the REVERSE color on top of a previous triangle. When CYCLES=2, the
entire pattern has been erased.

We can now begin replacing comments with actual statements. For
example, we already have a variable, THETA, which is the number of
degrees to rotate the pattern. So it 1s natural to replace the first
comment in the inner REPEAT with a call to a procedure named ROTATE
which takes an INTEGER parameter. The value used for the parameter

DEMONSTRATION PROGRAMS 109

will be the variable THETA.
have

ROTATE will need to be declared; now we

PROCEDURE ROTATE (ANGLE: INTEGER);
(*TD be comp leted... *)

BEGIN
REPEAT
(*Create a random triangular pattern*);
THETA:=(*random number from 3 to 15%);
CYCLES:=§
REPEAT
ROTATE (THETA) :

To draw the triangle on the screen, we must first consider how the
triangle is represented in memory. We can think of the triangle as
three points; how shall we represent a point? A point can be represented
by two numbers -- an X and a Y coordinate. Therefore we can define a
type POINT, as shown below. Then we can represent the triangle as an

array named TRGL, of type POINT. We will also declare a variable C to
use as an index for the array TRGL.

TYPE POINT=RECORD X;@..MAXX:

Y:f. .MAXY
END;

VAR CYCLES:@..2;
THETA:3..15;
TRGL:ARRAY[1..3] OF POINT;
C:lee3;

Assuming that the ROTATE procedure leaves the rotated coordinates in the
array TRGL and that it leaves the turtle at the third corner of the
triangle, we can use Cartesian graphics te draw the new triangle:

]

PENCOLOR(REVERSE) ;
FOR C:=1 TO 3 DO MOVETO(TRGL[C].X, TRGL[C].Y);

The remaining comment in the inner REPEAT statement calls for testing

whether the rotated triangle matches the original one. To achieve this,
assume that when the triangle is first created the coordinates

110 APPLE PASCAL LANGUAGE

g AN | SN (AN § jSEEm § JEmE 5 EE) EEn S JiEm D pEEE | pEmm . pmmm |)SEm

AW W R W OW R R W W W WO OW W W W W oW oW W

o E— . ——

¢

W W

of the third corner are saved in a variable named CORNER. Now we need

only test as follows:

a8

IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+l
At this point, the program is as follows:

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,AFPLESTUFF;

CONST MAXX=28@; MAXY=191; (*Maximum X and Y coordinates¥)
RADIUS=95; (*Radius of pattern*)

TYPE POINT=RECORD X:@..MAXX;
¥:f. MAXY
END;

VAR CYCLES:9..2;
THETA:3..15;
TRGL:ARRAY[1..3] OF POINT;
C:].oo:‘;
CORNER:POINT;

PROCEDURE ROTATE(ANGLE:INTEGER);
(*To be completed; must leave new corner coordinates
in TRGL and leave turtle at third cormer.¥)

BEGIN
REPEAT
(*Create a random triangular pattern¥);
THETA:=(*random number from 3 to 15%);
CYCLES: =
REPEAT
ROTATE (THETA) ;
PENCOLOR (REVERSE) ;
FOR C:=1 TO 3 DO MOVETO(TRGL(C].X, TRGLI[C].Y);
IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+l
UNTIL CYCLES=2
UNTIL KEYPRESS
END.

The inner REPEAT statement will repeatedly rotate the triangle and draw
it, using the REVERSE color, building up a circular pattern on the
screen and then erasing it by drawing over it. When the pattern has
been erased, the inner REPEAT terminates.

DEMONSTRATION PROGRAMS M1

Now we can begin filling in the outer REPEAT. The statements added to

the outer REPEAT require another procedure, MAKETRGL, and a function,
ARBITRARY.

FUNCTION ARBITRARY (LOW, HIGH:INTEGER):INTEGER;

(*To be completed; must return an integer value in the
range LOW..HIGH.*)

PROCEDURE MAKETRGL;
(*To be completed; must leave corner coordinates in TRGL

and also initialize CORNER with coordinates of third
corner.*}

BEGIN
REPEAT
MAKETRGL ; (*Make triangular pattern¥)
THETA:=ARBITRARY (3, 15); (*Choose angle for rotating triangle*)

CYCLES:=0; (*Clear the cycle counter*)
REPEAT

ROTATE (THETA) ;
PENCOLOR (REVERSE) ;
FOR C:=1 TO 3 DO MOVETO(TRGL([C].X, TRGLI[C].Y};

IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+1
UNTIL CYCLES=2

UNTIL KEYPRESS
END.

The outer REPEAT first calls MAKETRGL. This procedure, still to be
defined, chooses three random points on a circle of radius 95 and stores
their coordinates in the array TRGL. It also stores the coordinates of
the third corner in the variable CORNER.

Next, the function ARBITRARY is used to assign a random value to THETA,
the number of degrees to rotate the triangle.

112 APPLE PASCAL LANGUAGE

DA N W WA W W NN W N WE e W W Wl W W WL

The main program is nearly complete. It remains only to add one new
variable named CENTER (of type POINT), and a few initializing statements
before the outer REPEAT:

-

VAR CYCLES:P..2;
THETA:3..15;
TREGL: ARRAY([1..3] OF POINT;

C1laa3:
CORNER :POINT;
CENTER:POINT;
BEGIN
RANDOMIZE; (*To get a different sequence each time
program is executed¥)
INITTURTLE; (*Always do this to use TURTLEGRAPHICS*)
CENTER. X:=TURTLEX; (*The turtle is at the center because
CENTER. Y:=TURTLEY; INITTURTLE leaves it there. Save
its coordinates in CENTER.*)
REPEAT
REPEAT

UNTIL CYCLES=2
UNTIL EKEYPRESS
END.

The main program is complete, and now we must define the two procedures
MAKETRGL and ROTATE and the function ARBITRARY.

The ARBITRARY fumction is shown in the complete program at the end of
this appendix. It is a simplified version of the RAND function given in
Chapter 7, in the discussion of the built-in function RANDOM.

RAND handles unacceptable parameters by setting a VAR parameter of Cype
BOOLEAN. ARBITRARY does not need this error-handling capability since
it will always be called with constants as parameters. Similarly, RAND
has a special provision for the case where the HIGH and LOW parameters
are equal; ARBITRARY does not have this provision, and HIGH must be
strictly greater than LOW.

In other respects, ARBITRARY is the same as RAND. Incidentally, the
complexity of the calculation in both versions is due to the fact that
two numbers cannot be added or subtracted if the result would exceed the
value MAXINT (32767). The function has to get around this limitation by
using the intermediate value MX.

DEMONSTRATION PROGRAMS 113

The MAKETRGL procedure must choose three random points on a circle of
radius 95, with its center at CENTER. To select three random points,
the following method is used:

VAR I:l..3;

FOR I:=]1 TO 3 DO BEGIN
(*Move the turtle to the CENTER point:*)
MOVETO (CENTER.X, CENTER.Y);

(*Select a random direction to move the turtle away from CENTER,
and store this angle in an array named DIRECTION; this array will
need to be declared:*)

DIRECTION [I] :=ARBITRARY (@#,359);

(*Turn the turtle in the selected direction:*)
TURNTO(DIRECTION[I]);

(*Move out to the edge of the circle:*)
MOVE (RADIUS) ;

(*Score the turtle’s coordinates in the TRGL array:*)
TRGL[I] «X:=TURTLEX;
TRGL[I].Y:=TURTLEY

END

The DIRECTION array will be used by the ROTATE procedure, so it will
need to be declared at the beginning of the program —— not within the
MAKETRGL procedure.

Since we don"t want to draw anything at this point, we set the color to
NOWNE before starting the FOR statement. After three times through the
FOR statement, the turtle is at the third corner of the triangle, so we
save its position in the CORNER variable for use in the main program.
The complete procedure is

PROCEDURE MAKETRGL;
VAR I:1..3;
BEGIN

PENCOLOR (NONE) ;

FOR I:=1 TO 3 DO BEGIN
MOVETO{CENTER. , CENTER.Y);
DIRECTIONI[I]:=ARBITRARY (@, 359);
TURNTO{DIRECTION([I];

MOVE (RADIUS);
TRGL [1].X:=TURTLEX;
TRGL[I].Y:=TURTLEY

END:

CORNER . X:=TURTLEX;

CORNER.Y:=TURTLEY

END;

114 APPLE PASCAL LANGUAGE

L R L L e el B e o e e o S O — ———

mmmmtle.mu;mmeumu.wwuuu.w

W i

i

The ROTATE procedure works very much like the MAKETRGL procedure, but
instead of using random angles it uses the angles found in the DIRECTION
array -- after adding ANGLE to each of them and taking the result MOD
36f. It stores the resulting points in the TRGL array, but does not
change CORMER. The effect is to replace each point in TRGL with a new
point created by rotation through ANGLE degrees. The complete ROTATE
procedure is

PROCEDURE ROTATE(ANGLE :INTEGER);
VAR I:1..3;
BEGIN

PENCOLOR (NONE) ;

FOR I:=1 TO 3 DO BEGIN
MOVETO(CENTER.X, CENTER.Y);
DIRECTION([I] :=(DIRECTION[I]+ANGLE) MOD 36§;
TURNTO (DIRECTION[I]);
MOVE(RADIUS) ;
TRGL[I).X:=TURTLEX:

TRGL [I].Y:=TURTLEY

END

END;

Note that the MOD 36@ operation is necessary because if the program ran
for a long time, the result of DIRECTION[I]J+ANGLE could eventually

exceed MAXINT and cause a run-time error.
All that remains is to declare the array DIRECTION:
DIRECTION: ARRAY([l..3] OF INTEGER;

The complete program begins on the following page-.

DEMONSTRATION PROGRAMS 115

PROGRAM PATTERNS;
USES TURTLEGRAPHICS ,APPLESTUFF;

(**t****i*itt*tttitti**tkh**t**t*rtttt****ti****tt#*t***t*itﬁ#****i*t**)
CONST
(*Maximum X and ¥ coordinates%)
MAXX=280; MAXY=191;
(*Radius of patternk)
RADIUS=95;

(*itt***t**tt***tttttttk*iit*****tttttt***ti*t**&ttit****i**i****tt*t**)
TYPE
(*This type stores one set of screen coordinates*)
POINT=RECORD X:@..MAXX;
Y:ﬂ..m
END;

(t*ttntﬂt****tt#*t*****t*t*tt*iiiiti**tttti#***wi****t*ﬁﬁ**#tttttit***t)

VAR

(*Counter for how many ti

b P y times triangle has been rotated back to its
CYCLES:0..2;

(*Angle for rotating trianglet)
THETA:3..15;

(*Array to store coordinates of corners of triangle*)
TRGL:ARRAY[l..3] OF POINT;

(*Index for corners of triangle*)
Cilse3;

(*Point to store coordinates of one corner of triangle, before any

rotations*)

CORNER:POINT;

(*Point to store coordinates of center of screen*)
CENTER:POINT;

(*Array to store direction angles used to generate triangle®)
DIRECTION:ARRAY [1..3] OF INTEGER;

{n*******ﬁ*ﬂ*ﬁ**t****ttlii******itt*****Rtt***t*i*t*t**itt******it***ii}
FUNCTION ARBITRARY (LOW, HIGH:INTEGER):INTEGER;

(*Returns a pseudo-random integer in the range LOW through HIGH. This

function should only be called with constants as parameters. HIGH must
be strictly greater than LOW; it must not be equal to LOW. Also the

difference between HIGH and LOW must not exceed MAXINT.*)

VAR MX, Z, D: INTEGER;
BEGIN
1=HIGH-LOW+1;

MX:=(MAXINT-HIGH+LOW) DIV Z+1;
ME: =MX* (HIGH-LOW)+(MX-1) ;
REPEAT D:=RANDOM UNTIL D <= MX;
ARBITRARY :=LOW+D MOD Z

END;

116 APPLE PASCAL LANGUAGE

I\
L

m

4

mmwT MMM WE PR WNNDNEWNWN W

b—

w W

- e -

mmmlwmmmﬁ'wwwwwu&lwww

- -

i . =

(*******g********t**t****tt***********************t*t********t*********}
PROCEDURE MAKETRGL;

(*Make a triangle, defined by three randomly chosen points at a distance
RADIUS from the point CENTER. Choose each point by starting at CENTER,
turning to a random angle, and moving the distance RADIUS. GStore the
angles in DIRECTION, the point coordinates in TRGL, and the third point
(for future reference) in CORNER. Notice how conveniently this is done
by moving the turtle around with the color NONE.*)

VAR I:1..3;
BEGIN

PENCOLOR (NONE) ;

FOR I:=1 TO 3 DO BEGIN
MOVETO {CENTER.X, CENTER.Y);
DIRECTION[I) :=ARBITRARY (@}, 359);
TURNTO(DIRECTION[I]);

MOVE (RADIUS) ;
TRGL[1] . X:=TURTLEX;
TRGL[1]+Y :=TURTLEY

END;

COHNER . X:=TURTLEX;

CORNER .Y : =TURTLEY

END;

(RkAkdhhkihrirhrhhhhhhkhirdhhikihbintkhhihiihtibhkhihihkktrhhihhhhhihis)
PROCEVDURE ROTATE(ANGLE:INTEGER);

(*Rotate the triangle defined by point coordinates in TRGL and angles in
DIRECTION, by adding ANGLE to the angles in DIRECTION, taking the

result MOD 369, and using these angles to determine the new corner
coordinates. Again the turtle is moved around using the color RONE.*)

VAR I:1..3;
BEGIN
PENCOLOR (NOHE) ;
FOR I:=1 TO 3 DO BEGIN
MOVETO (CENTER.X, CENTER.Y);
DIRECTION [I]:=(DIRECTION [I]+ANGLE) MOD 360;
TURNTO(DIRECTION[I]);
MOVE (RADIUS);
TRGL[1] - X:=TURTLEX;
TRGL (1] .Y :=TURTLEY
END
END 3

"7

DEMONSTRATION PROGRAMS

L T e,
(*Main Program*)
BEGIN

(*Do initializations that will not need to be repeated*)

RANDOMIZE; (*To get a different sequence each time
program 1s executed#)

INITTURTLE; {*Always do this to use TURTLEGRAPHICS#*)

CENTER . X:=TURTLEX; {*The turtle is at the center because
INITTURTLE leaves it there. Save its
coordinates in CENTER.#*)

CENTER.Y :=TURTLEY;

(*The following (outer) REPEAT statement creates a new triangular
pattern each time through.¥)

REPEAT
MAKETRGL ; (*Make triangular pattern*)
THETA:=ARBITRARY (3, 15); (*Choose angle for rotating triangle*)
CYCLES:=; {*Clear the cycle counter¥)

118 APPLE PASCAL LANGUAGE

AW W W

]

1

i\
IVVIIN \

S

(*The following (inner) REPEAT statement draws the triangle in a new
rotated position each time through.*)

REPEAT
(*Rotate the triangle.*)
ROTATE{THETA) ;

(*Draw the triangle. This is conveniently done with Cartesian
graphiecs, since the coordinates are all set up.*)

PENCCOLOR (REVERSE) ;
FOR C:=1 TO 3 DO MOVETO(TRGL[C].X, TRGL[C].Y);

(*Now, if the third cormer of the triangle matches the CORNER value
saved earlier (by MAKETRGL), then the triangle has been rotated back to
its original position.*)
IF TRGL[3]=CORNER THEN CYCLES:=CYCLES+]

(*End the repetition if the triangle has returned to its original
position twice. When this is the case, the pattern has been erased by
being drawn over with the REVERSE color.*)

UNTIL CYCLES=2
(*End the outer REPEAT statement when a key is pressed.*)

UNTIL KEYPRESS

END'

DEMONSTRATION PROGRAMS 119

OTHER DEMONSTRATION PROGRAMS

A set of demonstration programs is supplied with the Pascal System.
Although these programs are not fully annotated, they are worth careful

study by any student of Pascal. The following are brief descriptions of
the programs.

The .TEXT version of each program has been included on diskette APPLE3:
so that you can read the program’s text into the Editor, to see how the
program was wrltten and to try modifications of your own.

DISKETTE FILES NEEDED

The following diskette files allow you to execute the various

demonstration programs. The notation xxxxxx stands for the name of a
particular demonstraion program.

EXAHAK-CODE (any diskette, any drive)
SYSTEM.LIBRARY (boot diskette, boot drive)
SYSTEM.CHARSET (any diskette, any drive; required

if WCHAR or WSTRING used)

Une-drive note: Use the Filer to T(ransfer the desired demonstration
program”s .CODE file to your boot diskette, APPLE¢: or APPLEl:. Then
you can X(ecute the program with the boot diskette in the disk drive.

Multi-drive note: You should place your boot diskette, AFPLE@: or
APPLEL: , in the boot drive. The demonstration programs are all
normally found on diskette APPLE3:. With APPLE3: in any available disk
drive, you are ready to X(ecute the demonstration programs.

If you just wish to examine the text version of a demonstratiom program,
there are two ways Co proceed:

- For a quick look, put diskette APPLE3: in any available drive,
and then use the Filer to T(ransfer the desired program’s
«TEXT file from APPLE3: to CONSOLE:. To stop the program’s
listing on the screen, press CTRL-5. Press CTRL=-S again to
continue.

- To examine the text in more detail, you can E(dit the
program’s .TEXT file. On one-drive systems, first use the
Filer to T(ransfer the program”s .TEXT file from APFLE3: to
your boot diskette, APPLE@: or APPLEl:. Then E(dit the file.

120 APPLE PASCAL LANGUAGE

PR EREEEETEEN NN ENE NN NNN NN

e e e e — i —— — i —] —] — i — - — T — - —] —— S S S W S W S S S

AW & WOW N W W ON R WO W W R W W W R W W Wl e

|

1f you wish to modify, compile, and execute a new version of a
demonstration program, the following diskfiles will be needed:

xxxxxx. TEXT (any diskette, any drive;
required only until read into Editor)
SYSTEM. EDITOR (any diskette, any drive)
SYSTEM.COMPILER (any diskette, any drive)
SYSTEM. SYNTAX {boot diskette, any drive; optional
Compiler error messages)
SYSTEM.PASCAL (boot diskette, boot drive)
SYSTEM.LIBRARY (boot diskette, boot drive)
SYSTEM.CHARSET (any diskette, any drive; required

if WCHAR or WSTRING used)

One-drive note: Diskette APPLE@: normally contains all the needed files
except the demonstration program’s .TEXT file. You should use diskette
APPLE@: as your boot diskette, and T(ransfer the desired demonstration
program’s .TEXT file to APPLE@:. Then, with APPLE@: in the disk drive,

you are ready to E(dit and R(un the program.

