~

Applell -

Apple Pascdal

Language Reference Manual

A

rERRRrRRRRRER

n

Nl

~ -
DA A N W W0l N W W WU W WML WU

NN

wapple computer inc. =

10260 Bandley Drive
Cupertino, California 95014 L;
(408) 996-1010

030-0101-00

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR
LICENSED "AS 15". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH THE BUYER. SHOULD THE PROGRAMS FROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1IN
NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR. INCIDENTAL OR
CONSEQUENTIAL DAMAGES, S0 THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,

translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer Incs

© 198¢ by APPLE COMPUTER INC.

1p26@ Bandley Drive
Cupertino, California 95@14
(4P8) 996-191@

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER INC.

APPLE Product #A21L9927
(P3p-pLAL-PB)

 FE AR A MM AMA PN FfPrr0N 0 N

15 |8 12 18 4 Wl

12 11

ik 12 12 i [18 W oA pa 1A A

L

Applell

Apple Pascal

Language Reference Manual

ACKNOWLEDGEMENTS

The Apple Pascal™ system incorporates UCSD Pascal™ and Apple
extensions for graphics and other functions. UCSD Pascal was developed
largely by the Institute for Information Science at the University of
California at San Diego, under the direction of Kenneth L. Bowles.

"UCSD PASCAL" is a trademark of The Regents of The University of
California. Use thereof in conjunction with any goods or services is
authorized by specific license only and is an indication that the
associated product or service has met quality assurance standards
prescribed by the University. Any unauthorized use thereof is contrary
to the laws of the State of California.

APPLE PASCAL LANGUAGE

Wl

LELEE

, &

mmw

r

-—-p-—-jgl-!!i—-'
Wb W W W W W W oW W W W W oW W W W W w

mmn

I,

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION :

Getting Started
Scope of This Document
How to Use This Document
Organization
Notation Used in This Manual
Differences Between Apple and Standard Pascal
Predefined Variable Types
Built-In Procedures and Functions
Breaking Programs Into Pileces
Special Units for the Apple

(LR - i R FURE R

CHAPTER 2

PREDEFINED TYPES 7

8 The STRING Type

11 The FILE Types

11 A Note on Terminology
11 INTERACTIVE Files

12 Untyped Files

12 Predefined Files

12 Textfiles

14 The SET Types

15 Packed Variables

15 PACK and UNPACK

15 Packed Files

15 Packed Arrays

17 Packed Records

18 Using Packed Variables as Parameters
19 The LONG INTEGER Type

APPLE PASCAL LANGUAGE

CHAPTER 3

BUILT-IN PROCEDURES AND FUNCTIONS

22 String Built-Ins

22 The LENGTH Function

23 The POS Function

23 The CONCAT Function

24 The COPY Function

24 The DELETE Procedure

25 The INSERT Procedure

25 The STR Procedure

26 Input and Output Built=Ins

26 Overview of Apple Pascal 1/0 Facilities

27 The REWRITE Procedure

27 The RESET Procedure

28 The CLOSE Procedure

29 The EOF Function

30 The EOLN Function

30 The GET and PUT Procedures
32 The 10RESULT Function

32 Introduction to Text I/0

313 The READ Procedure

34 READ With a CHAR Variable

34 READ With a Mumeric Variahle

35 The READLN Procedure

36 The WRITE and WRITELN Procedures

39 The PAGE Procedure
39 The SEEK Procedure

41 The UNITREAD and UNITWRITE Procedures

42 The UNITBUSY Function
42 The UNITWAIT Procedure
43 The UNITCLEAR Procedure

43 The BLOCKREAD and BLOCKWRITE Functions

45 Miscellaneous Built-Ins
45 The ATAN Function

45 The LOG Function

&5 The TRUNC Function

45 The PWROFTEN Function

46 The MARK and RELEASE Procedures

48 The HALT Procedure

48 The EXIT Procedure

48 The MEMAVAIL Function
49 The GOTOXY Procedure

49 The TREESEARCH Function
51 Byte-Oriented Built-Ins
51 The SIZEOF Function

51 The SCAN Function

52 The MOVELEFT and MOVERIGHT Procedures

53 The FILLCHAR Procedure
54 Bummary

APPLE PASCAL LANGUAGE

{

W W W W oW W

—] — . — — | — . — T — —] S— i —] DI I S — — i — ! —

mmm

U Y VY TV T I VR Y Y

[T

CHAPTER 4
THE PASCAL COMPILER 57
58 Introduction
58 Diskette Files Needed
59 Using the Compiler
61 The Compiler Options
61 Compiler Option Syntax
62 The "Comment" Option
62 The "GOTO Statements" Option
63 The "IO Check" Option
63 The "Include File" Option
64 The "Listing" Option
66 The "Nolead" Option
66 The "Page" Option
b6 The "Quiet Compile" Option
66 The "Range Check" Option
67 The "Resident" Option
67 The "Swapping' Option
68 The "User Program" Option
68 The "Use Library" Option
70 Compiler Uption Summary
CHAPTER 5
PROGRAMS IN PIECES 7
72 Introduction
74 SEGMENT Procedures and Functions
74 Requirements and Limitations
73 Libraries and UNITs
5 UNITs and USES
76 Regular UNITs
76 Intrinsic UNITs
Fe The INTERFACE Part of a UNIT
78 The IMPLEMENTATION Part of a UNIT
78 The Initialization Part of a UNIT
78 An Example UNIT
79 Using the Example UNIT
80 Hesting UNITs
81 Changing a UNIT or its Host Program
82 EXTERNAL Procedures and Functions