Two-drive note: Using diskette APPLE$: as your boot diskette, put
APPLE@#: in the boot drive and put APPLE3: in the other drive. You are
then ready to E(dit and R(un any program”s .TEXT file on APPLE3:.

THE “TREE” PROGRAM

TREE shows the creation of an unbalanced binary tree to sort and
retrieve data elements (words, in this case). It lets you specify each
new word to be stored in the tree, and then shows you graphically just
where the new word was placed in the tree.

When you X(ecute TREE.C.JE, you are prompted to

ENTER WORD:

To quit the program at any time, you can just press the RETURN key in
response to this message. To continue, you should type the first word
to be sorted (only the first six characters are used). For example, you
might type:

FLIPPY

The program then lists the words entered so far, in alphabetic order.

THE WORDS IN ORDER ARE:
FLIPPY

DEMOMNSTRATION PROGRAMS 121

No prompting message appears, but you must now press the RETURN key to
proceed. When you do, a high-resolution picture is displayed, showing
the binary tree as it now exists.

BINARY TREE:
/
||
| FLIPPY |
i I
\
\

The box represents the binary tree’s first "node", or sorting element.
The node has two "links" which can point the way to further nodes: the
upper link in the display can point to nodes which precede this node
alphabetically, while the lower link can point to nodes which follow
this node alphabetically.

To continue, press the RETURN key again. Apain you are prompted to

ENTER WORD:
Suppose you now type
APPLE
The program responds

THE WORDS IN ORDER ARE:

APPLE
FLIPPY

and when you press the RETURN key, another picture of the tree is
displayed.

BINARY TREE:

| FLIPPY | \

I
\
\

This is how the word APPLE is placed in the binary tree. The word APPLE
is compared to the word in the first node, FLIPPY. Since APPLE precedes
FLIPPY, alphabetically, the search continues by following the first

node’s upper link. If another node is found at the end of that link,
APPLE is compared to the word in that node, and the search continues by

122 APPLE PASCAL LANGUAGE

WO e — e — e e e — i —— . — i — - — . — — . — N — N —] S

et

AW W OR W W OR W W W W W W W W W WKW .

(LU \

following that node’s appropriate link. The search continues until, on
following an appropriate link, no node is found with which to compare
APPLE. At that peoint on the tree, a new node 1s created, containing

APPLE.

Retrieving the words to list them in alphabetic order is harder to
describe, although the algorithm is fairly simple.

l. Starting at the root node, FLIPPY, follow the tree taking only the
upper link from each node, until a node is found whose upper link
does not comnect to a further node. The word in this node is the
first word, alphabetically, so print it.

Now follow this node®s lower link.

a. If a node is connected to the link, follow the tree taking only

the upper link from each node, until a node is found whose upper
link does not connect to a further node. Print that node’s word

as the next one in alphabetic order, and repeat step 2.

b. If no further node is connected to the link, go back down the tree
to the node whose upper link led to this node. Print that node’s

word as the next one in alphabetic order, and repeat step 2. (If
no link or a lower link led to this node, the list is complete.)

Remember, to quit this program just press the RETURN key in response to
the message

ENTER WORD:

Caution: You must press the RETURN key two times between each word entry
(whether or not you wish to see the tree diagrammed). But if vyou
accidentally press RETURN three times, the program is terminated and
your list is lost forever.

Program TREE contains examples of the following:
l. Inserting elements into an unbalanced binary tree (INSERTIT)

2. Retrieving elements in order from such a tree (PRINTTREE)

THE "BALANCED” PROGRAM

BALANCED is identical to TREE, except that it stores words by creating a
balanced binary tree. It is taken from an example shown on page 215 of
the book "Algorithms + Data Structures = Programs", by Nicklaus Wirth
(Prentice-Hall, 1976). A&n AVL-BALANCED BINARY TREE is rearranged after
each element insertion to ensure that, of the two branches at any node,
one branch is at most one node longer than the other branch. This
method of element insertion is slower than for an unbalanced tree, but
subsequent retrieval of elements is faster.

DEMONSTRATION PROGRAMS 423

Read the description of the TREE demonstration program for details about
using this program. New words are added to the BALANCED tree in the
same way described for the unbalanced TREE, but the rearrangement of the
BALANCED tree following an insertion is more complex. The words are
retrieved in alphabetic order identically in the two programs.

THE “CROSSREF" PROGRAM

CROSSREF is an example of a textual cross-reference generator using an
unbalanced binary tree to store and sort words. It is taken from an
example shown on page 206 of the book "Algorithms + Data Structures =
Programs", by Nicklaus Wirth (Prentice-Hall, 1976).

When you X(ecute CROSSREF.CODE, you are prompted for the name of an

INPUT FILE?

Respond by typing the filename of a text file that you wish cross=-
referenced, on any available diskette. It is not necessary to specify
the filename’s .TEXT suffix. For example, you might ctype
APPLE@: MYSTUFF
The program then prompts you to specify a
DESTINATION FILE?
for the resulting cross-referenced list.

You should respond by typing

CONSOLE:

if you want the list to appear on the screen, or

PRINTER:

if you want the list to be printed on your printer (which must be
connected and turned on).

First, the INPUT text file 1s displayed on the screem or printed, with
each line of text numbered. The words of the text are then stored in
alphabetic order in a binary tree, one word to each node. A word is
defined as beginning with an alphabetic character and containing all
subsequent characters until the next non-alphanumeric character.
Finally, the text“s words are displayed or printed in alphabetic order,
each word followed by the text line numbers where that word appears.

Program CROSSREF contalns examples of the following:
1. Set membership (TYPE defines items of the tree structure)
2. Sorting into a binary tree

124 APPLE PASCAL LANGUAGE

B . — i —— —

.

e e e e e e e e e e e e = e e — i — — . — e — S S

A NS W W OR W W R WEWNE DWW WE R W

3. Listing from & binary tree (PRINTTREE, also shows recursion)

For more information about tree-sorting, see the demonstration programs
TREE and BALANCED.

THE “SPIRODEMO" PROGRAM

SPIRODEMO demonstrates the basic TURTLEGRAPHICS maneuver: move the pen
in a straight line, turn, move again in a straight line, turn again, and
50 oOna

The program lets you specify an ANGLE and a CHANGE, and then draws a
pattern on the screen. To make the pattern, SPLRODEMO moves the pen
unit, turns through ANGLE, moves 1+CHANGE, turns ANGLE, moves
1+CHANGE+CHANGE, turns ANGLE, etc.

one

When you X(ecute SPIRODEMO.CODE, this message appears:

WELCOME TO WHILEPLOT
ENTER ANGLE @ TO QUIT.

ANGLE:

If you wish to leave the program at any time, just wait until this
prompting message is displayed, and then respond by typing a zero and
pressing the RETURN key. If you want to continue, type any positive or
negative iInteger to specify the angle (in degrees) through which you
wish the TURTLEGRAPHICS pen to turn between each move. For example, you
might respond by typing

89 .

This tells the pen to turn clockwise, slightly less tham a right angle
between each move. Now you are asked to specify a

CHANGE:

Starting with a straight-line pen move of one unlt, each subsequent move
will increase in length by an amount specified by CHANGE. You must
respond by typing a positive integer greater than zero. For example, to
make each line one unit longer than the previous line, you would type

L

When you press the RETURN key, program SPIRODEMO (alias WHILEPLOT)
begins to draw its design on the screen, using the parameters that you
specified.

On completion of the design, the program continues to display the design
until you press any key on the Apple’s keyboard. Just press the Apple‘s
spacebar, and the original prompt message will replace the design on the
screen. You are then ready to specify a new CHANGE and DISTANCE for

DEMONSTRATION PROGRAMS 125

another design (or specify an ANGLE of zero to quit the program).

Caution: This program dies if the first character of an ANGLE or CHANGE
response is not a plus sign, a minus sign, or a numeric digit.

Frogram SPIRODEMO contains examples of the following:
l. Using the TURTLEGRAPHICS unit, including the KEYPRESS function

2. Reading the keyboard buffer without echoing on the screen

THE “HILBERT" PROGRAM

HILBERT shows an historically famous example of recursion, using a
space-filling design to create an attractive display on the screen.

You can determine the density of the space-filling design by specifying
an integer ORDER from 1 through 7.

When you X(ecute HILBERT.CODE, this message appears:
ENTER ORDER @ TO QUIT.

ORDER:

If you wish to quit the program at any time, wait until this message
appears, and then type a zero. If you wish to continue, you must type
an integer from 1 through 7. An ORDER of 1 fills the space most
"loosely", taking barely one repetition of the design to fill the
screen. Each higher order fills the screen more and more densely, by
repeating the basic design on a smaller and smaller scale. Order 7
fills the screen to solid white, and takes quite a long time deing it.

There is no way to stop a display while it is being created, except to
press the RESET key. To get the idea, respond by typing

&

On completion of the design, the program continues to display the design
until you press any key on the Apple’s keyboard. Just press the Apple’s
spacebar, and the original prompt message will replace the design on the
screen. You are then ready to specify a new ORDER for another design
(or specify an ORDER of zero to quit the program).

Caution: This program is terminated if the ORDER response is not a
numeric digit from 1 through 7.

THE “GRAFDEMO" PROGRAM

GRAFDEMO is a collection of interesting graphical displays generated by
a numper of wvery useful procedures.

126 APPLE PASCAL LANGUAGE

b e e e e e e = — — — — — — . — i — . — . — N S— N S N S S S S S

WOW R W W R W W R W W R W W W W W WWhWwaa

The program runs without any interaction; just watch the pretty pictures
and then study GRAFDEMO.TEXT to see examples of how these things can be

done using TURTLEGRAPHICS. You may even find it handy to use some of
GRAFDEMD ‘s procedures directly, in your own programs.
When you X{ecute GRAFDEMO.CODE, this unusual message appears:

PRESS ANY KEY TO QUIT.
PLEASE WAIT WHILE CREATING BUTTERFLY

Just wait; soon you will see butterflies and many other graphical
marvels.s Pressing any key on the Apple keyboard will terminate this
program on completion of whichever display is currently being created.
Program GRAFDEMO contains examples of the following:

1. Using TURTLEGRAPHICS to draw frames, crosshatching, etc.

2. Creation of an array (BUTTER) for use by procedure DRAWBLOCK

3. Handling of a procedure that is too long, by breaking it into smaller

parts (BUTTER) and calling those parts from another procedure
(INITBUTTER)

THE “GRAFCHARS" PROGRAM

GRAFCHARS shows the characters found in the file SYSTEM.CHARSET, and
their use from TURTLEGRAPHICS. The program runs without interactionm.

When you X({ecute GRAFCHARS.CODE, this message appears:

PRESS RETURN FOR MORE...
From here on, each time you press the Apple”s RETURN key another display
is placed on the screen. The first display shows all the characters
available in SYSTEM.CHARSET . When you have examined any display to
your satisfaction, just press the RETURN key again to go on to the next
display.
Program GRAFCHARS contains examples of the following:

1. All the upper-case, lower-case, and special characters available
through TURTLEGRAPHICS

2. Use of TURTLEGRAPHICS® WCHAR and WSTRING functions
3. How to put a border around a string (BOXSTRING)

4+ Use of CHARMODE to keep the characters” boundaries from interfering
with the background

DEMONSTRATION PROGRAMS 127

THE "DISKIO” PROGRAM

DLISKIU shows a sample use of random-access disk files, with terminal-
independent output.

Note: This program is NOT a real application, and it is definitely NOT a
data-base manager. 1Its only purpose is to demonstrate some of the
principles that would be involved in writing a real file-handling
PTOgTams
When you X(ecute DISKIO.CODE, you are asked to specify a

FILE NAME:

You should type a valid disk-file identifier.
respond by typing

For example, you might

APPLE@:MYFILE.TEXT
The program looks on the specified diskette (or the default diskette)
for a file with the specified filename. TIf an existing file by that
name is found, it is cpened and the main program command prompt line is
displayed. If no file by that name is found, the program asks if it
should

START A NEW FILE?
If you type N for No, you will again be asked to type a FILE NAME.
There is no exit from the program at this point except by successfully
opening a file or by pressing the RESET key. 1If you type Y for Yes, the
program asks

RESERVE HOW MANY RECORDS?

Respond by typing an integer that specifies the number of records your
new file will initially contain. For example, if you type

6

your new file will start out containing seven records, numbered @
through 6.

Now the program’s main command prompt line appears on the screen:
V(LIEW C(HANGE N(EXT F{ILE Q(UIT
Typing a V for V(iew causes this messape to appear:

VIEW WHICH RECORD?

128 APPLE PASCAL LANGUAGE

Wl

RERERAROEREEME R RN N NN N W
WO W W W W W W W OW W W W W W W R w

_—

You should respond by typing a number from zero through the maximum
record number in your file. For instance, typing

5

lets you view the contents of record number 5.

If you then wish to view the contents of the next record, type N for
N(ext. In this way, you can look at as many records as you wish.

Typing a C for C(hange causes this message to appear:
CHANGE WHICH RECORD?

Again, you should respond by typing a number from zero through the
maximum record number in your file. For instance, typing

5

lets you change the contents of record number 5. To change an entry,
just start typing. To leave an entry as it is, and go om to the next
entry, just press the RETURN key.

If you then wish to change the contents of the next record, type N for
N{ext. In this way, you can change as many records as you wish.

If the N(ext command takes you beyond the last record specified for your
file, the program will attempt to extend the file by appending
additional records. This is possible if

l. there is room for the record in the current last block of the file,
or

2. the next contiguous block on the diskette is availlable for use by
this file.

If it is not possible to extend your file, a message appears to inform
you of the problem. You can then type § to Quit this program, enter
the Filer, and move files on the diskette until your file has a few free
blocks immediately following it. (Use the Filer‘s E(xtended List
command to see the locations of free blocks.) Then you are ready to
X(ecute DISKIO again, and extend your file with additional records.

Typing F for F(ile, in response to the main command prompt line, lets
you start a new file or reopen another old file. As at the beginning,
you are asked for a

FILE NAME:

Again, there is no exit from this part of the program except to give a
successful filename or to press the RESET key.

DEMONSTRATION PROGRAMS 129

Program DISKIO contains examples of the following:

APPENDIX B
TABLES

l+ Terminal-independent output, by reading the file SYSTEM.MISCINFO and
using the terminal setup parameters found there (GETCRTINFO)

2. Bullet-proof character input (GETCHAR)
3. Bullet-proof string input, with defaults
4« Use of random-access disk files and system procedure SEEK

5. How to extend a diskette file in place.

130 APPLE PASCAL LANGUAGE

TABLE 1:
EXECUTION ERRORS

19
11
12
13
14

15

All FATAL errors require that the system be rebooted.

System error FATAL

Invalid index, value out of range (XINVNDX)

No segment, bad code file (XNOPROC)

Procedure not present at exit time (XNOEXIT)
Stack overflow (XSTKOVR)

Integer overflow (XINTOVR)

Divide by zero (XDIVZER)

Invalid memory reference <bus timed out> (XBADMEM)
User break (XUBREAK)

System 1/0 error (XSYIDER) FATAL
User 1/0 error (XUIODERR)

Unimplemented instruction (XNOTIMP)

Floating point math error (XFPIERR)

String too long (XSZLONG)

Halet, Breakpoint (without debugger in core) (XHLTBET)

Bad Block

In some cases the

system will reboot automatically, and in other cases you will have to

reboot it.

All other errors cause the system to re-initialize itself.

132 APPLE PASCAL LANGUAGE

LW

LE 2:
B’AOB ERRORS (IORESULT VALUES)

19

12
13
14

15

16

64

(VUR ViV Y VI T T TR TR T T P T VR VT T

W o & W oW ow W

No error

Diskette has bad Block: parity error (CRC).
(Not used on the Apple.)

Bad device (volume) Number

Bad Mode: illegal operation. (For example, an
attempt to read from PRINTER:.)

Undefined hardware error. (Not used on the Apple.)
Lost device: device is no longer on-line, after
successfully starting an operation using that

device.

Lost file: file is no longer in the diskette
directory, after successfully startng an
operation using that file.

Bad title: illegal file name. (For example,
filename is more than 15 characters long.)

No room: insufficient space on the specified
diskette. (Files must be stored in contiguous
diskette blocks.)

No device: the specified volume is not on line

No file: The specified file is not in the
directory of the specified volume.

Duplicate file: attempt to rewrite a file when
a file of that name already exists.

Not closed: attempt to open an open file.

Not open, attempt to access a closed file.

Bad format, error in reading real or integer.
(For example, your program expects an integer
input but you typed a letter.)

Ring buffer overflow: characters are arriving at
the Apple faster than the input buffer can
accept them.

Write-protect error: the specified diskette is
write-protected.

Device error: failed to complete a read or write
correctly (bad address or data field on diskette).

See Chapter 3 for description of the built=in function IORESULT.

TABLES 133

. L]
TABLE 3: B -y TABLE 4.
RESERVED WORDS PREDEFINED IDENTIFIERS
These are words that have fixed meanings in Pascal. ¥ These are the identifiers of the built-in procedures and functions and
them as identifiers without causing angompzle:serrnr_ D;h:a:E::v::;uuse - :-s the predefined types and variables of Apple Pascal. The list does not
11 lude those identifiers that are declared or defined in the special
tables list some more words you should not use as identifiers. E ’_! ;;;T: supplied for the Apple (see next table). If you declare or define
1 one of these identifiers in your program, no error will result but you
will lose the capability of the corresponding built-in or predefined
STANDARD PASCAL oW nciey.
RESERVED WORDS ! ,g With each identifier, a code is shown in {brackets} to indicate what
] kind of object the identifier represents. The codes are
AND
ARRAY :(:2 [| {p} PROCEDURE {i} INTEGER FUNCTION
BEGIN NOT {b} BOOLEAN FUNCTION {r} REAL FUNCTION
CASE oF . 1 g {t} TYFE {c} CHAR FUNCTION
CONST OR {k} CONSTANT {£} FILE
DIV PACKED B {8} STRING FUNCTION {-} OTHER
Do
DOWNTO ’;:EEELURE ABS (r} IORESULT {i} REWRITE {p}
ELSE RECORD . a BLOCKREAD {i} KEYBOARD {f} ROUND {i}
END REPEAT BLOCKWRITE {1} LENGTH {i} SCAN {1}
FILE SET BOOLEAN {t} MARK {p} SEEK {p}
FOR THEN E H CHAR {t) MAXINT (k) SIZEOF {1}
FORWARD T CHR {c} MEMAVAIL {i} SQR {r}
FUNCTION TYPE E o« CLOSE {p} MOVELEFT {p} STR {s}
GOTO UNTIL CONCAT {s} MOVERIGHT {p} STRING {t}
IF VAR COPY {s} NEW {p} succ {-}
IN WHILE E 4 DELETE {p} oDD {b} TEXT {t}
LABEL WITH EOF {b} ORD {1} TREESEARCH {1}
‘ - ! EOLN {b} OUTPUT {£} TRUE {k}
EXIT {p} PAGE {p} TRUNC {1}
i FALSE {k} POS {1} UNITBUSY {b}
ADDITIONAL APPLE PASCAL [| FILLCHAR {p) PRED {-} UNITCLEAR {p)
GET {p} PUT {p} UNITREAD {p}
RESERVED WORDS — GOTOXY {p} PWROFTEN {r} UNITWAIT {p}
- HALT {p} READ {p} UNITWRITE {p}
EXTERNAL INPUT {£f} READLN {p} WRITE {p}
IMPLEMENTATION E = INSERT {p} REAL {(t) WRITELN {p}
INTERFACE INTEGER {t} RELEASE {p}
SEGMENT - 3 INTERACTIVE {t} RESET {p}
UNIT
USES ‘ a
E -
.4
134 APPLE PASCAL LANGUAGE B | & | TABLES 135

TABLE 5:
IDENTIFIERS DECLARED
IN SUPPLIED UNITS

These identifiers are effectively declared or defined only if your
program USES their respective UNITs. If your program USES a UNIT and
you attempt to declare or define one of the identifiers belonging to
that UNIT, you will get a compiler error message IPl: "Identifier
declared twice." However if your program doesn’t USE a particular UNIT
you can make free use of the identifiers of that UNIT.

With each identifier, a code is shown in {brackets)} to indicate what
kind of object the identifier represents. The codes are

{p} PROCEDURE
{b} BOOLEAN FUNCTION
{t} TYPE

{i} INTEGER FUNCTION
{r} REAL FUNCTION

TURTLEGRAPHICS UNIT

CHARTYPE {p} PENCOLOR {p} TURTLEX (i)}
DRAWBLOCK {p} SCREENBIT {b} TURTLEY {i}
FILLSCREEN {p} SCREENCOLOR {t} VIEWFORT {p}
GRAFMODE {p} TEXTMODE {p} WCHAR {p)

INITTURTLE {p} TURN {p} WSTRING {p}
HOVE {p} TURNTO {p}
MOVETO {p} TURTLEANG {1}
APPLESTUFF UNIT
BUTTON {1} RANDOM {1}
KEYPRESS {b} RANDOMIZE {p)
NOTE {p} TTLOUT {p}
PADDLE {i}
TRANSCEND UNIT
ATAN {r} LOG {r}
CoSs {r} SIN {r}
EXP {r} SQRT {r}
LN {r}

136 APPLE PASCAL LANGUAGE

W oR & W W & W W o W e oW e e W ol W oW

T REEMEEMWMENWNNNN W NN N NN

—— - —

LE 6:
TGAgMPILER ERROR MESSAGES

When the Pascal Compiler discovers an error in your program, it reports
that error immediately, by error number. If you then enter the Editor
to fix that error, a more complete error message is given, taken from
the boot diskette file SYSTEM.SYNTAX . TIf you remove the file
SYSTEM.SYNTAX from the boot diskette, errors will be reported by number,
only.

The Pascal Compiler error message corresponding to each error number is
given in the table below. Some people will prefer to gain some
additional space on their boot diskette, by removing SYSTEM.SYNTAX and
using this table instead. You can also print your own copy of this
table by T(ramsferring the file SYSTEM.SYNTAX to a printer.

Error in simple type
Identifier expected
“PROGRAM” expected

‘)" expected

“: 7 expected

Illegal symbol (possibly missing ~
Error in parameter list
“OF" expected

(" expected

1#: Error in type

I1: “[" expected

12: *]° expected

13: “END’ expecred

l4: *;° expected (possibly on line above)
15: Integer expected

I6: “=" expected

17: “BEGIN® expected

18: Error in declaration part
19: Error in <field-list>

20: .7 expected

21: "*" expected

22: "Interface’ expected

23: "Implementation” expected
24: "Unit’ expected

-

;7 on line above)

(7= N R

. w

5@: Error in constant

51: “: =" expected

52: "THEN® expected

33: "UNTIL® expected

54: "DO" expected

55: “TO" or “DOWNTO® expected in for statement
56: "IF" expected

57: “FILE® expected

538: Error in <factor> (bad expression)

59: Error in variable

1P1: Identifier declared twice

TABLES 137

1#2: Low bound exceeds high bound

1#3: Identifier is not of the appropriate class

1$4: Undeclared identifier

I@5: Sign not allowed

L@6: Number expected

1#7: Incompatible subrange types

I$#8: File not allowed here

199: Type must not be real

119: <tagfield> type must be scalar or subrange

L1l: Incompatible with <tagfield> part

112: Index type must not be real

113: Index type must be a scalar or a subrange

114: Base type must not be real

115: Base type must be a scalar or a subrange

116: Error in type of standard procedure parameter
117: Unsatisfied forward reference

118: Forward reference type identifier in variable declaration
119: Re-specified parameters not OK for a forward declared procedure
12@: Function result type must be scalar, subrange or pointer
121: File value parameter not allowed

122; A forward declared function”s result type can’t be re-specified
123: Missing result type in function declaration

124: F-format for reals only

125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
127: Illegal parameter substitution

128: Result type does not agree with declaration

129: Type conflict of operands

13@: Expression is not of set type

131: Tests on equality allowed only

132: Strict inclusion not allowed

133: File comparison not allowed

134: Tllegal cype of operand(s)

135: Type of operand must be boolean

136: Set element type must be scalar or subrange

137: Set element types must be compatible

138: Type of wariable is not array

139: Index type is not compatible with the declaration
14@: Type of variable is not record

L4l: Type of wariable must be file or pointer

142: Illegal parameter solution

143: Illegal type of loop control variable

L44: Tllegal type of expression

145: Type conflict

146: Assignment of files not allowed

147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar

149: Index type must be integer

15¢: Assignment to standard function is not allowed
151; Assignment to formal function is not allowed

152: Wo such field in this record

153: Type error in read

134: Actual parameter must be a variable

155: Control wvariable cannot be formal or non-local

156: Multidefined case label

157: Too many cases in case statement

158: Mo such wvariant in this record

159: Real or string tagfields not allowed
16f: Previous declaration was not forward
161: Again forward declared

162: Parameter size must be constant

163: Missing variant in declaration

164: Substitution of standard proc/func not allowed
165: Multidefined label

166: Multideclared label

167: Undeclared label

168: Undefined label

169: Error in base set

17@: Value parameter expected

171: Standard file was re-declared

172: Undeclared external file

174: Pascal function or procedure expected

182: Nested units not allowed

183: Externmal declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit

186: Labels not allowed in interface section

187: Attempt to open library unsuccessful

188: Unit not declared in previous “Uses” declaratiom

189: “Uses” not allowed at this nesting level

19@: Unit not in library

191: No private files

192: “Uses” must be in interface section

193: Not enough room for this operation

194: Comment must appear at top of program

195: Unit not importable

| P

2¢1: Error in real number - digit expected

2(§2: String constant must not exceed source line
2(¢3: Integer constant exceeds range

204: 8 or 9 in octal number

25¢: Too many scopes of nested identifiers

251l: Too many nested procedures or functions

252: Too many forward references of procedure entries
253: Procedure too long

254: Too many long constants in this procedure

256: Too many external references

257: Too many externals

258: Too many local files

259: Expression too complicated

=

3@@: Division by zero

3@1: No case provided for this value
3P2: Index expression out of bounds
3@3: Value to be assigned is out of bounds |
3@4: Element expression out of range

PR EERMEREDEERMERERNRN R NN N N W
mmmmmummmmmwwwwwmwiwmﬁwu

138 APPLE PASCAL LANGUAGE TABLES 139 |

oy

35@: No data segment allocated

351: Segment used twice

352: No code segment allocated

353: Non=intrimsic unit called from intrinsic unit
354: Too many segments for the segment dictionary

398: Implementation restriction

399: Implementation restriction

4Bz I1lepal character in text

4@1: Unexpected end of input

4@2: Error in writing code file, not enough room
4@3;: Error in reading include file

4P4: Error in writing list file, not enocugh room
4@5: Call not allowed in separate procedure

4@6: Include file not legal

4P7: Too many libraries

140 APPLE PASCAL LANGUAGE

W W W W W WY W Wy e

TABLE 7
ASCIl CHARACTER CODES

Code

Dec Hex

N el el el et
| O~ e L M RO WD Wk e

ka2
B o=

L S
aln bW

M
oo =~

L e B
e~

@9
g1
@2

@4
@5
@6
W7
@8
@9
@A
@B
#c
@D
gE
@F
1@
11
12
13
14
15
16
17
18
19

1B
1C
1D
1E
1F

Char

NUL
S0H
STX
ETX
EOT
ENQ
ACK
BEL
B3

HT

LF

CR

50

SI

DLE
DCl
bcz
DC3
DCc4
HAK
SYN
ETB

SUB
ESC
F5

us

Code

Dec Hex

32
33
34
35
36
37
38
39
4
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
38
59
60
61
62
63

29
21
22
23
24
25
26
27
28
29
Iy
2B
2C
2D
2E
2F
3p
il
32
33
34
35
36
37
38
39
3A
3B
ac
3D
3E
3F

Char

Sp

==

L -0 I

4+

[

3 WOl A W e WD 00w O U D L Rl e e

Code

Dec Hex

64
65

67
b8
69
¢
71
72
73
T4
3

rE
78

8¢
Bl
82
83
B4
85
86
a7
88
89
9@
91
92
93
94
95

46
41

43
44
45
46
47
48
49
44
48

4D
4E

58
51
52
53
54
55
56
57
58
39
54
5B
5C
5D
5E
5F

Char

DT OmEO R

mORmOZET IR LA

I~ N O Wm

Code Char

Dec Hex

96

97

98

99
1@
181
192
193
194
195
196
147
198
199
11¢
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

o
=
-

an
m
oMY MO BB HOT 00 E XU TR MD R TR

7F DEL

TABLES 141

APPENDIX C

ADDITIONAL DETAILS
OF TEXT I/O

mmmEmE M E A MMM N NN NN NN N NN

142 APPLE PASCAL LANGUAGE

Here are some facts about READ and READLN that you need to know i you
do not follow the suggestions in the "Introduction to Text I/0" section

of Chapter 3. In particular, these facts are important if you mix
reading and writing operations on the same diskette textfile.

with numeric variables.

Note that for mixed reading and writing, the rules given below are more

straightforward for INTERACTIVE file than for TEXT files.
After READ with a CHAR variable and an INTERACTIVE file:

- The file buffer variable contains the character that was READ,
unless EOLN or EOF is true.

- If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the character after the one that was READ.

~ EOF is true if the character READ was the end-of=file

character- In this case the value of the file buffer variable
is undefined.

- EOLN is true if the character READ was the end—of-line
character. In this case the file buffer variable contains a
spaces

= EOLN is also true if EOF is true.
After READ with a CHAR variable and a TEXT file:

— The file buffer variable contains the character after the
character that was READ, unless EOLN or EOF is true.

- If the next 1/0 operation is a PUT, WRITE, or WRITELN, it
affects the second character after the one that was READ.

= EOF is true if the character READ was the last character im

the file (not counting the end-of-file character). In this
case the value of the file buffer variable is undefined.

= EOLN is true if the character READ was the last character on
the line (not counting the end-of-line character). In this
case the file buffer variable contains a space.

- EOLM is also true if EOF is true.

After READ with a numeric variable and a TEXT or INTERACTIVE file:

- The file buffer variable contains the character after the last

character of the numeric string that was READ, unless EOLN or
EOF is true.

144 APPLE PASCAL LANGUAGE

il

You may
also need to know exactly when EOLN and EOF become true with READLN and

C e — — - — - — . S— i —

AW W oW oW W oW Wl W W w

i e
i

'

,i}

[-

B

P EEEFEmEEmMEEM@@E@EMME NN NNN NN N

WA AW W

&=

If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the second character after the last character of the
numeric string.

EOF is true if the last character of the numeric string was
the last character in the file (not counting the end=of=file
character). In this case the value of the file buffer
variable is undefined.

EOLN is true if the last character of the numeric string was
the last character on the line (not counting the end-of-line
character). In this case the file buffer variable contains a
space.

EOLN is also true if EOF is true.

After READ with a STRING variable and a TEXT or INTERACTIVE file:

The file buffer variable contains a space which represents the
end=of=-line character at the end of the line, unless EOF is
true.

If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the first character on the next line.

EOF is true if the line READ was the last line in the file.
In this case the value of the file buffer wvariable is
undefined.

BOLN is always true.

After READLN with any variable and an INTERACTIVE file

The file buffer wvariable contains a space which represents the

end=-of-line character at the end of the line, unless EOF is
true.

I1f the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the first character on the next line.

EOF is true if the line READ was the last line in the file.
In this case the value of the file buffer wariable is
undefined.

EOLN is never true.

After READLN with any variable and a TEXT file

The file buffer variable contains the first character on the
next line, unless EOLN or EOF is true.

If the next I/0 operation is a PUT, WRITE, or WRITELN, it
affects the second character on the next line.

ADDITIONAL /O DETAILS 145

- EOF is true if the line READ was the last line in the file.
In this case the value of the file buffer variable is
undefined.

APPENDIX D
ONE-DRIVE STARTUP

= EOLN is true only when EOF is true.

pEEERmEAmEAMA MR RN NN NN NN

146 APPLE PASCAL LANGUAGE

This appendix is a tutorial session to get you started using the

Language System with Pascal, on an Apple IT with one diskette drive. If
your system has two or more diskette drives, please skip this appendix
and read Appendix E instead.

EQUIPMENT YOU WILL NEED

You should have the following:

1. Your 48K Apple computer, with a Language Card installed, and one
disk drive attached to the connector marked "DRIVE 1" on the disk
controller card. The disk controller card must have the new PROMs, P5A
and PbA (which came with the Language System), and must be installed in
the Apple’s peripheral device slot 6.

2. A TV set or video monitor properly connected to your Apple.

3. The following Language System diskettes:

a. APPLE@:
b. APPLEL:
Cas APPL-EE:
de APPLE3:
e« A blank diskette

f. Another blank diskette

The diskettes marked "APPLEl:" and "APPLE@:" are needed to start the
system. The diskette marked "APPLE2:" adds some extra features to the
system (the Assembler and the Linker). You will not need the diskette

marked "APPLE2:" until later (many users of single-drive systems will
never need it). The diskette marked "APPLE3:" contains a number of
useful utility programs, and some interesting demonstrations; Appendix A
of this manual explains these demonstracions.

Your Apple and its TV or monitor should be plugged in. Turn on the TV
now, so that it can warm up; but leave the Apple turned off.

THE TWO-STEP STARTUP

There are two steps to starting Apple Pascal running on your system.

STEP ONE OF STARTUP

First insert the diskette marked APPLEl: in the disk drive. If you are
not familiar with handling diskettes, see the manuals that came with
your disk drives. Diskettes must be treated correctly if they are to
last.

148 APPLE PASCAL LANGUAGE

FEMEEME NN NN NN NN
AN W W N & W W o W W oW o W W W e W oW w W

T e e o — i — . — . — i — - — N S S S s S S SN S

mmwET N MMEMM

—

s

Clase the door to the disk drive, and turn on the Apple. The rest of

Step One is automatic. First, the message
APPLE 1II

appears at the top of your TV or monitor screen, and the disk drive’s
"IN USE" light comes on. The disk drive emits a whirring, zickking
sound that is as pleasant as a cat’s purring, since it lets you know
that everything is working. The screen lights up for an instant with a
display of black at-signs (@) on a white background, then goes black
Mext, the disk drive stops entirely for a moment; then it whirrs
Finally, the message

again.
some moTe.

WELCOME APPLEL, TO
U.C.5.D. PASCAL SYSTEM II.l
CURRENT DATE IS 26~JUL-79

appears (the date will be different), followed in a second or so by a

line at the top of the screen:
COMMAND: E(DIT, R(UN, F(ILE, C{OMP, L{IN
This line at the top of the screen Is called a

see this prompt line, you know that your Apple
Apple Pascal system.

"prompt line". When you
computer is running the

1f you just wish to edit text and programs, or if you wish to run
previously compiled programs, you may stop now. At this point, your
system can do most of the things you will normally want to do in Apple
Pascal, except for compiling new programs that you write.

However, if you also wish to compile programs that you write, in order
to run them, you should proceed to Step Two of the startup procedure.

STEP TWO OF STARTUP

Bemove the diskette marked APPLEl: from the disk drive, and insert the
one marked APPLE@: . Close the door to the drive and press the key
marked RESET , in the upper right corner of the Apple’s keyboard.