APPLE PASCAL LANGUAGE

CHAPTER 6
OTHER DIFFERENCES 83

84 Identifiers

84 CASE Statements

84 Comments

85 GOTO

85 Program Headings

B3 Size Limits

85 Extended Comparisons

86 Procedures and Functions as Parameters
86 RECORD Types

86 The ORD Function

L1

YR TR TR IR FY R Y

APPENDIX A
DEMONSTRATION PROGRAMS 107

108 Introduction

10B A Fully Annotated Graphics Program
120 Other Demonstration Programs

120 Diskette Files Needed

121 The "TREE" Program

123 The "BALANCED" Program

124 The "CROSSREF" Program

125 The "SPIRODEMO" Program

126 The "HILEERT" Program

126 The "GRAFDEMO" Program

,] 127 The "GRAFCHARS'" Program
v 128 The "DISKIO" Program
CHAPTER 7 1
!!
SPECIAL UNITS FOR THE APPLE 89 APPENDIX B
90 Apple Graphies: The TURTLEGRAPHICS UNIT TABLES 131
90 The Apple Screen
90 The INITTURTLE Procedure 132 Table 1l: Execution Errors
91 The GRAFMODE Procedure 133 Tahle 2: I/0 Errors (IORESULT Values)
91 The TEXTMODE Procedure 134 Table 3: Reserved Words
91 The VIEWPORT Procedure 135 Table 4: Predefined Identifiers
92 Using Color: PENCOLOR 136 Table 5: Identifiers Declared in Supplied UNITs
93 More Color: FILLSCREEN 137 Table 6: Compiler Error Messages
94 Turtle Graphic Procedures: TURNTO, TURN, and MOVE 141 Table 7: ASCII Character Codes
95 Turtle Graphic Functions: TURTLEX, TURTLEY, TURTLEANG,
and SCREENBIT
95 Cartesian Graphics: The MOVETO Procedure
96 Graphic Arrays: The DRAWBLOCK Procedure
98 Text as Graphics: WCHAR, WSTRIKG, and CHARTYPE APPENDIX C

101 Other Special Apple Features: The APPLESTUFF UNIT
101 The RANDOM Function

102 The RANDOMIZE Procedure

102 The KEYPRESS Function

103 PADDLE, BUTTON, and TTLOUT

104 Making Music: The NOTE Procedure

105 Transcendental Functions: The TRANSCEND UNIT

ADDITIONAL TEXT I/O DETAILS 143

mwmEWMWMERENNRR N NN NN
— i — i f— — — T — — — — e e e

e . — w—

”
UL U VU VU U U TV Y T Y VU Y I YR TR

APPLE PASCAL LANGUAGE APPLE PASCAL LANGUAGE

- =

;—

APPENDIX D
ONE-DRIVE STARTUP 17

148 Equipment You Will Need

148 The Two=Step Startup

148 Step One of Startup

149 Step Two of Startup

150 Changing the Date

151 Making Backup Diskette Copies
151 Why We Make Backups

152 How We Make Backups

152 Getting the Big Picture
153 Formatting New Diskettes
155 Making the Actual Copies
158 Do It Again, Sam

158 Using the System

158 A Demonstration

160 Do It Yourself

lo4 What To Leave In the Drive
165 One-Drive Summary

APPENDIX F
APPLE PASCAL SYNTAX 191

w

i

INDEX 205

mMmE NN N NN
W

_-_l.—l_-_ﬂ—._q-—1_
L L

mm
a W

i

APPENDIX E
TWO-DRIVE STARTUP 169

170 Equipment You Will Need

170 More Than Two Disk Drives

171 Numbering the Disk Drives
171 Pascal In Seconds

172 Changing the Date

173 Making Backup Diskette Copiles
173 Why We Make Backups

174 How We Make Backups

174 Getting the Big Picture

175 Formatting New Diskettes
177 Making the Actual Copies
179 Do It Again, Sam

180 Using the System

180 A Demonstration

181 Do It Yourself

186 What To Leave In the Drives
186 Using More Than Two Drives
187 Multiple-Drive Summary

7 mmmmmmmm |
[V VY IR T TR VT 1Y R 1)

i e o W e

idl

APPLE PASCAL LANGUAGE APPLE PASCAL LANGUAGE

l_l_l' mEm "

CHAPTER 1
INTRODUCTION

APPLE PASCAL LANGUAGE

GETTING STARTED

If you don"t already know how to start up the Apple Pascal Operating
System for use with the Apple Pascal language, please read Appendix D 4if
you have one diskette drive, or Appendix E 1f you have two or more
diskette drives. Each of these Appendices is a tutorial session,

covering system startup, diskette initialization, diskette copying, and
a demonstration of Apple Pascal programming.

SCOPE OF THIS DOCUMENT

This document covers the features of the Apple Pascal programming
language that are different from the "Standard Pascal" lanpuage defined
by Jensen and Wirth in the Paseal User Manual and Report (Springer-
Verlag, New York, 1978). This includes the differences introduced in
UCSD Pascal, and alse special extensions of UCSD Pascal for the Apple
computer.

The Apple Pascal system facilities such as the Editor, the Linker, etc.
are covered in the Apple Pascal Operating System Reference Manual.
These facilities are useful in various applications besides Apple Pascal

programming; they are discussed here only as they relate specifically to
Apple Pascal programs.

HOW TO USE THIS DOCUMENT

To use this document you must either have a thorough knowledge of
Standard or UCSD Pascal, or use some book or manual that fully describes
Standard or UCSD Pascal. This is a reference manual, designed to give
you the facts without wvery much emphasis on teaching you Pascal.

You should alse have the Apple Pascal Operating System Reference Manual,
wvhich gives complete information on the various system facilities that
support the creation and development of Apple Pascal programs.

One aspect of the Apple Pascal Operating System is covered in this
manual: the procedures for starting up the system when your purpose is

to work with Apple Pascal programs. Appendices D and E describe these
procedures.

2 APPLE PASCAL LANGUAGE

— —— — — - — . — — . —

RARS
W

_n

SEEEEEEEEEER
HI - - R |

- VI =V R+ R 1 R T I

U Y

=

W

At various places in the text you will see the special symbol

o
which indicates a feature that you need to be cautious about.
special symbol is

Another

7~

which indicates a particularly useful piece of information (usually
something that is not cbvious).

ORGANIZATION /

Chapters 2 and 3 cover the large differences in Apple Pascal that will
have the most immediate programming impact: the differences in
predefined types, procedures, and functions, especially the procedures
for input and output.

Chapter 4 covers the compiler operation and the compiler options, which
are powerful and important. Further details on compiler operation can
be found in the Apple Pascal Operating System Reference Manual.

Chapter 5 covers techniques for breaking a program into separate pieces

which can be linked together. These techniques are another major area
of difference but are not needed for small programs.

Chapter 6 gives the remaining differences in the language, which are of
minor impact for most programs.

Chapter 7 covers the extremely powerful library options of Apple Pascal,
including the Turtlegraphics package.

Appendix A presents a fully annotated program that uses graphies, and
also describes the demonstration programs supplied with Apple Pascal.

Appendix B contains various tables relating to the Apple Pascal Language
and the system.

Appendix C gives some technical details on textfile I/0 operations.

Appendices D and E cover system startup and essential operating
procedures for use with the Apple Pascal language.

Appendix F is a complete set of syntax diagrams for the Apple Pascal
language.

INTRODUCTION 3

NOTATION USED IN THIS MANUAL

In syntax descriptions, the following convention is used:

- Square brackets [] are used to enclose anything that may
legally be omitted from the syntax.

DIFFERENCES BETWEEN APPLE
AND STANDARD PASCAL

The major differences are summarized below; see Chapter 6 for the minor
ones.

PREDEFINED VARIABLE TYPES

- A new variable type, STRING, supported by a set of new
buflt-in procedures and functions. See Chapters 2
and 3.

= A new file type, INTERACTIVE, supported by the extended file
I/0 procedures and functions. See Chapters 2 and 3.

= Minor restrictions on SET types.

= Minor differences in the treatment of PACKED variables.
Automatic PACK and UNPACK operations, with elimination of the

PACK and UNPACK procedures of Standard Pascal. See
Chapter 2.

= #An extension of the INTEGER type called LONG INTEGER. A LONG
INTEGER is a value represented by up to 36 binary-coded
decimal (BCD) digits. See Chapter 2.

BUILT-IN PROCEDURES AND FUNCTIONS

These are the procedures and functions that are part of the Apple Pascal
language itself, as opposed to special-purpose functions implemented in

Ehe system library. Built-in procedures and functions are called
built-ins" for short.

- New built-ins supporting STRING variables. See Chapters 2
and 3.

= Extended definitions of the built-ins for file 1/0, supporting
INTERACTIVE files. See Chapters 2 and 3.

4 APPLE PASCAL LANGUAGE

I-.

-—-——.-—-————n‘-—n.—nli—-—-t—-b-—_————n-—--—-n——u—-u—

-—I—-l

_nm

W W oW oW owoa

R oW a W e R W W W

i W

i W oE

- A set of new byte-oriented built-ins. See Chapter 3.

New built-ins called MARK and RELEASE which replace the
DISPOSE of Standard Pascal. See Chapter 3.

- Other new built-ins and redefinitions of Standard Pascal
built-ins. See Chapter 3.

= The transcendental functions SIN, COS, EXP, ATAN, LN, LOG, and
SORT ere not built-ins in Apple Pascal. They are provided as
library functions. See Chapter 7.

BREAKING PROGRAMS INTO PIECES :

— SEGMENT procedures and functions, which reside in memory only
when active. See Chapter 5.

= UNITS, which are separately compiled collections of procedures
that can be integrated into any host program via a library
facility. Bee Chapter 5.

- EXTEENAL procedures and functions, which are declared in an

Apple Pascal program but implemented in assembly language and
then integrated into a host program via the library facility.
See Chapter 5.

SPECIAL UNITS FOR THE APPLE

= These are major facilities for the Apple, implemented as UNITs
in a system library. They include the Turtlegraphics package
for the high-resolution color display of the Apple. See
Chapter 7.

INTRODUCTION 5

|

E=

(== CHAPTER 2

L= PREDEFINED TYPES
l-

.-

--

&6 APPLE PASCAL LANGUAGE

In addition to the predefined types of Standard Pascal (REAL, INTEGER,
CHAR, ARRAY, etc.), Apple Pascal has a STRING type, an INTERACTIVE file
type, and a LONG INTEGER type.

Also, the detalls of certain other predefined types differ from Standard
Pascal.

THE STRING TYPE

Apple Pascal has a new predeclared type, STRING. The value of a STRING
variable is a sequence of characters. Variables of type STRING are
essentially PACKED ARRAYs OF CHAR that have a dynamically changing
number of elements (characters). However, the value of a STRING
variable cannot be assipgned to a PACKED ARRAY OF CHAR, and the value of
a PACKED ARRAY OF CHAR cannot be assigned to a STRING variable. Strings
are supported by a set of bullt-in procedures and functions; see

Chapter 3.

The number of characters in a string at any moment is the length of the
string. The default maximum length of a STRING variable is 8§
characters, but this can be overridden in the declaration of a STRING
variable (up to the absolute limit of 255). To do so, put the desired
maximum length in [brackets] after the type identifier STRING. Examples
of declarations of STRING variables are:

TITLE: STRING; (* defaults to a maximum length of 8@ characters *)

NAME: STRING([3@]; (* allows the STRING to be a maximum of 3@

characters*)

The value of a STRING variable can be altered by using an assignment
statement with a string constant or another STRING variable:

TITLE := * THIS IS A TITLE e
or
NAME := TITLE

or by means of the READ procedure as described in the next chapter:
READLN (TITLE)

or by means of the STRING built-ins, also described in the next
chapter:

NAME:= COPY (TITLE, 1, 3@)

Note that a string constant may not contain an end-of-line; the constant
must be on a single line in the program.

8 APPLE PASCAL LANGUAGE

-
w W &

ARSI ESEERERE SRR
H

mmmmm

W

a W R R W R W W R DR e w

&R W

The individual characters within a STRING are indexed from |l to the
LENGTH of the STRING. LENGTH is a built-in function which is described
in Chapter 3. For example, if TITLE is the name of a string, then

TITLE[1]

is a reference to the first character of TITLE, and
TITLE[LENGTH{TITLE)]

is a reference to the last character of TITLE.