The at-signs come back for an instant, and the disk drive whirrs and
completely stops for a second, then whirrs some more. The whole process
takes about 16 seconds. Finally, the message

WELCOME APPLE@, TO
U.C.5.D. PASCAL SYSTEM II.l
CURRENT DATE IS 26-JUL=-79

appears (the date will be different), followed in a second or so by the
prompt line at the top of the screen

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

STARTING (ONE DRIVE) 149

Again, this prompt line lets you
running the Apple Pascal System.

know that your Apple computer is

After completing Step Two of the startup procedure, your system can do
all the things you will normally want to do in Apple Pascal: filing,
editing, running....and compiling. However, diskette APPLE@: is missing
one file that is needed for the initial startup when you first turn the

Apple’s power on. That is why you must go through Step One of the
startup procedure before going on to Step Two.

CHANGING THE DATE

The date that comes on the diskette will not be correct. It is a good
habit to reset the date the first time you use the Apple Pascal System
on any given day. It only takes a few seconds. Press F on the keyboard
(without pressing the RETURN key or any other keys). The screen ZOES
blank, and then this line appears at the top:

FILER: G, S, N, L, R, C, T, D, Q

This is a new prompt line. Prompt lines are named after their first
word. The prompt line you first saw was the "COMMAND" prompt line.

This one is the "FILER" prompt line. Sometimes we say that you are "in
the Filer" when this line is at the top of the screen. Each of the
letters on the prompt line represents a task that you can ask the system
to do. For example, to change the date, press D (again, just type the
single key, without pressing RETURN or any other key).

When you do, another message is put on the screen. It says:
DATE SET: <l..31>-<JAN..DEC>=<{if}..99>

TODAY IS 26-JUL-79

NEW DATE 7

It doesn”t really mean that today is 26-JUL-79 (or whatever date your
screen shows), but that the Apple THINKS that is today’s date. Since it
isn’t, you can change the date to be correct. The correct form for
typing the darte is shown on the second line of the message: one or two
digits giving the day of the month, followed by a minus sign, followed
by the first three letters of the name of the month, followed by another

minus sign, followed by the last two digits of the current year. Then
press the key marked RETURN .

If the month and
change the date)
month, and press
to keep the same
day and a month,
the same.

year are correct (as they will often be, when you

all you have to do is type the correct day of the

the RETURN key. The system will assume that you mean
month and year displayed by the message. If you type a
the system will assume you mean to keep only the year

Go ahead and make the date correct. This is your first interaction with
the system, and is typical of how the system is used. In general, at

150 APPLE PASCAL LANGUAGE

el I e e e e e e e e e — e ————

WA R W OW oW W W om e W om W o o ow W e W o w W oa o

the top of the screen there will usually be a prompt line which
represents several choices of action. When you type the first letter of
one of the choices, elther you will be shown a new prompt line giving a
further list of choices, or else the system will carry out the desired
action directly. If you type a letter that does not correspond to one
of the choices, the prompt line blinks but otherwise nothing happens.
Hemember to type only a single letter to indicate your choice; it is not
necessary to press the RETUEN key afterward.

Sometimes, as when setting the date, you are asked to type a response of
several characters. You tell the system that your response is complete
by pressing the RETURN key. If you make a typing error before pressing
the RETURN key, you can back up and correct the error by pressing the
left-arrow key. You should experiment by making deliberate errors in
entering a date, and then erasing the errors with the left-arrow key.

One further note. Normally, your new date is saved on the diskette, so
the system "remembers" this date the next time you turn the Apple on.
However, since you are using the write-protected diskettes that came
with your Language System, your new date was not permanently saved. The
next time you turn the Apple off, the new date will be "forgotten". By
the end of this session, you will have made backup copies of the
Language System diskettes. From then on, you will use these copies,
which are not write-protected, and your date changes will be saved
correctly.

MAKING BACKUP DISKETTE COPIES

WHY WE MAKE BACKUPS

Ask yourself this question: What would happen to your system if you were
to lose or damage one of the system diskettes (APPLE@:, APPLEL:,
APPLE2:, or APPLE3:)? It would be as bad as losing your Apple, as far
as your being able to use Pascal.

These diskettes are gquite precious. The first thing you should do,
therefore, is to make backup copies of them. Afterward, you should
never use the originals, but put them someplace where the temperature is
moderate, where there is nec danger of them getting wet, and where such
diskette destroyers as dogs, dirt, children, and magnetic fields cannot
get at them.

A truly cautious person will keep on hand two backup copies of each
original. That way, you will need to use an original only in the very
rare case when both of its backup copies are lost (when one copy Is lost
or damaped, another backup copy is made from the surviving backup

copy)s If your backups were damaged or erased while in use, find out
why they were destroyed before inserting your only surviving copy.
Using diskettes for which you have backups, repeat the procedure that
destroyed the first diskettes; if you can”t figure out what the problem

STARTING (ONE DRIVE) 151

is, take your system to the dealer te make sure it is working
correctly.

HOW WE MAKE BACKUPS

The Apple Pascal system can copy all the information from one diskette
(or any portion of the information) onto another diskette. But the
system cannot store information on a new diskette, just as that diskette

comes from the computer store. Therefore, the system is supplied with a
program that allows you to take any 5-inch floppy diskette and "format"

it so that it will work with the Apple Pascal system.

Incidentally, this is one of the nice little things about the Apple
system: ANY high-quality 5-inch floppy diskette (Apple recommends
diskettes made by Dysan Corporation) will work on it. Some systems
require you to have "1§ sector" or "15 sector"or "soft sectored"
diskettes. The Apple doesn”t care, it takes any of these kinds of
diskettes, and (through the FORMATTER program) makes them into the kind
of diskette it needs.

If you have been following this discussion by carrying out the
instructions on your Apple, the FILER prompt lime should be showing at
the top of the screen:

FILER: G, 5, N, L, R, C, T, D, Q

Type Q on the keyboard to Quit the Filer.

GETTING THE BIG PICTURE

When you Quit the Filer, the disk whirrs, and you see the COMMAND prompt
line again:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN
There is actually more of this prompt line, off to the right of your TV
or monitor. To see the rest of the screen, hold down the key marked
CTRL and, while holding it down, press the A key right alongside it.
(Or, to be brief, we say: "press CIRL=A".)
You now see

K, X{ECUTE, A(SSEM, D(EBUG,?

This is simply the rest of the line that began "COMMAND:". All

together, the full prompt line would look like this:

COMMAND: E(D1T, R{UN, F(ILE, C(OMP, L{INK, X(ECUTE, A(SSEM, D(EBUG,?

152 APPLE PASCAL LANGUAGE

WO & W Wow W oW o W W oW W W om e W W W WA

The Apple Pascal system displays information on a "screen" that is 8¢

characters wide, but your TV or monitor shows only the leftmost 4@
characters or the rightmost 4@ characters at any one time. You use the

CTRL-A trick whenever you wish to see if there i1s more stuff on the
other "half" of the screen. Repeated pressing of CTRL-A flips back and
forth between the left half of the screen and the right half. Also,
sometimes the TV display will seem to be blank. This might mean that

you are just staring at the empty right half of the screen. Before you
come to the conclusion that something is wrong, always try CIRL-A. You

get back to the left side of the screen by typing CTRL-A again, and you
might find that everything is OK after all.

Summary of this digression: The screen is really twice as wide as it
looks. To flip from the left side to the right side or back again, you
type CTRL-A.

FORMATTING NEW DISKETTES

When the COMMAND prompt line is showing at the top of the screen, remove
your system diskette { APPLELl: or APPLE(J:) from the disk drive and

place the diskette APPLE3: in the drive. This has to be done because
the FORMATTER program is on APPLE3: . Now, type

K
and the screen responds:
EXECUTE WHAT FILE?
You type
APPLE3: FORMATTER

and press the RETURN key. The disk whirrs a bit and the screen says:
APPLE DISK FORMATTER PROGRAM

FORMAT WHICH DISK (4, 5, 9..12) 17

Now comes a grand session. Take all the new, blank diskettes that you
are going to use with the Apple Pascal System (but not, of course, any
diskettes that have precious information on them, such as the diskettes
that came with the Apple Pascal System) and place them in a pile. Their
labels should be blank. Make sure that you don‘t have any diskettes
with data in a non-Pascal format, such as BASIC diskettes: the Apple
Pascal system will be unable to read them, and will regard them as
blank, erasing any old information in the formatting process.

STARTING (ONE DRIVE) 153

Remove the diskette APPLE3: from the disk drive, and place one of the
blank diskettes into the drive. Type

4

and press the RETURN key.

If the diskette in the drive has already been formatted, you will
receive a warning. For example, if you have left APPLE3: in the drive

you will be warned with the message

DESTROY DIRECTORY OF AFPLE3 7
At this point vou can type
N

(which stands for
diskertte will not

"No'") without pressing the RETURN key, and your
be destroyed.

Let”s assume that you have placed a new, unformatted diskette in the
disk drive. Then you will not get any warning, but the Apple will place

this message on the screen:

NOW FORMATTING DISKEITE IN DRIVE &

The drive will make some clickings and buzzings and begin to whirr and
zick. The process takes about 32 seconds. When formatting is complete,
the screen again shows the message

FORMAT WHICH DISK (4, 5, 9..12) 7

Now wou have a formatted diskette. We suggest that you write the word
"Pascal" in small letters at the top of the diskette’s label, using a
marking pen. Do not use a pencil or ballpoint pen, as the pressure may
damage the diskette. The label will let you know that the diskette is
formatted for use with the Apple Pascal system, and you can distinguish
it from unformatted diskettes, BASIC diskettes, or diskettes for use
with other systems.

While you are at it, repeat this formatting process on all the new
diskettes that you want to use with the Apple Pascal System. With each
new diskette, place it in the disk drive, type 4 and press the RETURN
keys

your one-and-only disk drive is called "4". There’s
this, it“s just that the disk drive was assigned the
Spanish, is the word for window "ventana"? It just

You may wonder why
no good reason for
number 4. Why, in
happened that way.

154 APPLE PASCAL LANGUAGE

NN N W NN N W N W N WMWK KLYl

When you have finished formatting all your new diskettes, and have
written the word "Pascal" on each of them, answer the question

FORMAT WHICH DISK (4, 5, 9..12) ?
with a simple press of the key marked RETURN . You get the message

PUT SYSTEM DISK IN #4 AND PRESS RETURN

By "SYSTEM DISK" the Apple means "APPLE@:" (unless you stopped after
Step One of the startup procedure, and continued to use APPLEL: as your
system disk). By "#4" the Apple means the disk drive. Sometimes your
disk drive is called "DRIVE 4" and sometimes "#4:", but it”"s all the
same thing.

Do as it says, place the diskette marked APPLEY¥: in the disk drive (or,
as we say in Apple Pascal jargon, "Put APPLE®: in #4:") and press the
RETURN key.
The Apple says:

THAT®S ALL FOLKS...
And 41f you watch the top of the screen, the line:
COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D{EBUG,?

appears (of course, it doesn’t all appear; but you know it"s there, and
can check with CTRL-A).

MAKING THE ACTUAL COPIES

As you have seen, you can get into the Filer by typing F when you have

the COMMAND prompt line on the screen. You must have diskette APPLEL:

or diskette APPLE@: in the disk drive when you type F for the Filer, or
(if APPLE@: is your system diskette) you will get the message

NO FILE APPLE@:SYSTEM.FILER
If this happens, just put APPLE@: in the disk drive and type F again.
The Filer is that portion of the system that allows you to manipulate
information on diskettes. One of the Filer’s abilities is to transfer

information from one diskette to another. To invoke this facility, once
you have the FILER prompt line on the screen, type T for T(ransfer.

STARTING (ONE DRIVE] 155

B

This is what you see:

TRANSFER ?

Place diskette AFPLE3: into the disk drive and answer the question as
follows:

APPLE3:

which means that you want to transfer the entire contents of the source

diskette called APPLE3: . After you have specified which diskette’s
information you want transferred (and pressed the key marked RETURN),

the computer checks to make sure the correct diskette is in the disk

drive. If you have forgotten to put diskette APPLE3: in the drive,
then you will see the message

APPLE3:
HNO SUCH VOL ON=LINE <SOURCE>

In that case you must type T for Transfer again, and repeat the
process. With the correct source diskette in the drive, the Transfer
process continues and the computer asks the next obvious question: If
you are going to transfer something, then

TO WHERE ?

Answer this question by typing
BLANK:

This is the name of the destination diskette, onto which you want
APPLE3:"s information transferred. "BLANK:" is any of the diskettes
that you just formatted. When a diskette is formatted it is
automatically given the name BLANK: . Incidentally, those colons (:)
are very important. You use them to indicate that you are referring to
an entire diskette, and not just a part of one.

After you have told the computer where you want APPLE3: s information
transferred (and pressed the key marked RETURN)}, it says:

TRANSFER 28@ BLOCKS ? (Y/N)
This message is mainly there to give you a chance to abandon the
transfer if you made a typing error in the names of the source or the
destination diskettes. The phrase "28@ BLOCKS" means merely "THE WHOLE
DISKETITE". In any case, you type

b4
The disk whirrs and zicks a few times, and you see the message:

PUT IN BLANK:
TYPE <SPACE> TO CONTINUE

156 APPLE PASCAL LANGUAGE

M EEDEE MWW MW EWWENNWN W

Do as it says. By the colon, you know that it means to put the diskette
called BLANK: into the disk drive. The second line tells you to press
the space bar when the diskette is in place (and the door closed, of

course) s

All the information which is on diskette AFPLE3:, including the
diskette’s name, will be copied onto diskette BLANK:, completely
overwriting BLANK:. Therefore, the computer warns you that you are
ahout to lose any information that might be stored on BLANK:. Tt says

DESTROY BLANK: 7

Since you want to turn BLANK: into a perfect copy of APPLE3:, the answer
is

Y

The process is under way. The computer will tell you to first put in
one diskette and then the other. Follow the instructions. Your screen
will look like this after a while:

PUT APPLE3: IN UNIT #4
TYPE <SPACE> TO CONTINUE
PUT BLANK: IN UNIT #4
TYPE <SPACE> TO CONTINUE

PUT APPLE3: IN UNIT #4
TYPE <SPACE> TO CONTINUE

PUT BLANK: IN UNIT #4
TYPE <SPACE> TO CONTINUE
PUT APPLE3: IN UNIT #4
TYPE <SPACE> TO CONTINUE

PUT BLANK: IN UNIT #4
TYPE <SPACE> TO CONTINUE

PUT APPLE3: IN UNIT #4

TYPE <SPACE> TO CONTINUE

PUT BLANKE: IN UNIT #4

TYPE <SPACE> TO CONTINUE
and so on. You will have to insert the two diskettes a total of 2@
times, and press the spacebar 2(times, to copy the entire diskette.
When copying is done, the screen celebrates by saying

APPLE3: —=> BLANK:
By this cryptic remark, the computer is telling you that the contents of
APPLE3: , including the diskette”’s name, have been copied onto the
diskette that used to be called BLANK: . This is just what you wanted.
Now, writing lightly with a marking pen (do not use a pencil or a
ballpoint pen), write "APPLE3:" on the new diskette’s label. It is very

important to label diskettes immediately, so you know what information
they contain.

STARTING (ONE DRIVE) 157

DO IT AGAIN, SAM

You should, at this time, make sure that you have at least one backup
copy of each of the Pascal system diskettes: APPLE@:, APPLEl:, APPLE2:,
and APPLE3: . Then you should store the original diskettes away in a
safe place.

When you are through making backup copies, be sure to put APPLE@: (or
APPLEl: if you are using that as your system diskette) back into the
disk drive, BEFORE typing Q to Quit the Filer. If you forget to do
this, the system will stop responding to the keyboard after you type Q ;
you will have to turn the Apple off and repeat the entire startup
procedure.

USING THE SYSTEM

A DEMONSTRATION

At last, the reward for all your work to this point: you are finally
ready to use the Apple Pascal system to run a program. Diskette APPLE3:
contains several small "demonstration" programs. To see a list of those
programs, put APPLEf: in the disk drive and enter the Filer (by typing F
in response to the COMMAND prompt line, remember?). When the FILER
prompt line appears on the screen, put APPLE3: in the drive and type L
to List the diskette®s directory. The Filer says:

DIR LISTING OF 17

In response, type the name of the diskette whose directory you wish to
gee:

APPLE3:

When you press the RETURN key, a long list of program files appears on
the screen, many of them both in their .TEXT versions (the form in which
they are written and edited) and also in their compiled .CODE versions
{(the form in which they can be executed). When the screem is full, the
display stops and the message

TYPE <SPACE> TO CONTINUE

appears at the top of the screen. Press the Apple”s spacebar to see the
remaining files. For now, we are interested in the file named
GRAFDEMO.CODE . But before executing this program, you must Transfer it
to your system diskette, APPLE@: (most graphics programs must use
routines from the "system library", a file on APPLE@: and also on
APPLEL:). In response to the FILER prompt line, type

T

158 APPLE PASCAL LANGUAGE

i1

__..._..._,.._.,..__
KU L "

A A

gEEEARAMEA M AN W
i\ n

The Filer says

TRANSFER 7
Answer the question as follows:
APPLE3}:GRAFDEMO.CODE

which means you want to transfer only the file named GRAFDEMO.CODE from
the source diskette named APPLE3: . The Filer checks to see that
APPLE3: is in the disk drive, and that it contains a file named
GRAFDEMO.CODE, and then asks

TO WHERE ?

You know that you want a copy of the file GRAFDEMO.CODE transferred to
the destination diskette APPLE@: . To avoid confusion, let”s give this
copied file the same name when it is transferred to APPLE@: . To do
this, answer the question by typing

APPLEW: GRAFDEMD .CODE

Note: you MUST specify a name for the file on the destination diskette.
1f you forget to type a file name, the Filer thinks you are referring to
the entire diskette, and asks

DESTROY APPLE@: ?
Since you do not wish to destroy AFPLE@: , type
N

Now, if you have typed all of your responses correctly, a new display
appears:

PUT IN APPLE@:
TYPE <SPACE> TO CONTINUE

Follow the directions, putting APPLE@: in the disk drive and pressing
the Apple’s spacebar. You are soon rewarded with the message

APPLE3 : GRAFDEMO.CODE
==> APPLE@:GRAFDEMO.CODE

This tells you that a copy of the file GRAFDEMO.CODE on diskette AFPLE3;
has been successfully transferred to a file named GRAFDEMO.CODE on
diskette APPLE@: . Since the system diskette APPLE@: is already in the
disk drive, you may now safely type (to Quit the Filer. When the
COMMAND prompt line appears, type X for X(ecute. The Apple says

EXECUTE WHAT FILE?