A variable of type STRING may be compared to any other wariable of type
STRING or to a string constant, regardless of its current dynamic
length. The comparison is lexicographical: i.e., one string is "greater
than" another if it would come first in an alphabetic list of strings.
The ordering of the ASCII character set (see Appendix B) is used to
determine this. The following program is a demonstration of legal
comparisons involving variables of type STRING:

PROGRAM COMPARESTRINGS;
VAR S: STRING;
T: STRING[40];

BEGIN
S:= *SOMETHING®;
T:= "SOMETHING BIGGER”;
IF § = T THEN
WRITELN(“Strings do not work very well”)
ELSE
IF § > T THEN
WRITELN(S,” is greater than *,T)
ELSE
IF 8 < T THEN
WRITELN(S,” is less than ",T);

IF S = “SOMETHING® THEN
WRITELN(S, equals
IF § > “SAMETHING® THEN

WRITELN(S,” is greater than SAMETHING®);
IF 5§ = “SOMETHING * THEN

WRITELN (“BLANKS DON"T COUNT®)
ELSE

WRITELN(“BLANKS APFEAR TO MAKE A DIFFERENCE”);
S:="XXX":
T:="ABCDEF*;
IF S > T THEN

WRITELN(S,” is greater than
ELSE

WRITELN(S,” is less than °,T)

END.

“458)3

"T)

PREDEFINED TYPES 9

The above program produces the following output:

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHIMNG

SOMETHING is greater than SAMETHING
BLANKS APPEAR TO MAKE A DIFFERENCE

XXX is greater than ABCDEF

Strings can also be declared as constants, as in the following:

PROGRAM BAZ;
CONST SAMMY = "Hi there, I°’'m Sammy the String!”;

BEGIN
WRITELN{SAMMY)
END.

The use of STRING variables is discussed further in the next chapter, in
connection with the built-in procedures and functions of Apple Pascal.

(<>

A variable of type STRING cannot be indexed beyond its current dynamic
length. The following sequence will result in an invalid index run-
time error:

TITLE:= “1234":
TITLE[5] t= "5

Beware of zero-length strings: they cannot be indexed at all without
causing unpredictable results or a run-time error. If a program indexes
a string that might have zero length, it should first use the LENGTH
funcrion to see if the lenmgth is zero. If the length is zero, the
program should not execute statements that index the string. See
Chapter 3 for details on the LENGTH function.

Notice that a string value containing only one character is not the same
thing as a CHAR value; strings and CHARs are distinct data types. The
one exception is that a string constant containing only one character
has exactly the same form as a CHAR constant, and such a constant can be
used as either a CHAR value or a string value.

You cannot define a function of type STRING. However, there are built-
in functions of type STRING as described in the next chapter.

10 APPLE PASCAL LANGUAGE

___._.,..._......_”.—.-p—q_-|—-_I_-—-a—-—-—-_-d-—nn—-—-——#i-ﬂ—

 — - — - — i — -

AW

o

WoW W W W W W W W W W

i

&

WoW o e W

A A W oA

THE FILE TYPES

A NOTE ON TERMINOLOGY

For every file named F that is declared in a Pascal program, there is an
automatically declared variable named F~. This is the "wuffer wvariable"
of the file. Some Pascal manuals also use the looser term "window" to
describe the way that different file records can be loaded into the
buffer variable. This manual, instead, talks about a "file pointer"
associated with each open file. The file pointer points to one record
in the file, which is called the "current record." Please understand
that the file pointer is not a Pascal POINTER variable but just a
convenient way of discussing file records.

The following sections describe Apple Fascal’s special file features:
the INTERACTIVE file type, untyped files, predefined files, and a
special format for files of characters.

INTERACTIVE FILES

Like a TEXT file, an INTERACTIVE file is a file of characters. The
difference is in the way INTERACTIVE and TEXT files are handled by the
RESET, READ, and READLN procedures.

When a Pascal program READs characters from a TEXT file, the program
must first open the file with RESET. RESET automatically performs a GET
operation: that is, it loads the first character of the file into the
file’s buffer variable and then advances the file pointer to the next
character. A subsequent READ or READLN with a variable of type CHAR
begins its operation by first taking the character that is already in
the buffer variable and then performing a GET.

If the file is of type INTERACTIVE instead of TEXT, the opening RESET
does not perform a GET. The buffer variable is undefined and the file
pointer points to the first character of the file instead of the
second. Therefore, a subsequent READ or READLN has to begin its
operation by first performing a GET and then taking the character that
was placed in the buffer variable by the GET. This is the reverse of
the READ sequence used with a TEXT file.

There is one primary reason for using the INTERACTIVE type. If a file
is not a diskette file but represents a device such as the keyboard, it
is not possible to perform a GET on it until a character has been

typed. If RESET tried to do a GET, the program would then go no further
until a character was typed. With the INTERACTIVE type, the program
doesn’t perform a GET until it is executing a READ or READLN. The
standard predeclared files INPUT and OUTPUT are INTERACTIVE files
representing the console keyboard and screen; another predefined file
called KEYBOARD also represents the keyboard (see the section below on
Predefined Files)-.

PREDEFINED TYPES 11

UNTYPED FILES

In addition to the standard file types and the INTERACTIVE type, Apple
Pascal allows "untyped" files —- objects that are declared with the word
FILE and nothing more. Example:

VAR F: FILE;

Untyped files can only be used with the built-in functions BLOCKREAD and
BLOCKWRITE for high-speed data transfers.

An untyped file F can be thought of as a file without a buffer variable
F™. All I/0 to this file must be accomplished by BLOCKREAD and
BLOCKWRITE. These functions are described in the next chapter.

PREDEFINED FILES

The standard predefined files INPUT and OUTPUT refer to the keyboard and
the screen respectively. In addition to these, Apple Pascal provides a
predefined file called KEYBOARD. The difference between INPUT and
KEYBOARD is that when INPUT is used to refer to the keyboard, the typed
characters are automatically displayed on the screen; when KEYBOARD is
used, the characters are not automatically displayed. This allows a
Pascal program to have complete control over the response to characters
typed by the user.

All three predefined files are of type INTERACTIVE, and all three are
automatically opened wia RESET when the Pascal program begins
executing.

TEXTFILES

The Apple Pascal system provides that a TEXT or INTERACTIVE diskette
file that 1s ecreated with ".TEXT" as the last part of its title has a
special internal format. Such files are called "textfiles" in this
manual. Do not confuse textfiles with files that are of type TEXT or
INTERACTIVE but do not have titles ending in ".TEXT".

All parts of the Pascal System that deal with files of characters (such
as the editor) are designed to use the special textfile format; and if a
textfile is accessed by a Pascal program, then the Pascal program will
also use the special format. Therefore, the normal procedure is to use
a title ending in ".TEXT" whenever you create a diskette file of the
Pascal type TEXT or INTERACTIVE. The format of a textfile is as
follows:

At the beginning of the file is a 1¥24-byte header page, which contains
information for the use of the text editor. This space is respected by
all portions of the system. When a user Pascal program creates a
textfile (via REWRITE), the system will automatically create the

12 APPLE PASCAL LANGUAGE

T

il

1

-
WO W W W W e

W W

BlisEiiaiiaiiailaiaiial isiisiis
Y

i

m
5

W

3

header- When a user Pascal program accesses an existing textfile (via
RESET) the system skips the header. In other words, the header is
invisible to a user Pascal program using REWRITE and RESET.

V' +
When a program uses BLOCKREAD and BLOCEWRITE to access files; the
special textfile structure is not respected.

The system will transfer the header only on a diskette-to-diskette
transfer, and will omit it om a transfer to a serial device (thus
transfers from diskette to a printer or to the console will omit the
header) .

Following the header page, the text content itself appears in l@24=byte
text pages. Each text page is a sequence of lines, and the last line on
a page is followed by enough null characters (ASCII @) to fill out the
1824 bytes. A line is defined as:

[DLE indent] [text] CR

where the brackets indicate that the DLE and the indent code may be
absent and the text itself may be absent.

CR is the "Carriape Return" control character (ASCII 13), and may be
absent at the end of the last line in the file. DLE is the "Data Link
Escape" control character (ASCIT 16). If present it is followed by a
code indicating the indentation of the line. The code is 32 + the
number of spaces to indent. Thus any leading spaces on a line are
replaced by the DLE and the indent code.

The DLE and indent code and the nulls at the end of a text page are,
1like the header, invisible to a Pascal program. The DLE and indent are
automatically translated to leading spaces, and vice versa.

The end of the file is marked by the ETX control character (ASCII 3).

PREDEFINED TYPES 13

THE SET TYPES

APPLE Pascal supports all of the Standard Pascal constructs for sets.
Two limitations are imposed on sets:

- & set may not have more than 512 elements assigned to it.

= A set may not have any INTEGERs less than § or greater than
511 assigned to it.

A set of 512 elements will ocecupy 32 words of memory.

Comparisons and operations on sets are allowed only between sets whose
individual elements are of the same type. For example, in the sample
program below, the base type of the set § is the subrange type @..49,
while the base type of the set R is the subrange type l..1@#. The
underlying type of both sets is the type INTEGER, so the comparisons and
operations on the sets 5 and R in the following program are legal:

PROGRAM SETCOMPARE;
VAR S: SET OF f..49;
R: SET OF 1..100;

BEGIN
S5:= [#,5,10,15,29,25,30@,35,40,45];
R:= [1@,20,30,49,50,60,79,80,90];
IF S = R THEN
WRITELN("es. ooOps --x")
ELSE
WRITELN(“sets work”®):
S =5 +R
END.

In the following example, the comparison I = J is not legal since the
two sets are of two distinet underlying types.

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERO,ONE,TWO);
VAR I: SET OF STUFF;

J: SET OF P..2;

BEGIN

I:= [ZERO];

Ji= [1,2];

IF I = J THEN ... <<<< error here
END.

14 APPLE PASCAL LANGUAGE

a

PACKED VARIABLES

W W R W W el L e W W

PR EARAATEMMMEENNNNNN NN N
W W K K W

)" — —— — W N R — i S— i —] S— - —] — — i — i — — — i — e —

W W R B WK

PACK AND UNPACK

Apple Pascal does not require the Standard Pascal procedures PACK and
UNPACK, and these procedures are not provided. If a variable is PACKED,
all required packing and unpacking are done automatically on an
element-by-element basis.

PACKED FILES

Apple Pascal does not support PACKED FILE types. A PACKED FILE can be
declared, but the data in the file will not actually be packed.

PACKED ARRAYS

The Apple Pascal compiler supports PACKED ARRAYs as defined in Standard
Pascal. For example, consider the following declarations:

A: ARRAY[@..9] OF CHAR;
B: PACKED ARRAY[@..9] OF CHAR;

The array A will occupy ten l6-bit words of memory, with each element of
the array occupying one word. The PACKED ARRAY B on the other hand will
occupy a total of only 5 words, since each 16-bit word contains two
B-bit characters. Each element of B is 8 bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR. For
example:

C: PACKED ARRAY([@..1] OF P..3;
D: PACKED ARRAY[l..9] OF SET OF {..15;
D2: PACKED ARRAY([@..239,0..319] OF BDOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since only 2
bits are needed to represent the values in the range ¥..3. Therefore C
occupies only one l6-bit word of memory, and 12 of the bits in that word
are unused. The PACKED ARRAY D is a 9-word array, since each element of
D is a SET which can be represented in a minimum of 16 bits. Each
element of a PACKED ARRAY OF BOOLEAN, such as D2 in the above example,
occupies only one bit.