STARTING [ONE DRIVE) 459

i s |

Answer by typing the name of the file you just transferred to APPLE@:
APPLE{ : GRAFDEMO

Note: DO NOT type the suffix .CODE ; the system knows you can execute
only a code file, so it automatically supplies the suffix .CODE for you,

in additiom to any name that you type.

When this message appears:

PRESS ANY KEY TO QUIT.

PLEASE WAIT WHILE CREATING BUTTERFLY
the program is running. After a short pause, the display begins. Just
sit back and enjoy it: soon you’ll be writing your own programs
yourself. When you are tired of watching, press the spacebar on the
Apple“s keyboard to return to the COMMAND prompt lime. You can use this
same procedure to run any of the programs on APPLE3: . These programs
and their purposes are described in the Appendix A.

DO IT YOURSELF

Now, for some more experience at using the Apple Pascal system, let’s
try writing a little programs This discussion will assume that you are
using your new copy of APPLE@: as your system diskerre (or '"boot
diskette" as it is often called). This copy is not write-protected and
you have never used the Editor to create any new files on it before
(it"s all right if you have added the file GRAFDEMO.CODE to it).

With the COMMAND prompt line showing, and with APPLE@: in the disk
drive, type E to select the E(dit option. Soon, this message appears:

>EDIT:
NO WORKFILE IS PHESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)}

As usual, you must use CTRL-A to see the right half of the message.

This message gives you some information and some choices. The first
word, »EDIT: , tells you that you are now in the Editor. The next
sentence, N0 WORKFILE IS PRESENT , tells you that you have not yet used
the Editor to create a "workfile", which is a "scratchpad" diskette copy
of a program you are working on. If there had been a workfile om
APPLE@: , that file would have been read into the Editor automatically.

Since there was no workfile to read in, the Editor asks you, FILE? If
you now typed the name of a .TEXT file stored on APPLE@:, that textfile
would be read into the Editor. However, there are no .TEXT files on
APPLE@: yet, and besides, you want to write a new program. In
parentheses, you are shown how to say that you don”t want to read in an
old file: <RET> FOR NO FILE . This means that, if you press the Apple’s
RETURN key, no file will be read in and you can start a new file of your
own. That’s just what you want to do, so press the Apple’s RETURN key

160 APPLE PASCAL LANGUAGE

NN N W W N W W N L WO W W R LWLl

(the rest of the message says if you first press the ESC key and THEN
press the RETUBN key, you’ll be sent back to the COMMAND prompt line).
When you have pressed only the RETURN key, the full EDIT prompt line

appears:

SEDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

The chapter called THE EDITOR in the Apple Pascal Operating System
Manual explains all of these command options in detail; for now you will
only need a few of them. The first one you will use is I(NSRT , which

selects the Editor”s mode for inserting new text. Type I to select
Insert mode, and this prompt line appears:

»>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS,<ESC> ESCAPES]
As long as this line is showing at the top of the screen, anything you
type will be placed on the screen, just to the left of the white square
"eursor". If the cursor is in the middle of a line, the rest of the
line is pushed over to make room for the new text. If you make a
mistake, just use the left-arrow key to backspace over the error, and
then retype. At any time during an insertion, if you press the Apple’s
ESC key your insertion will be erased. At any time during an insertionm,
if you press CTRL-C the insertion will be made a permanent part of your
file, safe from being erased by ESC or by the left-arrow key. You can
then type I to reenter Insert mode and type more Cext.

Now for our program. With the INSERT prompt line showing, press the
RETURN key a couple of times, to move the cursor down, and then type

PRORAFM DEMO;

You can use any name for your program, but in this discussion it will be
called DEMO . Now press CIRL-C (type C while holding down the CTRL
key). Your insertion so far is made "permanent”, and the EDIT prompt
line reappears. But, horrors! You made several typing errors when
typing the word PROGRAM . Since you have already pressed CTRL-C , it is
too late to backspace over your errors and retype them.

Fortunately, there are other ways. First, let’s correct the missing G
in PROGRAM . Using the left arrow key, move the cursor left until it is
sitting directly on the R « Then type I to reenter Insert mode. Ignore
the fact that the remainder of the line seems to have suddenly
disappeared, and type the missing letter G . When you press CTRL-C to
make this insertion permanent, the rest of the line returns:

PROGEAFM DEMO;

The letter F is certainly not needed, so move the cursor right (using
the right-arrow key) until it is sitting directly on the F . Now type D
to select the Editor‘s D(LETE option. When the DELETE prompt line
appears, press the right-arrow key once. The offending F instantly
disappears. What happens next is similar to Insert mode: 1if you press
the ESC key, the deletion is forgotten, as if it had never happened. If
you press CTRL-C , the deletion is made a permanent part of your

STARTING [ONE DRIVE) 161

file. To remove that F permanently, press CTRL-C .
to £i1l the deleted letter®s place:

The line closes in

PROGRAM DEMO;

Now you know how to use the Editor”s Insert and Delete modes to write
text and to correct your errors. Try typing the rest of program DEMO
into your file. Be sure to "accept" your insertions, from time to time,
by pressing CTRL-C . That way, you minimize your loss if you
accidentally press the ESC key. Here is the complete program:

PROGRAM DEMO;

USES TURTLEGRAPHICS, APPLESTUFF;
VAR ANGLE, DISTANCE : INTEGER;

PROCEDURE CRAWL;

BEGIN
MOVE (2 * DISTANCE);
TURN (ANGLE)
END;
BEGIN
ANGLE := @;
REPEAT
INITTURTLE;

PENCOLOR (WHITE);
FOR DISTANCE := 1 TO 99 DO CRAWL;
ANGLE := ANGLE + 5
UNTIL KEYPRESS;
TEXTMODE
END.

When you are typing this program, the punctuation and spelling must be

exactly as shown. The indentation of the lines is not important, but it
easier to read as shown. You will notice that, once you have started a
new indentation, the Editor maintains that indentation for you. To move

back to the left, just press the left—-arrow key before you type anything
on the new line.

Program DEMO makes use of graphics routines in the Unit TURTLEGRAPHICS,
and uses the keypress function from the Unit APPLESTUFF (see Chapter 7
for more details). The third line of the program declares two integer
variables, DISTANCE and ANGLE. MNext, a Pascal procedure named CRAWL is
defined, between the first BEGIN and END; . From here on, each time
this new Pascal statement CRAWL is used, a graphics "turtle" will trace
a line on the screen, of length 2*DISTANCE moving in the current
direction, and will then change the direction by an amount ANGLE.

The next BEGIN and the last END. outline the main program. The portion

of the program from REPEAT to UNTIL KEYPRESS is repeated over and over
again, until any key on the Apple’s keyboard is pressed.

162 APPLE PASCAL LANGUAGE

mmmeENMmMmWEWTMETMMWMENENENNENNYTNNNNMN

e e e e e e e — i — i — i — . — | — i — i — i — N — i S— —

WA N W N R W W N W W oR W W R W W WW WL W

In each repetition, the screen is cleared and the tracing color is set
to WHITE. Then the procedure CRAWL is performed, first with the value
of DISTANCE set to one, then with DISTANCE set to the value two, and so
on, until DISTANCE is set to 99 . The "turtle" moves, then turns, then
moves some more, then turns again, and so on, for 99 steps. That
completes one design on the screen. In the next reperition, if no key
has been pressed, the ANGLE has increased by 5 degrees, the screen is
cleared by INITTURTLE, and the whole process starts again.

Now you should save this program.
type Q to select the Q(UIT option.

With the EDIT prompt line showing,
The following message appears:

>QUIT:
U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W{RITE TO A FILE NAME AND RETURN

Type U to create a "workfile" diskette copy of your program (future

versions of this file will be "Updates"). This workfile is a file on
your boot diskette called SYSTEM.WRK.TEXT . The Apple says

WRITING: ««
YOUR FILE IS 33¢ BYTES LONG.

(the number of bytes may be a little different) and then the COMMAND
prompt line reappears. Now type R to select the R{UN option. This
automatically calls the Compiler for you, since the workfile contains
texts If you have typed the program perfectly, the following messages
(again, perhaps with slightly different numbers) appear, one by one:

COMPILING:« =

PASCAL COMPILER II.l1 [B2B]

< [PR

TURTLEGR [2483 WORDS]

< SSanassnssssbssssviannnasss
APPLESTU [178 WORDS]

€ MEeisevavesssssssnes

CRAWL [1998 WORDS]
(46}- LE N
DEMO [11@9 WORDS]

< 51)----1-01
59 LINES
SMALLEST AVAILABLE SPACE = 1@98 WORDS

1f the Compiler discovers mistakes, it will give you a message such as

PROFRAM <<<<
LINE 2, ERROR 18: <SP>(CONTINUE), <ESC>{TERMINATE), E(DIT

Don’t despair; just type E for E(DIT .
automatically read back into the Editor for repairs.

Your workfile will be
Read the error

STARTING (ONE DRIVE] 163

message at the top of the screen, press the spacebar, and make any
necessary changes using I(nsert and D(elete. Then Q{uit, U(pdate the
workfile, and R{un your program again, by typing Q U R (the Apple will
store up several commands in advance).

When your program has been successfully Compiled, it is automatically
executed. You will see the message

RUNNING« «

and then a horizontal line appears on the screen. That is the first
design your program draws: the white "turtle" moves out a distance 2%|
turns an angle @ ; moves 2%2 , turns ¢ ; moves 2*3 , turns § ; etc.
Keep watching as successive designs turn through larger and larger
angles between moves. When you want to interrupt the program, press any
key on the keyboard.

Try making changes to the program, by setting a different starting
ANGLE, or a different increment to the ANGLE, or a different distance to
MOVE. To do this, type E for E{DIT, use I(NSRT and D(LETE to make
changes, and then Q(uit, U(pdate the workfile, and R(un again by typing
QUR . This cycle of Edit-Run-Edit-Run is the basis of all program
development in the Apple Pascal system.

The workfile on APPLE@: now contains the text version of your program in
a file named SYSTEM.WRK.TEXT , and the compiled P-code version of your
program in another file named SYSTEM.WRK.CODE . When your program is
running as you want it to, you should save the text and code workfile
under other filenames. With the COMMAND prompt line showing, type F to
enter the Filer. When the FILER prompt line appears, type S for S(ave.
You will be asked

SAVE A5 7

and you should respond by typing any filename with fewer than 19
characters. For example, you might type

DEMO

This changes the names of the workfile from SYSTEM.WRK.TEXT to DEMO.TEXT
» and from SYSTEM.WRK.CODE to DEMO.CODE . If you want to keep a
permanent copy of your program on another diskette, you should now use
the T(ransfer command to transfer DEMO.TEXT and DEMO.CODE, one at a
time, to the other diskette. Remember to wait for the prompt message
before removing the source diskette from the drive and putting in the
destination diskette.

WHAT TO LEAVE IN THE DRIVE

When you turn the Apple off, it is a good idea to leave the diskette
called APPLELl: in the disk drive. If some other diskette or no diskette
is in the drive when the Apple is turned on, the drive will spin

164 APPLE PASCAL LANGUAGE

mwmeEREMMMEPEWRPERNNENNNENNENENNMNMN

MW

AN A N N AW W ON R W W WO W WW Ll Wi

indefinitely. If this continues for hours and hours, some wear will
take place on the drive and any diskette in it. So, it is a pgood idea
to make a habit of leaving a copy of APPLEl: (now that you have copies)
in the disk drive when you turn the system off. (APPLE@: will not do,
as it is missing a file that is needed for the first stage of system

startup.)

of course, if you turn on the system and APPLEl: is not in the drive,
just press the key marked RESET . Place APPLEl: in the drive and turn
the system off and then on again. No damage results from turning on the
Apple with the wrong diskette (or no diskette) in the drive. Gradual,
unnecessary wear results from leaving the disk drive running for a long

period of time with the incorrect diskette (or no diskette) in the
drive.

ONE-DRIVE SUMMARY

STARTING UP THE SYSTEM

To start the system, place diskette AFPPLEl: in the disk drive; then turn
on the Apple’s power. When the "WELCOME" message appears, Pascal is
running. Using APPLEl: as the system diskette, you can file, edit, and
execute previously compiled programs; but you cannot compile new
programs. To change system diskettes, place AFPLE®: in the drive; then
press the Apple’s RESET key. Again, when the "WELCOME" message =ppears,
Pascal is running. Using APPLE@: as the system diskerte, you can file,
edit, compile, and execute programs; but you cannot start up the system
from power-on.

FORMATTING NEW DISKETTES

To format a diskette, have Pascal’s COMMAND prompt line showing.
Place diskette APPLE3: in the disk drive, and type
X
In response to the query:
EXECUTE WHAT FILE?
type
APPLE3: FORMATTER
When the question:
FORMAT WHICH DISK ?
appears, place the new diskette in the disk drive, then type
4

and press the RETURN key. The diskette will be formatted. To leave
the formatting program, press the RETURN key in response to the WHICH
DISK question. A newly formatted diskette has the name BLANK:

STARTING (ONE DRIVE] 165

COPYING DISKETTES

To copy a diskette, have the COMMAND prompt line showing, and put
diskette APPLE@: or APPLELl: in the disk drive. Get into the Filer
by typing

When the FILER prompt line appears, put into the disk drive the source
diskette to be copied. Then type

T
To the question:

TRANSFER ?
reply by typing the name of the source diskette to be copied, and then
press the RETURN key. For example:

APPLE3:
To the next question:

TO WHERE 7
reply with the name of the destination diskette that is to become the
backup copy. For example:

BLANK:
Then follow the instructions displayed on the screen, switching the
diskettes back and forth until the copy is complete. Before you Quit
the Filer, be sure to put your system diskette (usually APPLE{@:) back
in the drive.

Note: you cannot make a copy onto a destination diskette that has the
same name as the source diskerte. Use the Filer to C(hange the name
of either diskette, at least while making the copy.

EXECUTING A PROGRAM

To execute a previously compiled program, put your system diskette
(APPLE@: or APPLEl:) into the disk drive. With the COMMAND prompt
line showing, enter the Filer by typing

F

When the FILER prompt line appears, put into the disk drive the
diskette containing the program codefile that you wish to execute.
Then type

T
for T(ransfer. To the question

TRANSFER 7
reply by typing the name of the program”s diskette and codefile. For
example,

APPLE3 : GRAFDEMO.CODE
To the next question

TO WHERE ?
reply with the name of your system diskette, and the same filename (or
another name, if you wish). For example,

APPLE@: GRAFDEMO.CODE
When you are prompted

PUT IN APPLE@:
follow the instructions, and press the spacebar. The program is then
transferred onto your system diskette, which is where it must be in

166 APPLE PASCAL LANGUAGE

mF FMEmME R MWW NN R NNENNNDNMN
I_-_——-I—--—l—_-l-—-——_A—_-_—._-_-—-_-_-_—-—-—-c——-_-_q_q_

o oW e b o a

a

U VYV R I TV R TR TR

W oN oa Wow

|

Now type (to Quit the Filer, and when the
When the Apple prompts

order to execute it.
COMMAND prompt appears, type X for X({ecute.
EXECUTE WHAT FILE?
answer by typing the name of your system diskette and the newly
transferred codefile you wish to have executed. DO NOT type the .CODE
suffix. In this example, you would type
APPLE@: GRAFDEMO
The program should now run.

WRITING A PROGRAM

To start a new file in the Editor, put your system diskette {which
must be APPLE@: if you want to R(un your program) into the disk

drive. With the COMMAND prompt line showing, type F to enter the
Filer. Then type N for N{ew. If you are asked
THROW AWAY CURRENT WORKFILE 7
type Y for Y(es. When you see the message
WORKFILE CLEARED
type Q to Q(uit the Filer, and then type E to enter the Editor.

This message appears:

>EDLT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC=RET> TO EXIT)

Press the RETURN key, and the full EDIT: prompt line appears. You can
aow insert text at the cursor position by typing I for I(nmsert and
then typing your program. Conclude each insertion by pressing CTRL-C.
Delete text at the cursor position by typing D for D(elete and then
moving the cursor to erase text. Conclude each deletion by pressing
CTRL-C . When you have written a version of your program, type Q to
((uit the Editor, and then type U to U(pdate the workfile to contain
your latest program version.

With the COMMAND prompt line showing, you can then type R fto R{un
your program. This automatically compiles the text workfile (using
the Compiler program on APPLEQ@:), stores the compiled code workfile,
and executes it. To reenter the Editor, type E in response to the
COMMAND prompt. The text workfile is automatically read back into the
computers

When a version of your program is complete, you can U(pdate the text
workfile to contain that latest version and R(un the program to create
a code workfile of that version. To save the workfile versions of
your program on another diskette for later use, first save the
workfile under another mame on your system diskette (APPLE@:). Type
F in response to the COMMAND prompt to enter the Filer. Then type 35
for S{ave. When you see the prompt

SAVE AS 7
type the name of your system diskette and the filename under which you
want your program saved. Do not type any .TEXT or .CODE suffix. For
example, if you want your program saved under the filename DEMO , you
might type

: DEMO

The text wggikfgeDSYSTEH.HRK.TEXT is saved as DEMO.TEXT on AFPLE@:,

STARTING (ONE DRIVE] 167

and the code workfile SYSTEM.WRK.CODE is saved as DEMO.CODE .

Now you can T(ransfer those files to any other diskette, for safe
keeping. Type

T
and when the Filer asks

TRANSFER 7
give the name of one of the S{aved files on your system diskette. 1In
the previous example, you could type APPLE@:DEMO.TEXT To the next
question TO WHERE ? reply by typing the name of the diskette and file
where you wish your program file to be stored. For example, you
might type MYDISK:DEMO.TEXT The Apple will prompt you when it is time
to put the destination diskette in the drive. When the text version
of your program has been transferred onto the destination diskette,
put your system diskette back in the drive. MNow, type T for
T(ransfer again, and transfer the code version of your program to the

destination diskette in the same way you transferred the text
version.

Remember to put APPLE@: back in the disk drive before Q(uitting the
Filer.

168 APPLE PASCAL LANGUAGE

s APPENDIX E
== TWO-DRIVE STARTUP

|

gmEE TR REMW

This appendix is a tutorial session to get you started using the

Language System with Pascal, on an Apple II with two or more diskette
drives. 1If your system has only one diskette drive, please go back and
read Appendix D instead.

EQUIPMENT YOU WILL NEED

You should have the following:

l. Your 48K Apple computer, with a Language Card installed, and at
least two disk drives. The first two should be attached to a disk

controller card in slot 6. All your disk controller cards should have
the new PROMs, P54 and P6A, that came with the Language System.

2. A TV set or video monitor, connected to your Apple.
3. The following Language System diskettes:

ds &PPLEI:

b. APPLE2:

c« APPLE3:

d« A blank diskette

€. A second blank diskette

The diskette marked "APPLEl:" is needed to start the system. The
diskette marked “APPLE2:" adds certain extra
Compiler, the Assembler, and the Linker). You will not need the
diskette marked "APPLE2:" until later. The diskette marked "APPLE3:"
contains a number of useful utility programs. A diskette marked

"APPLE@:" is also included with the Language System. This diskette is
normally used with single-drive systems.

features to the system (the

The Apple and the TV or monitor should be plugged in. Turn on the TV
now, so that it can warm up; but leave the Apple turned off.

MORE THAN TWO DISK DRIVES

Lf your system has more
connected to the "DRIVE
slot 5. A fourth drive
controller, in slot 5.
to a controller in slot
respectively.

than two disk drives, the third drive gets

I" pins on the second controller, which goes in
is connected to the "DRIVE 2" pins on the second
4 Eifth and even a sixth drive can be connected

4, using the "DRIVE 1" and "DRIVE 2" pins,

170 APPLE PASCAL LANGUAGE

e — e e e e e e e e e e e B e e e e = e e E— e — S— e e S S S — — — - —

W W oW A

AW W ol W W W e

A U Ut Ut \

\\

NUMBERING THE DISK DRIVES

Pascal assigns a "volume" number to each of the disk drives.
a bad idea to place tags with these numbers on your disk drives.
how the volume numbers are assigned to the various disk drives:

It is not
Here’s

APPLE PASCAL

DISK DRIVE VOLUME
Slot 6, Drive 1 #4:
Slot 6, Drive 2 #5:
Slot 5, Drive 1 #11:
Slot 5, Drive 2 #12:
S5lot &, Drive 1 #9:
Slot &4, Drive 2 #1g:

You will find that you can refer to any diskette by either the name of
the diskette (e.g., APPLE3:) or by the volume number of the drive in
which it sits (e.g., #llz)

PASCAL IN SECONDS

Place the diskette marked "APPLEL:" in disk drive #4: (slot 6, drive

1) If you are not familiar with handling diskettes, see the manuals
that came with your disk drives. Diskettes must be treated correctly if
they are to lasts

Close the door to disk drive #4:
automatic. PFirst; the message

» and turn on the Apple. The rest is

APPLE IT

appears at the top of your TV or monitor screen, and disk drive #4:"s
"IN USE" light comes on. The disk drive emits a whirring, zickking
sound that is as pleasant as a cat’s purring, since it lets you know
that everything is working. The screen lights up for an instant with a
display of black ar-signs (@) on a white background, then goes black
again. Next the other disk drives are turned on, one at a time, as
Apple Pascal finds out what is in each drive. A drive with no diskette
in it may buzz and clatter a bit. When Apple Pascal cannot read
anything from a disk drive, it recalibrates the drive’s read-head

STARTING (TWO OR MORE DRIVES] 17

position (buzz, clatter) and then tries again.

Row disk drive #4: stops
entirely for a moment; then it whirrs some more.

Finally, the message

WELCOME APPLEL, TO

U.C.S.D. PASCAL SYSTEM II.1
CURRENT DATE IS 26-JUL=79

appears (the date will be different), followed in a second or so by a
line at the top of the screen:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

This line at the top of the screen is called a "prompt line".

see this prompt line, you
Apple Pascal system.

When you
know that your Apple computer is running the

Starting the system depends only on having APPLEl: in disk drive #4:.
This time, you left the other drives empty; but you will soon discover
that the system starts more quickly and quietly if the other drives have
Pascal diskettes in them. For now, you could put diskettes APPLE2?: and
APPLE3: in any empty disk drives. Later, you will have other diskettes
to put in them. In any case, make sure you never put two diskectes with
the same name into the system at the same time. This may cause the
directories of those diskettes to get scrambled.

CHANGING THE DATE

The date that comes on the diskette will mot be correct.
habit to reset the date the first time you use the Pascal System on any
given day. It only takes a few seconds. Press F on the keyboard
(without pressing the RETURN key or any other keys). The screen goes
blank, and then this line appears at the top:

It 18 a good

FILER: G, S, N, L, R, C, T, D, Q

This is a new prompt line. Prompt lines are named after their first
word. The prompt line you first saw was the "COMMAND" prompt line.

This one is the "FILER" prompt line. Sometimes we say that you are "in
the Filer" when this line is at the top of the screen. Each of the
letters on the prompt line represents a task that you can ask the Apple
to do. Fer example, to change the date, press D (again, just type the
single key, without pressing RETURN or any other keys}.

When you do, another message is put on the screen. It says:
DATE SET: <l..31>=<JAN..DEC>-<{i@}..99>

TODAY 1S 26-JUL-79

NEW DATE 7?7

It doesn”t really mean that today is 26-JUL-79 (or whatever date your
screen shows), but that the Apple THINKS that is today’s date. Since it
isn"t, you can change the date to be correct. The correct form for

172 APPLE PASCAL LANGUAGE

B e et e — e m— i — i —— i — — — . — i — i p— i —

AN RN WA R W W R W W W W W N W W oW w WA

typing the date is shown on the second line of the message: one or two

minus sign, followed
ing the day of the month, followed by a :
g;gtﬁz %iEs?sthree letters of the name of the month, followed by another

minus sign, followed by the last two digits of the curremt year. Then
press the key marked RETURN .

year are correct (as they will often be, when you

all you have to do is type the correct day of the

the RETURN key. The system will assume that you mean
month and year displayed by the message. If you type a
the system will assume you mean to keep only the year

1f the month and
change the date)
month, and press
to keep the same
day and a mnth,
the same.

Go ahead and make the date correct. This is your first interaction with
the system, and is typical of how the system is used. In general, at
the top of the screen there will usually be a prompt linefuhichl :
represents several choices of action. When you type the first letter o
one of the choices, either you will be shown a new prompt line giving a
further list of chofces, or else the system will carry out theddzsirei

letter that does not correspond to on
2§tt§2 gﬁzizzif'th:fpﬁsipfyﬁin: blinks but otherwise nothing happens.
Remember to type only a single letter to indicate your choice; it is not
necessary to press the RETURN key afterward.

Sometimes, as when setting the date, you are asked to type a response of
several characters. You tell the system that your response is complete
by pressing the RETURN key. 1If you make a typing error before pressing
the RETURN key, you can back up and correct the error by pressing the
left-arrow key. You should experiment by making deliberate errors in
entering a date, and then erasing the errors with the left-arrow key.

One further note. Normally, your new date is saved on diskette APPLEl:,
so the system "remembers" this date the next time you turn the Apple

on. However, since you are using the write-protected diskettes that
came with your Language System, your new date was not permanently

saved. The next time you turn the Apple off, the new date will be
"forgotten". By the end of this session, you will have made backup
copies of the Language System diskettes. From then on, you will use
these copies, which are not write-protected, and your date changes will
be saved.

MAKING BACKUP DISKETTE COPIES

WHY WE MAKE BACKUPS

Ask yourself this question: What would happen to your system if you were
to lose or damage one of the system diskettes (APPLEl:, APPLE2:, or
APPLE3:)? It would be as bad as losing your Apple itself, as far as
your being able to use Apple Pascal.

STARTING (TWO OR MORE DRIVES] 173

T

These diskettes are quite precious. The first thing you should do,
therefore, is to make backup copies of them. Afterward, you should
never use the originals, but put them someplace where the temperature is
moderate, where there is no danger of them getting wet, and where such

diskette destroyers as dogs, dirt, children, and magnetic fields cannot
get at them.

A truly cautious person will keep on hand two backup copies of each
original. That way, you will need to use an original only in the very
rare case when both of its backup copies are lost (when one copy is lost
or damaged, another backup copy is made from the surviving backup

copy). If your backups were damaged or erased while in use, find out
why they were destroyed before inserting your only surviving copy.

Using diskettes for which you have backups, repeat the procedure that
destroyed the first diskettes, and if you can’t figure out what the

problem is, bring your system to the dealer to make sure it is working
correctly.

HOW WE MAKE BACKUPS

The Pascal system can copy all the information from one diskette (or any
portion of the information) onto another diskette. But the system
cannot store information on a new diskette, just as that diskette comes

from the computer store. Therefore, the system is supplied with a
program that allows you to take any 5-inch floppy diskette and "format"

it so that it will work with the Apple Pascal system.

Incidentally, this is one of the nice little things about the Apple
system: ANY high-quality 5-inch floppy diskette (Apple recommends
diskertes made by Dysan Corporation) will work on it. Some systems
require you to have "1§ sector" or "15 sector" or "soft sectored"
diskettes. The Apple doesn’t care, it takes any of these kinds of

diskettes, and (through the FORMATTER program) makes them into the kind
of diskerte it needs.

If you have been following this session by carrying out the instructions
on your Apple, the FILER prompt line should be showing at the top of the
screens

FILER: G, S, N, L, R, C, T, D, Q

Type § on the keyboard to Quit the Filer.

GETTING THE BIG PICTURE

When you Quit the Filer, disk drive #4: whirrs, and you see the COMMAND
prompt line again:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

174 APPLE PASCAL LANGUAGE

i

A OA N W OW R W W oR R W W W e o W o W W W W oW

There is actually more of this prompt line, off to the right of your TV

or monitor. To see the rest of the screem, hold down the key marked

CTRL and, while holding it, press the "A" right alongside it. (Or, to
be brief, we say: "press CTRL-A".)
You now see
K, X(ECUTE, A(SSEM, D(EBUG,?
This is simply the rest of the line that began "COMMAND:". All

together, the full prompt line would look like this:
COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG,?

is 8@
4

The Apple Pascal system displays information om a "'screen" that
characters wide, but your TV or monitor shows only the leftmost

characters or the rightmost 4@ characters at any one time. You use the
CTRL-A trick whenever you wish to see if there is more stuff on the

other "half" of the screen. Repeated pressing of CIRL-A flips back and
forth between the left half of the screem and the right half.

Also, sometimes the TV display will seem to be blank. This might mean
that you are just staring at the empty right half of the screen. Before
you come to the conclusion that something is wrong, always try CTRL-A.
You get back to the left side of the screen by typing CTRL-A again, and
you might find that everything is OK after all.

Summary of this diversion: The screen is really twice as wide as it

looks. To flip from the left side to the right side or back again, you
type CTRL=A.

FORMATTING NEW DISKETTES

Place diskette APPLE3: in any available disk drive except drive #4: .
This has to be done because the FORMATTER program is on APPLE3:. Now,
with the COMMAND prompt line at the top of the screen, type

X
and the screen responds:

EXECUTE WHAT FILE?
You type

APPLE3: FORMATTER

and press the key marked RETURN .

STARTING (TWO OR MORE DRIVES] 175

The disk drive containing APPLE3: whirrs a bit and the screen says:

APPLE DISK FORMATTER PROGRAM
FORMAT WHICH DISK (4, 5, 9..12) ?

Take all the new, blank diskettes that you are going to use with the
Pascal System (but not, of course, any diskettes that have precious

information on them, such as the diskettes that came with the Pascal
System) and place them in a pile. Their labels should be blank. Make
sure that you don’t have any diskettes with data in a non-Pascal format,
such as BASIC diskettes: the Pascal system will be unable to read them,
and will regard them as blank, erasing any old information in the
formatting process.

Remove the diskette in disk drive #5: (if yours is a two-drive system,

you will be removing diskette APPLE3:)} and put one of the new, blank
diskettes into that drive. Then type

5

and press the key marked RETURN .

1f the diskette in drive #5: has already been formatted, you will

receive a warning. For example, if you have left APPLE3: in that drive ' sl

you will be warned with the message

DESTROY DIRECTORY OF APPLE3 ?
At this point you can type

N

(which stands for "No") without pressing the RETURN key, and your
diskette will not be destroyed. Let”s assume that you have a new,

unformatted diskette. Then you will not get any warning, but the Apple
will place this message on the screen:

NOW FORMATTING DISKETTE IN DRIVE 5

Disk drive #5: will make some clickings and buzzings and begin to whirr
and zick. The process takes about 32 seconds. When formatting is
complete, the screen again shows the message

FORMAT WHICH DISK (4, 5, 9..12) ?

Now you have a formatted diskette. We suggest that you write "Pascal"
in small letters at the top of the diskette’s label, using a marking
pen. Do not use a pencil or ballpoint pen, as the pressure of writing
may damage the diskette. The label will let you know that the diskette
is formatted for use with the Apple Pascal system, and you can
distinguish it from unformatted diskettes, BASIC diskettes, or diskettes
for use with other systems.

176 APPLE PASCAL LANGUAGE

i

i

f—r—
Wk

M

-

| N &

gyl

(RN NN RN NN
W

-

|

n

11 the new

le you are at it, repeat this formatting process on a

jgik:ties that you ;ant to use with the Apple Pascal System. With each
new diskette, place it in drive #5: , type 5 and press the RETURN

key.

Note: If you have more than two drives, you can simplify the procedure
by putting the next diskette to be formatted into any unoccupied drive.

Then, when the system asks

FORMAT WHICH DISK (4, 5, 9..12) 1

just type the correct volume number of the drive containing your new,
blank diskette, and then press the RETURN key. This will save you some

diskette-swapping.

When you have finished formatting all your new diskettes, and have
written the word "Pascal™ on each of them, answer the question

FORMAT WHICH DISK (4, 5, 9..12) ?

with a simple press of the key marked RETURN . You get the message
THAT”'S ALL FOLKS...

And if you watch the top of the screen, the line

COMMAND: E(DIT, R(UM, F(ILE, C(OMP, L{INK, X(ECUTE, A(SSEM, D(EBUG,?

appears (of course, it doesn’t all appear; but you know it“s there, and
can check with CTRL-A).

MAKING THE ACTUAL COPIES

As you have seen, you can get into the Filer by typing F when you have
the COMMAND prompt line on the screen. You must have diskette APPLEL:

or diskette APPLE@: in one of the disk drives when you type F to enter
the Filer. If you forget {and APPLEl: is your system diskette), you

will get the message
NO FILE APPLEL:SYSTEM.FILER
If this happens, just put APPLEl: in any drive and type F again.

The Filer is that portion of the system which allows you to manipulate
information on diskettes. One of the Filer‘s abilities is to transfer
information from one diskette to another. To invoke this facility, once
you have the FILER prompt line on the screen, type T for T(ransfer.

This is what you see:

TRANSFER 7

STARTING (TWO OR MORE DRIVES) 177

Let”s say that you want to make a backup copy of diskette APPLE3:
copying APPLE3: onto one of your newly formatted diskettes. Put
APPLE3: into any available disk drive, and put a newly formatted
diskette into any other drive. If your system has only two drives, you
will have to remove diskette APPLEl: from drive #4: . Once the FILER
prompt line is showing, APPLEl: is no longer needed until you wish to
Quit the Filer and return to the COMMAND prompt line. Now, answer the
question by typing the name of the source diskette to be copied:

-by

APFLE3:

When you press the RETURN key, the computer checks to see that diskette
APPLE3: is in one of the disk drives. If it is not, you will see the
message

APPLE3:
NO SUCH VOL ON-LINE <SOURCE>

In that case, just put APPLE3: in a disk drive and type T for Transfer

again. If the computer succeeds in finding APPLE3:, it asks you the
next obvious question: If you are going to transfer something, then

TO WHERE ?

Answer this question by typing the name of the diskette that is to
become an exact backup copy of APPLE3:

BLANK:

Remember that BLANK: is the name given to all newly formatted diskettes
by the FORMATTER program. The colons (:) that appear after the

diskette names are quite significant: they indicate that the entire
diskette is being referred to.

After you have told the computer where you want APPLE3:’s information
transferred (and pressed the key marked "RETURN"), it checks to see that
BLANK: is also in one of the disk drives. If it is not, you will see
the message

PUT IN BLANK:
TYPE <SPACE> TO CONTINUE

In that case, put BLANK: into any disk drive except the one containing

APPLE3:, and press the Apple’s spacebar. When the computer succeeds in
finding both the source and the destination diskettes, it s8ays

TRANSFER 28§ BLOCKS ? (Y/N)

This message {s mainly there to give you a chance to abandon the
transfer if you made a typing error in the names of the source or the

destination diskettes. The phrase "280 BLOCKS" means merely "THE WHOLE
DISKETTE". In any case, you type

Y

178 APPLE PASCAL LANGUAGE

mmmmEmmmmmemmEmMmMmMMmMMWMMWMNENNENNTNDPNNDNNN

U e — e e . — — . — - —

NONON W A AN W oW W oW oW W oWl W W W e e W oa

All the information on diskette APPLE3:, including the diskette's'name.
will be copied onto diskette BLANK:, completely overwriting BLANK:.
Therefore, the computer warns you that you are about to lose any
information that might be stored on BLANK:. It says

DESTROY BLANK: 7

Since you want to turn BLANK: into a perfect copy of APPLE3:, the
answer 1is

h 4

The process is under way. It takes about two minutes to copy and check
the entire diskette. When copying is done the screen celebrates by
saying:

APPLE3: =-=> BLANK:
by which cryptic remark the computer is telling you that the contents of

APPLE3:, including the diskette’s name, have been copied onto the
diskette that used to be called BLANK:. This is just what you wanted.