PREDEFINED TYPES 15

<
The details of exactly how variables are packed are unspecified. 1In

most cases, the minimum space into which an array can be packed iz one
word (two eight-bit bytes). For example, consider

BITS: PACKED ARRAY[@..7] OF BOOLEAN;

This is an eight-element array where each element requires one hit, so
you might expect it to occupy eight bits or one byte. In fact, it
occupies one word or two bytes. Furthermore, the two-dimensional array

BATS: PACKED ARRAY[@..3] OF PACKED ARRAY[@..7] OF BOOLEAN;
or its equivalent
BATS: PACKED ARRAY([(..3,(..7] OF BOOLEAN;

previous array,
words.

consists of four arrays. Each of them, like rthe
occupies one word. Therefore BATS occupies four

Note that a PACKED ARRAY OF CHAR always occupies
and a PACKED ARRAY OF §..255 always occupies one

one byte per character
byte per element.

Also, packing never occurs across word boundaries. This means that if
the type of element to be packed requires a number of bits which does
not divide evenly into 16, there will be some unused bits in each of the
words where the array is stored.

The following two declarations are NOT equivalent because of the way the
Pascal Compiler is implemented:

E: PACKED ARRAY[@..9] OF ARRAY[{..3] OF CHAR;
Fi: PACKED ARRAY[{..9,0..3] OF CHAR;

In the declaration of E, the second occurrence of the reserved word
ARRAY causes the packing option in the compiler to be turnmed off. E
becomes an unpacked array of 40 words. On the other hand, the PACKED
ARRAY F occupies only 2 words because the reserved word ARRAY occurs
only once in the declaration. If E is declared as

E: PACKED ARRAY[@..9) OF PACKED ARRAY[@..3] OF CHAR;
or as
E: ARRAY([{..9] OF PACKED ARRAY[@..3] OF CHAR;
F and E will have identical configurations.

In declaring a PACKED ARRAY, the word PACKED is only meaningful before
the last appearance of the word ARRAY in the declaration. When in
doubt, a

ARRAY is

ARRAY to

good rule of thumb for declaring a multidimensional PACKED
to place the word PACKED before every appearance of the word :
ensure that the resultant array will be PACEED.

16 APPLE PASCAL LANGUAGE

The array will only be packed if the type of each element of the array
is scalar, subrange, or a set and each array element ran be represented
in B bits or fewer. For an array whose elements are sets, this means
that the underlying type of the set must not contain more than 8
elements, and must not contain any integer greater than 255.

The following declaration will result in no packing whatsoever because
the final type of the array cannot be represented in a field of 8 hits:

G: PACKED ARRAY[@..3] OF @..19¢¢;
G will be an array which occupies four 16-bit words.

Note that a string constant may be assigned to a PACKED ARRAY OF CHAR
(if it has exactly the same length), but not to an unpacked ARRAY OF
CHAR. Likewise, comparisons between an ARRAY OF CHAR and a string
constant are illegal.

Because of their different sizes, PACKED ARRAYs cannot be compared to
ordinary unpacked ARRAYs.

& PACKED ARRAY OF CHAR may be printed out with a single write statement
(exactly as if it were a string):

PROGRAM VERYSLICK:
VAR T: PACKED ARRAY[@..1(] OF CHAR;
BEGIN
T:="HELLO THERE*;
WRITELN(T)
END.

PACKED RECORDS

The following RECORD declaration declares a RECORD with four fields.
The entire RECORD occupies one l6-bit word as a result of declaring it
to be a PACKED RECORD.

VAR R: PACKED RECORD
T,J,K: @..31;
B: BOOLEAN

END;

The variables I, J, K each take up five bits in the word.
variable B is allocated to the l6th bit of the same word.

The boolean

In mich the same manner that PACKED ARRAYs can be multidimensional
PACKED ARRAYs, PACKED RECORDS may contain fields which themselves are
PACKED RECORDS or PACKED ARRAYS. Again, slight differences in the way
in which declarations are made will affect the degree of packing

PREDEFINED TYPES 17

achieved.

For example, note that the following two declarations are not
equivalent:

VAR A:PACKED RECORD VAR B:PACKED RECORD

C:INTEGER; C:INTEGER;
F:PACKED RECORD F:RECORD
R: CHAR; R:CHAR
E: BOOLEAN K: BOOLEAN
END; END;
H:PACKED ARRAY [@..3] OF CHAR H:PACKED ARRAY [@..3] OF CHAR
END; END;

As with PACKED ARRAYs, the word PACKED should appear with every
occurrence of the word RECORD in order for the PACKED RECORD to retain
its packed gualities throughout all fields of the RECORD. In the above
example, only RECORD A has all of its fields packed into one word. 1In
B, the F field is not packed and therefore occcupies two l6-bit words.

It is important to note that a packed or unpacked ARRAY or RECORD which
is a field of a PACKED RECORD will always start at the beginning of the
next word boundary. This means that in the case of A, even though the F
field does not completely fill one word, the H field starts at the
beginning of the next word boundary.

A case varilant may be used as the last field of a PACKED RECORD, and the
amount of space allocated to it will be the size of the largest variant
among the various cases. The actual nature of the packing is beyond the
scope of this document.
VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF
TRUE: (Z:INTEGER};
FALSE: (M: PACKED ARRAY[@..3] OF CHAR)
END;

In the above example the B and F fields are stored in two bits of the
first lé=-bit word of the record. The remaining fourteen bits are not
useds The size of the case variant field is always the size of the
largest variant, so in the above example, the case variant field will
occupy two words. Thus the entire PACKED RECORD will occupy three
words.

USING PACKED VARIABLES AS PARAMETERS

No PACKED variable may be passed as a VAR (call-by-reference) parameter
to a PROCEDURE or FUNCTION. Packed variables may, however, be passed as
ordinary call-by-value parameters.

18 APPLE PASCAL LANGUAGE

.

-
]

AW R W W W W OE R W W W R W WWE R

a

12

THE LONG INTEGER TYPE

In Apple Pascal, the predefined INTEGER type can be modified by a length
attribute as in the following examples:

TYPE BIGNUM = INTEGER[12];
VAR FATS: INTEGER([25];

This defines BIGNUM as a type which can have any integer value requiring
not more than 12 decimal digits. FATS can have any integer value
requiring not more than 25 digits. The length attribute can be any
unsigned INTEGER constant up to and including 36.