There are now two diskettes with the same name, both in the system at
This is a risky situation, confusing both to you and to the
computer, so be sure to remove the new copy righf away. MNow, using a
marking pen, write "APPLE3:" on the new diskette’s label. Do not use a
pencil or a ballpoint pen, as the pressure of writing may damage the
diskette. It is very important to label diskettes immediately, so you
know what information is stored on them.

onces

DO IT AGAIN, SAM

You should, at this time, make sure that you have at least one backup
copy of each of your system diskettes: APPLEl:, APPLE2:, and APPLE3:.

In each case, just place the source diskette to be copied from in one
drive, the blank destination diskette to be copied onto in another
drive, and then type T to begin the Transfer. While you are at it, make
a backup copy of APPLE@: , too. It may come in handy, later on.

BEFORE you type Q to Quit the Filer and return to the COMMAND prompt
line, be sure to put diskette APPLEL: back into drive #4: If you forget
to do this, the computer will stop responding to its keyboard after you
type Q ; even the RESET key will have no effect. You will have to turn
the computer off, put APPLEl: in drive #4:, and turn the computer on
again.

Finally, you should store the original diskettes (and ome extra copy, if
you like to be really safe) away, in a safe place.

STARTING (TWO OR MORE DRIVES) 179

USING THE SYSTEM

A DEMONSTRATION

At last, a reward for all your work to this point: you are finally
to use the Apple Pascal system to run & program. Diskette APPLE3:
contains several "demonstration" programs. To see a list of those
programs, put APPLE3: in any disk drive except #4: (APPLEl: must be in
drive #4:). Now, enter the Filer by typing F in response to the
COMMAND prompt line. When the FILER prompt line appears on the screen,
type L to List a diskette’s directory. The Filer says:

ready

DIR LISTING OF ?

In response, type the name of the diskette whose directory you wish to
see;

APPLE3:

A long list of program files now appears on the screen, many of them
both in their .TEXT versions (the form in which they are written and
edited) and also in their compiled .CODE versions (the form in which

they can be executed). When the sereen is full, the display stops and
the message

TYPE <SPACE> TO CONTINUE

appears at the top of the screen.
remaining files.
GRAFDEMO.CODE .

Press the Apple’s spacebar to see the
For now, we are interested in the file named

Since the system diskette APPLEl: is already in disk drive #4: , you may

now type Q to Quit the Filer. When the COMMAND prompt line appears,
type X for X(ecute. The computer says

EXECUTE WHAT FILE?

Answer by typing the name of the diskette and file you wish to have
executed:

APPLE3 : GRAFDEMO

Note: DO NOT type the suffix .CODE ; the system knows you can execute

only a code file, so it automatically supplies the suffix .CODE for you,
in addition to any name that you type.

180 APPLE PASCAL LANGUAGE

e e e e e e e = — i — i — — i — i — — i — e e S S S

WA & W W oa W W oW e W oW W oW os W W oW oW oW ww oA

When this message appears

PRESS ANY KEY TO QUIT.
PLEASE WALT WHILE CREATING BUTTERFLY

the program is running. After a short pause, the display begins. Just
ait back and enjoy it: soon you’ll be writing your own programs using
these and other features of Apple Pascal. When you are tired of
watching, press the spacebar on the Apple’s keyboard to return to the
COMMAND prompt line. You can use this same procedure to run any of the
programs on APPLE3: . These programs are discussed in Appendix A.

DO IT YOURSELF

Now, for some more experiemce at using the Apple Pascal system, let’s
try writing a short program. This discussion will assume that you are
using your new coples of the Pascal diskettes. You should be using a new
copy of APPLEl: as your system diskette (or "boot diskette" as it 1is
often called). This copy is not write-protected, and you have mnever
used the Editor to create any new files on it before. Put the new copy
of APPLEl: in the boot drive, volume #4: . You should also put a copy of
APPLE2: in any other drive (APPLE2: contains the Compiler program).

With the COMMAND prompt line showing, type E to select the E(dit
option. Soon, this message appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE?(<RET> FOR NO FILE <ESC-RET> TO EXIT)

As usual, you must use CTRL-A to see the right half of the message.

This message gives you some information and some choices. The first
word, »EDIT: , tells you that you are now in the Editor. The next
sentence, NO WORKFILE IS PRESENT , tells you that you have not yet used
the Editor to create a "workfile", which is a "scratchpad" diskette copy
of a program you are working on. If there had been a workfile on
APPLEl: , that file would have been read into the Editor automatically.

Since there was no workfile to read in, the Editor asks you, FILE? If
you now typed the name (including the drive’s volume number or the
diskette’s name) of a .TEXT file stored on APPLEl: or on APPLEZ:, that
textfile would be read into the Editor. However, there are no .TEXT
filea on APPLEl: or APPLE2: yet, and besides, you want to write a new
program. In parentheses, you are shown how to say that you don“t want
to read in an old file; <RET> FOR NO FILE . This means that, if you
press the Apple”s RETURN key, no file will be read in and you can start
a new file of your own. That’s just what you want to do, so press the
Apple’s RETUBN key (the rest of the message says if you first press the
ESC key and THEN press the RETURN key, you’ll be sent back to the

STARTING (TWO OR MORE DRIVES) 181

COMMAND prompt line). When you have pressed the RETURN key, the full
EDIT prompt line appears:

>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT ...

The chapter called THE EDITOR in the Apple Pascal Operating System
Reference Manual explains all of these command options in detail: for
now you will only need a few of them. The first one you will use is
L(NSRT , which selects the Editor’s mode for inserting new text. Type I
to select Insert mode, and yet another prompt line appears:

>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX>ACCEPTS, <ESC>ESCAPES]

As long as this line is showing at the top of the screen anything you
type will be placed on the screen, just to the left of the white square
"cursor". If the cursor is in the middle of a line, the rest of the
line is pushed over to make room for the new text. If you make a
mistake, just use the left-arrow key to backspace over the error, and
then retype. At any time during an insertion, if you press the Apple’s
ESC key your insertion will be erased. At any time during an insertion,
if you press CTRL-C the inmsertion will be made a permanent part of your
file, safe from being erased by ESC or by the left-arrow key.

You can
then type I to reenter Insert mode and type more text.

Now for our program. With the INSERT prompt line showing, press the

RETURN key a couple of times, to move the cursor down, and then type

PRORAFM DEMO;

You can use any name for your program, but in this discussion it will be
called DEMO . Now press CTRL-C (type C while holding down the CTRL
key). Your insertion so far is made "permanent', and the EDIT prompt
line reappears. But, horrors! You made several typing errors when
typing the word PROGRAM . Since you have already pressed CTRL-C , it is
too late to backspace over your errors and retype them.

Fortunately, there are other ways. First, let’s correct the missing G
in PROGRAM . Using the lefr-arrow key, move the cursor left until it is
sitting directly on the R . Then type I to reenter Insert mode. Ignore
the fact that the remainder of the line seems to have suddenly
disappeared, and type the missing letter G . When you press CTRL-C to
make this insertion permanent, the rest of the line returns:

PROGRAFM DEMO;

The letter F is certainly not needed, so move the cursor right (using
the right-arrow key) until it is sitting directly on the F . Now type D
to select the Editor”s D(LETE option. When the DELETE prompt line
appears,

>DELETE: < > <MOVING COMMANDS» [<ETX> TO DELETE, <ESC> TO ABORT]

press the right-arrow key once. The offending F instantly disappears.
In Delete mode, moving the cursor in any direction deletes text. If you

182 APPLE PASCAL LANGUAGE

B -

= N

Tl

deleted text reappears. What happens
if you press the ESC key, the delﬁtinn
is forgotten, as if it had never happened. If you press UTRi;E; ; e
deletion is made a permanent part of your file. To remn;e i
permanently, press CIRL-C. The lime closes in to fill the

letter’s place:

move the cursor back again, the
next is similar to Imsert mode:

PROGRAM DEMO;

‘ d Delete modes to write
ow how to use the Editor’s Insert an
Nuwty::dkzu correct your errors. Try typing the rest of program DET?EE
;e:n our file. Be sure to "sccept" your insertions, from time to .
bu rzasing CTRL-C . That way, you minimize your loss if you
aicgdentully press the ESC key. Here is the complete program:

PROGRAM DEMO;

USES TURTLEGRAPHICS, APFLESTUFF;
VAR ANGLE, DISTANCE : INTEGER;

PROCEDURE CRAWL;

BEGIN
MOVE (2 * DISTANCE);
TURN (ANGLE)

END;

BEGIN
ANGLE := {;
REPEAT
INITTURTLE;
PENCOLOR (WHITE);
FOR DISTANCE := 1 TO 99 DO CRAWL;
ANGLE := ANGLE + 5
UNTIL KEYPRESS;
TEXTMODE
END.

When you are typing this program, the punctuation and spelling mua; :ait
exactly as shown. The indentation of the lines is not important, ud &
easier to read as shown. You will notice that, once you have starte B
new indentation, the Editor maintains that indentation for youe. Tgtﬁgn
back to the left, just press the left-arrow key before you type any £

on the new line.

Program DEMO makes use of graphics routimes in the Unit TURTLEGRAPHICS,

and uses the keypress function from the Unit APPLESTUFF (see Chapter 7
for details). The third line of the program declares Lwo intﬁgE;AwL i
variables, DISTANCE and ANGLE. Next, a Pascal procedure name

defined, between the first BEGIN and END; . From here on, each time

this new Pascal statement CRAWL is used, a graphics ":ﬁrtle" “1%1 traqe
a line on the screen, of length 2#*DISTANCE moving in the curren

direction, and will then change the direction by an amount ANGLE.

STARTING (TWO OR MORE DRIVES) 183

The next HEGIN and the last END. outline the main program. The portion
of the program from REPEAT to UNTIL KEYPRESS is repeated over and over
again, until any key on the Apple”s keyboard is pressed.

In each repetition, the screen is cleared and the tracing color is set
to WHITE. Then the procedure CRAWL is performed, first with the value
of DISTANCE set to one, then with DISTANCE set te the value two, and so
on, until DISTANCE is set to 99 . The "turtle" moves, then turns, then
moves some more, then turns again, and so on, for 99 steps. That

completes one design on the screen. In the next repetition, if no key

has been pressed, the ANGLE has increased by 5 degrees, the screen is
cleared by INITTURTLE, and the whole process starts again.

Now you should save this program.

With the EDIT prompt line showing,
type Q

to select the Q(UIT option. The following message appears:

>QUIT:
U{PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN

Type U to create a "workfile" diskette copy of your program (future
versions of this file will be "Updates)". This workfile is a file on
your boot diskette (APPLEl:) called SYSTEM.WRK.TEXT . The computer says

WRITING. .
YOUR FILE IS 339 BYTES LONG.

(the number of bytes may be a little different) and then the COMMAND
prompt line reappears. Now type R to select the R(UN option. This
automatically calls the Compiler for you, since the workfile contains
text. The disk drive containing APPLE2: whirrs and, if you have typed
the program perfectly, the following messages (again, perhaps with
slightly different numbers) appear, one by one:

COMPILING. ..

PASCAL COMPILER II.l1 [B2B]

< 7 -
TURTLEGR [2483 WORDS]
< SHesssasasasisnianianetenss

APPLESTU [L1@78 WORDS]
€ AP iisssssssannnncnns

CRAWL [L@98 WORDS]
< 465eaena
DEMO [11@9 WORDS]

< S5l>ceanenas

59 LIKES
SMALLEST AVATLABLE SPACE = I{#98 WORDS

184 APPLE PASCAL LANGUAGE

"

T

#

EEEE NN N EN R R RN NN

WW LW

NN

"

R R R R

1f the Compiler discovers mistakes, it will give you a message such as

PROFRAM <<<<
LINE 2, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT

Don’t despair; just type E for E(DIT . Your workfile will be
automatically read back into the Editor for repairs. Read the error
message at the top of the screen, press the spacebar, and make any
necessary changes using I(nsert and D(elete. Then Q(uit, U(pdate the
workfile, and R(un your program again, by typing Q U R (the Apple will
store up several commands in advance).

When your program has been successfully Compiled, it is automatically

executed. You will see the message

RUNNING...

and then a horizontal line appears on the screen. That is the first
design your program draws: the white "turtle" moves out a distance 2*1 ,
turns an angle (; moves 2%2 , turns ¢ ; moves 2*3 , turns ¢ ; etc.

Keep watching as successive designs turn through larger and larger
angles between moves. When you want to interrupt the program, press any

key on the keyboard. You can R({un the program again at any time, by
typing R . Since the latest version of your program has already been

compiled, it will be executed immediately, this time.

Try making changes to the program, by setting a different starting
ANGLE, or a different increment to the ANGLE, or a different distance to
MOVE. To do this, type E for E(DIT, use I(nsert and D(elete to make
changes, and then Q(uit, U(pdate the workfile, and R{un again by typing
Q UR . This cycle of Edit-Run-Edit-Run is the basis of all program
development in the Apple Pascal system.

The workfile on APPLEl: now contains the text version of your program in
a file named SYSTEM.WRK.TEXT , and the compiled P-code version of your
program in another file named SYSTEM.WRK.CODE . When your program is
running as you want it to, you should save the text and code workfile
under other filenames. With the COMMAND prompt line showing, type F to
enter the Filer. When the FILER prompt line appears, place in any
available drive the diskette on which you want your program stored.

Then type 5 for S(ave. You will be asked
SAVE A5 7

and you should respond by typing the name of the destination diskette,
followed by a colon, followed by any filename with ten or fewer
characters. For example, you might type

MYDISK:DEMO

When you press the RETURN key, the boot diskette’s workfile,
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE, is saved on MYDISK: under the

STARTING (TWO OR MORE DRIVES) 185

filenames DEMO.TEXT and DEMO.CODE .

These messages will tell you what
has happened:

APPLE] : SYSTEM.WRK. TEXT
——> MYDISK:DEMO.TEXT
APPLEL:SYSTEM.WRK.CODE
==> MYDISK:DEMO.CODE

WHAT TO LEAVE IN THE DRIVES

When you turn the Apple off, it is a good idea to leave the diskette
called APPLEl: in disk drive #4: . If there is no diskette or some
other diskette in #4: when the Apple is accidentally turned on, the
drive will spin the disk indefinitely. If this continues for hours and
hours, some wear will take place on the diskette and the drive. So, it
is a good idea to make a habit of leaving a copy of APPLEl: (now that
you have copies) in #4: when you turn the system off.

Of course, if you turn on the system and APPLEl: is not
press the key marked RESET . Place APPLEl: in #4: and turn the system
off and then on again. No damage results from turning on the computer
with the wrong diskette (or no diskette) in the drive. Gradual,

unnecessary wear results from leaving the disk drive running for a long

period of time with the incorrect diskette (or no diskette) in the
drive.

in #4:, just

USING MORE THAN TWO DRIVES

The primary difference between using a two-drive system and using larger
systems is that you rarely need to remove APPLEl: from its usual

location in drive #4: , and can do all copying and transfering between
files in the other drives.

For example, with four drives, you can have APPLEl: in #4:, APPLE2: in
#5:, and APPLE3: in #11:; then you can format diskettes by placing them
in #12:, without having to remove any of the system diskettes.

A one-drive system is a useful tool for learning Pascal and running
programs written on other systems. A one-drive system can, in fact, do
anything that the larger systems can do, up to the limits of the actual
storage space available. For software development of any magnitude,
however, two drives are recommended. Again, more drives make life
easler. Word processing, using the text editor, is most pleasant with a
three=drive system. Some business applications, which can benefit from
having over half a megabyte on line, might use six drives.

No specific instructions will be given here on using multiple-drive
systems. Acquaintance with a two-drive system should be sufficient
introduction.

186 APPLE PASCAL LANGUAGE

. B BN B BN BN . SN BN W

m
AN A W N AN N N R W R OW W W owW W W w W e

MULTIPLE-DRIVE SUMMARY

STARTING UP THE SYSTEM

To start the system, place diskette APPLEl: in disk ?rive #ﬁi (slot 6,
drive 1); then turn on the Apple’s power. When the '"WELCOME" message

appears, Pascal is running.

FORMATTING NEW DISKETTES

To format a new diskette, have Pascal’s COMMAND prompt line showing.
Place diskette APPLE3: in any drive except #4: , and type
X
Now, in response to the query
EXECUTE WHAT FILE?
type
APPLE3:FORMATTER
When the gquestion:

FORMAT WHICH DISK 7
appears, place the new diskette in any drive except f4: , and then type

the number of that drive. For example, if you put the new diskette in
drive #5: , type
5

When you press the RETURN key, the diskette will be formatted. To leave
the formatting program, press the RETURN key in response to the question
WHICH DISK ? A newly formatted diskette has the name BLANK:

COPYING DISKETTES

To copy a diskette, have the COMMAND prompt line showing, and put
APPLEl: in drive #4: . GCet into the Filer by typing

g
Once the FILER prompt line is showing, you may remove APPLEl: from
its drive if you need to. Put the source diskette you wish to copy
into one drive, and the destination diskette you want to copy onto
into another drive, then type

T
Now, when this question appears:

TRANSFER ?
reply by typing the name of the source diskette to be copled, and then
press the RETURN key. For example, you might type

APPLE3:

Now, when the next question appears:

TO WHERE ? : e
reply with the name of the destination diskette that 1s to become
backup copy. For example, you might type

BLANK:

STARTING (TWO OR MORE DRIVES) 187

Lastly, you will be asked
TRANSFER 28¢ BLOCKS ?
and
DESTROY BLANK: ?
Reply
Y
to both, and BLANK: will be turnmed into a perfect copy of APPLE3: .

Be sure to put diskette APPLEl: back into drive #4: before Quitting
the Filer.