This is a new kind of type, which is called a LONG INTEGER in this
manual. The LONG INTEGER is suitable for business, scientific or other
applications which need extended number lengths with complete accuracy.
A LONG INTEGCER is represented internally as a binary-coded decimal {BCD)
number; that is, each decimal digit of the value is represented in
binary. This means that there can be no rounding errors in working with
LONG INTEGER wvalues.

LONG INTEGER constants are alsc allowed. Any integer constant whose
value exceeds MAXINT is automatically a conmstant of the type LONG
INTEGER.

The integer arithmetic operatiomns (+, -, *, and DIV) can all be used
with LONG INTEGER values. However, MOD cannot be used with LONG
INTEGERs. In integer arithemetic, overflow occurs if any intermediate
or final result requires more than 36 decimal digits. When a LONG
INTEGER value is assigned to a LONG INTEGER variahle, overflow occurs if
the value requires more decimal digits than the defined length of the
variable.

An INTEGER value can always be assigned to a LONG INTEGER variable; it
is automatically converted to the appropriate length. However, a LONG
INTEGER wvalue can never be assigned to an INTEGER variable. If INTEGER
and LONC INTEGER values are mixed in an expression, the INTEGER values
are converted to LONG INTEGER and the result is a LONG INTEGER value.
LONG INTEGERs and REALs are incompatible; they can never be mixed in an
arithmetic expression or assigned to each other.

All of the standard relational cperators may be used with mixed LONG
INTEGER and INTEGER values.

The built-in procedure STR accepts a LONG INTEGER value as a parameter,
and converts it to a string of decimal digits. The built-in function
TRUNC accepts a LONG INTEGER value as a parameter, and returns the
correspanding INTEGER value if the absolute value of the LONG INTEGER is
less than or equal to MAXINT. These built-ins are described in the next
chapter; they are the only built-ins which accept LONG INTEGER
parameters.

PREDEFINED TYPES 19

An attempt to declare a LONG INTEGER in a parameter list will result in
a syntax error. This restriction may be circumvented by defining a type
which is a LONG INTEGER. For example:

TYPE LONG = INTEGER[18];
PROCEDURE BIGNUMBER (BANKACCT: LONG);

EXAMPLES:

VAR I: INTEGER;
L: INTEGER([N]; {where N is an integer constant <= 36 }
R: REAL;

I:= L {syntax error; the TRUNC function can be used to convert a
LONG INTEGER to an INTEGER}

Li=-L {correct, if -L does not require more than 36 digits; the
minus sign doesn’t count as a digit}

L:= T {always correct}

L:= R {never accepted}

R:= L {never accepted}

The memory space allocated for a LONG INTEGER is always an integral
number of words. Specifically, a variable of type INTEGER[n] ocecupies

(n + 3) DIV & +1
words.

Therefore, the actual limit on the value of a LONG INTEGER may exceed
the number of decimal digits specified in its declaration. For example,
a length of 5 through 8 occuples three words and can store values up to
and including 99999999; a length of 9 through 12 occupies four words and
can store values up through 999999999999; a length of 13 through 16
occupies five words and can store values up through 9999999999999999.

20 APPLE PASCAL LANGUAGE

CHAPTER 3

BUILT-IN PROCEDURES
AND FUNCTIONS

This chapter describes all the built-in procedures and functions of
Apple Pascal that differ from Standard Pascal. This does not include
the procedures and functions that are provided as library UNITs, e.g.
the graphics procedures and functions. Chapter 7 covers the library
UNITs provided with Apple Pascal.

Transcendental functions (e.g. the trig functiens SIN, COS, etc.) are a
special case. In Standard Pascal they are built-=in functions, but in
Apple Pascal they are in a library UNIT. The ATAN and LOG functions
differ slightly from Standard Pascal, and they are described in this
chapters The other transcendentals differ only in that to use them your
program must include a USES TRANSCEND statement as described in

Chapter 7.

f:t}

Since some of these built-in procedures and functions do no checking for
range validity of parameters, they may easily cause unpredictable
results. Those built-ins which are particularily dangerous are noted as
such in their descriptions. Any necessary range or validity checks are
your responsibility.

STRING BUILT-INS

In the following descriptions, a "string value" means a string variable,
a quoted string, or any function or expression whose value is a string.
Unless otherwise stated all parameters are called by value.

THE LENGTH FUNCTION

The LENGTH function returns the integer value of the length of a
string. The form is

LENGTH (STRG)
where STRG is a string wvalue. Example:

GEESTRING := “1234567°;
WRITELN((LENGTH(GEESTRING), * “, LENGTH({""))

This will print:

T 9

22 APPLE PASCAL LANGUAGE

e —— — i — —— . — . — i — - — . — i — i f—

B — e — . — i —— — N S— R S— i — i — 8 |

W oW W

[\ VR U VY VIt WV VR VRN VRV W VIT TV VAT VRNV AT R T TRV TR

AW

THE POS FUNCTION

The POS fupnction returns an integer value. The form is

POS (SUBSTRG, STEG)

POS function scans
STRG. POS returns

where bhoth SUBSTRG and STRG are string values. The
STRG to find the first occurrence of SUBSTRG within

the index within STRG of the first character in the matched pattern. If
the pattern is not found, POS returns zero. Example:
STUFF := “TAKE THE BOTTLE WITH A METAL CAP”;
PATTERN := "TAL";
WRITELN(POS(PATTERN, STUFF))
This will print:
26
The CONCAT function returns a string value. The form is
CONCAT (STRGs)
where STRGs means any number of string values separated by commas. This

function returns a string which is the concatenation of all the strings
passed to it. Example:

SHORTSTRING := “THIS IS A STRING”;
LONGSTRING := "THIS IS A VERY LONG STRING.";
LONGSTRING := CONCAT("START °“, SHORTSTRING, -7,

WRITELN (LONGSTRING)

LONGSTRING);

This will print:

START THIS IS5 A STRING-THIS IS A VERY LONG STRING.