EXECUTING A PROGRAM

To execute a previously compiled program, put APPLEl: in drive #4: and
put the diskette containing the program file into any other drive.
With the COMMAND prompt line showing, type X for X({ecute. When the
computer prompts

EXECUTE WHAT FILE?
answer by typing the name of the diskette and codefile vou wish to
have executed. DO NOT type the .CODE suffix. For example, to execute
the program GRAFDEMO.CODE on diskette APPLE3: , you would type

APPLE3: GRAFDEMO
The program should now run.

WRITING A PROGRAM

To start a new file in the Editor, put APPLEl: in drive #4: and put
APPLEZ: in drive #5: . With the COMMAND prompt line showing, type F

to enter the Filer. Then type N for N(ew. If wou are asked
THROW AWAY CURRENT WORKFILE 7

type Y for ¥Y(es. When you see the message
WORKFILE CLEARED
type { to Q(uit the Filer, and then type E to enter the Editor.

This message appears:

>EDIT:

NO WORKFILE IS PRESENT. FILE? {(<RET> FOR NO FILE <ESC-RET> TO EXIT
Press the RETURN key, and the full EDIT: prompt line appears.
now insert text at the cursor position by typing I for I(nsert and
then typing your program. Conclude each insertion by pressing CTRL-C.
Delete text at the cursor position by typing D for D(elete and then
moving the cursor to erase text. Conclude each deletion by pressing
CTRL=C . When you have written a version of your program, type Q to

Q(uit the Editor, and then type U to U(pdate the workfile to contain
your latest program version.

You can

With the COMMAND prompt line showing, you can then type R to R(un

your program. This automatically compiles the text workfile {using
the Compiler program on APPLE2:), stores the compiled code workfile,
and executes it. To reenter the Editor, type E in response to the

COMMAND prompt. The text workfile is automatically read back into the
COmputer.

188 APPLE PASCAL LANGUAGE

!

LA]

P W

IR IR TR (mfEm o EE
AR R N N R R OW A W W R W OW O W oW oww W w WL

™

[
-

[I

44

When a version of your program is complete, you can U(pdate the text
workfile to contain that latest version and R(un the program to create
a code workfile of that version. To save the workfile versions of
your program on another diskette for later use, place that diskette
in drive #5: and type F in response to the COMMAND prompt to emter
the Filer. Then type 5 for S(ave. When you see the prompt

il wh t T program

e name of the diskette and file where you want you

:iﬁ:dfh Do not type any .TEXT or .CODE suffix. For example, if you
want your program saved under the filename DEMO on the diskette
MYDISK: , you might Cype

MYDISK:DEMO
The text workfile SYSTEM.WRK.TEXT on APPLEl: is saved as DEMO.TEXT on
MYDISK:, and the code workfile SYSTEM.WRK.CODE is saved as DEMO.CODE
on MYDISK: «

STARTING (TWO OR MORE DRIVES] 189

APPENDIX F
APPLE PASCAL SYNTAX

mTmmEmEAMEEmAAMERMENNENN W

190 APPLE PASCAL LANGUAGE

These diagrams represent all of the syntax of Apple Pascal.
they do not show the semantic rules. To understand the distinction
between syntax and semantiecs, consider the sentence "John Smith is a
citizen of the three of clubs." This sentence is correct syntactically

(i.e., grammatically) but wrong semantically -- the three of clubs is
not something one can be a citizen of.

However,

Similarly, the diagram for a statement shows that one kind of statement
is an identifier optionally followed by one or more expressions in

parentheses. The diagram does not show the semantic restriction, which
is that the identifier must be the identifier of a procedure. Some of

the important semantic restrictions are given in the notes accompanying
the diagrams.

With this limitation in mind, you will find that the diagrams are useful
as reference material. To read one of these diagrams, start at the left
and follow arrows until you come out at the right. Whenever the arrows
branch, you can go either way. Any path that goes through from the left
to the right defines a syntactically correct Apple Pascal construction.

Circles and ovals are used to enclose characters and words that are to
be typed exactly as shown; for example, the word NIL in the diagram for
an unsigned constant. Boxes with square corners enclose words and

phrases that stand for something else; for example, the word "letter" 4

n
the diagram for an identifier stands for any letter.

The vertical arrow symbol used in these diagrams corresponds to the "™"

character in the text of this document and on the Apple keyboard.

A word or phrase that you find in a square-cornered box is the title of
another diagram; the diagram shows what the word or phrase can stand for

when it appears in other diagrams. (Exceptions: there are no diagrams
for "letter," "digit," and "underscore.")

fdencifier

letier

=)
Wi

.
7,
b e

l. The letters are a..z and A..Z .
2., The digits are §..9 .

3. The underscore character,

— » is not avallable on the Apple
keyboard.

However some external terminals provide it.

192 APPLE PASCAL LANGUAGE

ummnumﬂuwmwwmmwwwmwwww!

A

unsigned integer

S TP

wnsigned number

unsignad
Integer

unsigned
s
ntege

unsigned consTAnt

p{ v
V| number

1. The identifier in this diagram must be the identifier of a constant.

2. The bottom line of the diagram represents a string conitanzéﬂataut
s;ngle apostrophe cannot appear as a character in the string s

e T o Sriy vonmeany i the- it AT

:?::izu;;ﬁzt:g:§:righiie 3a§ue of the string. For example:
WRITELN(“DON”“T FORGET TO BOOGIE!")

will cause the following output:

DON'T FORGET TO BOOGIE!

APPLE PASCAL SYNTAX 193

i

constant
fleld lisc

A

..
. unsigned
number

uns igned
constant

The identifier in this diagram must be the identifier of a constant.

simpla type

l. The identifier(s) in the top line are being declared, so they must be
identifiers that are not yet declared or predefined.

2. The identifier between the word CASE and the colon is the tag field.
It is being declared, so it must be an identifier that is not yet

declared or predefined.

1. The identifier in the top line of this diagram must be the identifier
of a type.

3. The identifier between the colon and the word OF must be the
identifier of a type.

2. The identifier(s) in the second line define a scalar type. They are

being declared, so they must be identifiers that are not yet declared or
predefined.

e e — v —— — — | — i — i — e — — —

A WA W W W R W W W W owow

typa

expreasion

aimpla
exprasslon

4 simple tvpe

A

expression

AW

A

pimple expression

A

(o)] e 14
() > —>

(o) om]

The identifier in this diagram must be the identifier of a type.

W mEEmETM
A A AN

194 APPLE PASCAL LANGUAGE APPLE PASCAL SYNTAX 195

o varisble

[+ {dent if Lor

A lactor ﬁ'

H

Eactor

unsigned
congtant
‘—Bl| variahle I
ident ifier

L

-

w

l. If the identifier at the top of the diagram is that of an array, the
expression(s) in square brackets may be used to subscript it. The
values of the expressions(s) must be compatible with subscript types
declared for the arraye.

expression

2. If the identifier at the top of the diagram is that of a record, it
may be followed by a period and a second identifier. The second
{dentifier must be the identifier of one of the fields of the record.

(O)
P@ [lactor

=0

A w W w

3. 1f the identifier at the top of the diagram is that of a pointer, it
may be followed by the up-arrow character.

0
L&)

-

P,
(V)

1. The identifier in this diagram must be the identifier of a function.

oW W

2. The bettom portion of the diagram (square brackets and expressions)
indicates the formation of a set. The values of the expressions must be
of the same underlying type.

A

L

i J
A AN KN

IR

§

APPLE PASCAL SYNTAX 197

mmEwm

196 APPLE PASCAL LANGUAGE

etatement

3. The identifier in the third line of the diagram (above BEGIN) must be
the identifier of a procedure.

4. The expression in an IF, REPEAT, or WHILE statement must have a
BOOLEAN wvalues

YTYY

paramster list

Ry
L

function declaratlon

A FUNCTION (A fdent (f fer
paramerer
lise

This diagram shows all of the forms a function declaration can take:

The normal form includes a parameter list (which may be null)
and the colon followed by an identifier (which must be that of
a type). The declaration ends with a block.

The FORWARD declaration is like the normal form except that
the word FORWARD is used instead of a block.

Following a FORWARD declaration, the function declaration has
no parameter list or type identifier and ends with a block.

A N AL & A b oA W

&

unsigned

procedurs declaration

PROCEMIRE

1

=

1. Note that there is a "null" path through this diagram, across the top

and down the right-hand side without including anything. This
represents what happens when a superfluous semicolon oceurs in a
program.

This diagram shows all of the forms a procedure declaration can take:

2. The unsigned integer at the top of the diagram is a label, and must

have been declared in a LABEL declaration. - The normal form includes a parameter list (which may be

null)s The declaration ends with a blocks

198 APPLE PASCAL LANGUAGE

A A AALA

APPLE PASCAL SYNTAX 199

= The FORWARD declaration is like the normal form except that
the word FORWARD is used instead of a block. BE-rw o

{5 _Idmlllfit'r 'o
= Following a FORWARD declaration, the procedure declaration has E.'- -—g @

no parameter list and ends with a block.

block

implemantation
part

interface
part

u misd
(s) .' ()
(K

W
O T o G S T e)

1. In an intrinsic unit, the constants following CODE and DATA must be
integers and should be carefully chosen.

,_g 2. The words BEGIN and END with the statements between them are the
E "initialization" of the unit.

.@ t Taentifler »e o tyee] *0

D) e (o o 13(0)
--

v
w e I."Il’.ITI.' A
declaration
- function
declarat lon

interface part

R .'-a (M INTEEFACE

LU
w

T
gy

-

>{Govst)—p{enc it o F—p{(=) commrane ()
(=)

-

A &

| —

(rere)yt Toen it er o o)

This is one of the fundamental structural units: it contains all the

local data declarations (except parameters) and all the statements for
one program, procedure, or function.

A

-

mmEm WM W EMW W
A AR A NAA

="

200 APPLE PASCAL LANGUAGE

APPLE PASCAL SYNTAX 201

Lloplemantation part

procedure

‘ det I.ll.LLiﬂ:l'
fog EinicL Lo
declarat ion

program

s PROGRAM }—Ebl ldentifer]_i

l. The program heading may contain identifiers in parentheses in

accordance with Standard Pascal syntax.
ignored.

202 APPLE PASCAL LANGUAGE

However the ideéntifiers are

S

MM EEMEERMEEM WD W WWE NN N

ey

e m—

-
'y

nv—'i—r

i

= . ——

AN NN W

A N

2. Note that any units defined in the program must immediately follow
the program heading. This would normally be done only for test
PUTrposes .«

eompilation
- ' (:.)
0,

A compilation is siwmply something that the compiler can compile. This
may be a program (which may contain units), or one or more units
separated with semicolons and ending with a period.

APPLE PASCAL SYNTAX 203

204 APPLE PASCAL LANGUAGE

"
F)

PEEREEFEEREE RN R®

AW Wl

<4

INDEX

A

ABS function 135

AND operator 134

Apple screen 9§

APPLESTUFF UNIT 1@1-194
ARRAY types 15-18, 37, 85-86
ASCIT codes 141

assermbly language 82

ATAN function 45, 15

B

backup copies of diskettes 151-16§,
173-179

BALANCED demonstration program
123-124

BEGIN 134

BLOCKREAD function 13, 43-44

BLOCKWRITE function 13, 43-44

BOOLEAN type B6-87

buffer variable 11, 26, 3p-31, 33,
144-146

built=-in procedures & functions
22=56

BUTTON function 1P3-1§@4

byte-oriented built-ins 51-53

C

CASE statements B84

changing a UNIT or its host program
81

CHAR type 19

CHARTYPE procedure 98-99

CHR function 133

CLOSE procedure 28-29

comments B4

compiler 32, 58-7@, 72, 74-75, 77,
B4-85, 137-14p

compiler error messages 137-14
compiler option summary 7§
compiler option syntax 61-62
compiler options 61-7§

CONCAT function 23
CONST declaration 1P, 19

COPY function 24
copying diskettes 151-16@, 173-179

COS function 1@5
CROSSREF demonstration program

124-125

D

DELETE procedure 24

demonstration programs 1@8-13@

DISKIO demonstration program
128-139

DIV operator 134

DLE character in textfiles 12-13,
4l-42

DO 134

DOWRTO 134

DRAWBLOCK procedure 96-9%8

ELSE 134
END 134

end-of-file character 13, 29, 34,
144=146

end-of-line character 13, 30,
34=35, 144=146

EOF function 26, 29, 34-35, 39,
144=-146

EOLN function 26, 3@, 33-35,
144~-146

executing a program 158-164,
166-167, 18@-185, 188

execution errors 66

EXIT procedure 48

EXP function 1@5

extended comparisons B85-86

EXTEBNAL procedures & functions 82

F

FALSE 135

file buffer variable 11, 26, 3@-31,
33, 144-146

file pointer 11, 26, 28, 3@, 39-49,
144~146

file record 11, 26, 28, 38, 39-4p

FILE types 11-13

INDEX 205

FILLCHAR procedure 53

FILLSCREEN procedure 93

FOR 134

formatting new diskertes 153=155,
175-177

FORWARD 134

FUNCTION 134

G

GET procedvre 11, 26, 28-3f, 39
GOTO statements 63, B5

GOTO statements option 63, 85
GOTOXY procedure &9

I/0 built-ins 26-44

K

KEYBOARD file 12, 26
KEYPRESS funetion 1@2-1§3

GRAFCHARS demonstration program 127 L

GRAFDEMO demonstration program
126-127
GRAFMODE procedure 91

H

HALT procedure 48
HILBERT demonstration program 126
host program 72-73, 75-76, 79=81

identifiers 84

identifiers in supplied UNITs 136

IF 134

IMPLEMENTATION part of a UNIT 75,
78

IN 134

include file option 63-64

initialization part of a UNIT 75,
78

INITTURTLE procedure 9§

input and output built-ins 26=44
INPUT file 12, 34

INSERT procedure 25

INTEGER type 19-2¢

INTERACTIVE type 11, 26, 28, 32-37,
39, l44-146

INTERFACE part of a UNIT 75, 77
intrinsic UNITs 72, 76~77, 81

10 check option 32, 38, 4@, 63
IORESULT function 32, 38, 4§, 133

206 APPLE PASCAL LANGUAGE

LABEL 134

leading spaces in texfiles 12-13,

41=42
LENGTH function 22
libraries 69, 72, 75=77, 8@-81
libraries supplied for the Apple
aP-1@5
listing option 64-66
LN function 1§15
LOG function 1@5
LONG INTEGER type 19-20

M

MARK procedure 46-47
MAXINT 135

MEMAVAIL function 48

MOD operator 19

MOVE procedure 94
MOVELEFT procedure 52-53
MOVERIGHT procedure 52-53
MOVETO procedure 95

N

nesting UNITs 8@
NEW procedure 46-=47
NIL 134

noload option 66, 72
NOT 134

NOTE procedure 1@4

N
1/0 errors (IORESULT values) 32, 133 vy

E N

mmwmEE WM MWW EENWWENWNNW NN

i

O

oDD 135
OF 134
OR 134
ORD function B6-B87
OUTPUT file 12, 37

P

PACE procedure 15

PACKED arrays 15-18

PACKED files 15

PACKED records 17-18

PACKED variables 15-18

PACKED variables as parameters 18

PADDLE function 1@#3

page option 66

PAGE procedure 39

pages of textfile 12-13

PENCOLOR procedure 92-93

POS function 23

PRED 135

predefined files 12

predefined identifiers 135

predefined types 8-20

PROCEDURE 134

procedure and function parameters
18, 22-56, 77-78, 82, 85-86

PROGRAM 134

program headings 85

PUT procedure 26, 3P-31, 39, 144~145

PWROFTEN function 45

Q

quiet compile option 66-67

R

RANDOM function 1@1-1§2

RANDOMIZE ﬁrncedure 192

range check option 67

READ procedure 26, 33-36, 144-145

READ with a CHAR variable 34, 144

READ with a numeric variable 34-35,
144-145

READLN procedure 26, 35-36, Ll45-146

REAL 135

RECORD types 17-18, 85-86
regular UNITs 72, 76, 81, 85
RELEASE procedure 46=47
REPEAT 134

regserved words 134

RESET procedure 11, 27-28
resident option 67-68, 72, 74
REWRITE procedure 27

ROUND 135

S

SCAN function 51-52

SCREENBIT function 95
SCREENCOLOR type 93

SEEE procedure 39-4@
SEGMENT procedures & functions
67-68, 72, 74

SET types l4

SIN function 1@i5

size limits BS5

SIZEOF function 51
SPIRODEMO demonstration program
125-126

SQR 135

SQRT function 1@5
startup 148-189

STR procedure 25

string built-ins 22-=25
STRING type 8-1f), 22-25
SUCC 135

swapping option 68, 77

syntax diagrams 199ff

I

text 1/0 26, 32-39, 144-146

TEXT type 11, 26, 32-36, 39,
144=146

textfiles 12-13, 41-42

TEXTMODE procedure 91

THEN 134

TO 134

TRANSCEND UNIT L1@5

TREE demonstration program 121-123

TREESEARCH function 49-5¢
TRUE 135

TRUNC function 19, 45
TTLOUT procedure 1@4

INDEX 207

TURN procedure 94

TURNTO procedure 94
TURTLEANG function 95
TURTLEGRAPHICS UNIT 99-1p9
TURTLEX function 95
TURTLEY function 95

TYPE 134

U

UNIT 66-69, 72, 75-81
UNITBUSY function 42
UNITCLEAR procedure 43
UNITREAD procedure 41
UNITWAIT procedure 42
UNITWRITE procedure 41-42
UNPACK procedure 15
UNTIL 134
untyped files 12, 26, 43-44
use library option 69, 75, 8p
USES declaration 72, BP, 9@, 1§1,
185

\%

VAR 134
VIEWPORT procedure 91-92

w

WCHAR procedure 98-1p@

WHILE 134

window 11

WITH 134

WRITE procedure 26, 36-37, 1&44-145
WRITELN procedure 26, 37, l44-145
WSTRING procedure 99-19@

208 APPLE PASCAL LANGUAGE

L AL L L L

m m

mom oW W
e & 6 & & & & A Al W e Wl wewwwwwuwnu

m e mmWEm®EM

LI

mm

INDEX

209