BUIL-IN PROCEDURES AND FUNCTIONS 23

THE COPY FUNCTION

The COPY function returns a string value. The form is

COPY (STRG, INDEX, COUNT)
where STRG is a string value and both INDEX and COUNT are integer
values. This function returns a string containing COUNT characters
copied from STRG starting at the INDEXth position in STRG. Example:
TL := "KEEP SOMETHING HERE”;
KEPT := COPY(TL, POS(°5", TL), 9):
WRITELN (KEPT)
This will print:

SOMETHING

THE DELETE PROCEDURE

The DELETE procedure modifies the wvalue of a string variable.
is

The form

DELETE (STRG, INDEX, COUNT)

Where STRG is a string variable called by reference and modified, and
both INDEX and COUNT are integer values. This procedure removes COUNT
characters from STRG starting at the INDEX specified. Example:
OVERSTUFFED := "THIS STRING HAS FAR TOO MANY CHARACTERS IN IT.";
DELETE (OVERSTUFFED, POS{"HAS®, OVERSTUFFED)+3, 8):
WRITELN (OVERSTUFFED)
This will print:

THIS STRING HAS MANY CHARACTERS IN IT.

24 APPLE PASCAL LANGUAGE

v vy S

ne

W — i — i — i — E—— e i e e B — i — i —] — i — — — i — 0 —

e ERERRETREEEMMEENNN
R

|
i

o W e o e e o e e e e e

ol

[PURTY

THE INSERT PROCEDURE

The INSERT procedure modifies the wvalue of a string variable.
is

The form

INSERT (SUBSTRG, STRG, INDEX)

where SUBSTRG is a string value, STRG is a string variable called by
reference, and INDEX is an integer value. This inserts SUBSTRG into
STRG at the INDEXth position in STRG. Example:

ID := “INSERTIONS®;

MORE := “ DEMONSTRATE";

DELETE (MORE, LENGTH(MORE), 1);
INSERT (MORE, ID, POS("I0", ID));
WRITELN(ID)

This will print:

INSERT DEMONSTRATIONS

THE STR PROCEDURE

The STR procedure modifies the value of a string variable. The form is

PROCEDURE STR (LONG , STRG)

where LONG is an integer value, and STRG is a string variable called by
reference. LONG may be a LONG INTEGER.

This converts the value of LONG into a string. The resulting string is
placed in STRG. See Chapter 2 for more about the use of LONG INTEGERs.
Example:

INTLONG := 1@2@395@3;

STR(INTLONG, INTSTRING);

INSERT(”.”, INTSTRING, LENGTH(INTSTRING)-1);
WRITELN(”$*, INTSTRING)

This will print:

$1020395.03

The following program segment will provide a suitable dollar and cent
routine:

STR(L,S); INSERT(".”,S,LENGTH(S)-1); WRITELN(S)

where L and S are appropriately declared.

BUILT-IN PROCEDURES AND FUNCTIONS 25

INPUT AND OUTPUT BUILT-INS

OVERVIEW OF APPLE PASCAL |/O FACILITIES

This section deals with data transfers to and from all peripheral
devices, including diskette drives, the screen, the keyboard, printers,
etc. There are also certain "integral” devices such as the TIL pame-
control outputs and the built-in speaker, which are not considered as
1/0 devices; see Chapter 7. For complete information on Apple Pascal
file types, see Chapter 2.

Apple Pascal 1/0 facilities can be thought of as existing at four
different levels:

-~ Hardware-oriented I/0: the UNITREAD, UNITWRITE, and UNITCLEAR
procedures are the lowest level of control. They allow a
Pascal program to transfer a specified number of consecutive
bytes between memory and a device. They are not controlled by
filenames, directories, etc., but merely use device numbers
and (for diskette drives) block numbers.

- Untyped file 1/0: The BLOCKREAD and BLOCKWRITE functions
provide I/0 for untyped files (see Chapter 2). They make use
of filenames and directories but consider a file to be merely
a sequence of bytes -- not a sequence of records of a
particular type.

- Typed file I/0: The GET, PUT, and SEEK procedures treat a file
as a sequence of records. GET and PUT provide transfers
between individual file records and the file's buffer
variable, and SEEK moves the pointer to a specified record
within the file. The EOF function provides an indication of
when the end of the file has been reached.

= Text file I1/0: The READ, READLN, WRITE, and WRITELN procedures
provide transfers between a file of type TEXT or INTERACTIVE
and program variables. The PAGE procedure writes a
top-cf=form control character into a textfile. The EOLN
function provides an indication of when the end of a text line
has been reached. This 1is the highest level of 1/0 control,
with many sophisticated features.

As mentioned in Chapter 2, the INPUT, OUTPUT, and KEYBOARD files are
predefined and need not be declared in a program. All other files must
first be declared in the VAR section of a program, and must then be
opened by means of RESET or REWRITE before they can be used in any way.

Opening a file is a means of associating the file’s identifier (declared

in the program) with its tirle (used by the operating system). If the
file to be used does not already exist, open it with REWRITE; this

26 APPLE PASCAL LANGUAGE

T

e
1
s

EFEREREODEEOMMN |
Anlialiaiialialicttcitaiizilaiiaiisiix
Nl w ol e W ww

&

m
W

S

causes the operating system to create a directory entry for the file.

1f REWRITE is used with the title of an existing file, the existing file
is destroyed and a2 new directory entry is created. RESET is used to
open an existing file and can also be used to move the file pointer back
to the beginning of a file that is already open. A CLOSE procedure is
also provided. It offers several options for the disposition of the
file when the program is through using it.

If an 1/0 operation is unsuccessful, the operating system will normally
terminate program execution. However, there is a compiler option to
disable this feature. The IORESULT function allows the program itself
to check on the status of the most recent I/0 operation and take
appropriate acticn.

THE REWRITE PROCEDURE

This procedure creates a new file and marks the file as open. As
explained below, it can also be used to open an existing file. The
form is

REWRITE (FILEID , TITLE)

vhere FILEID is the identifier of a previously declared file, and TITLE
is a string containing any legal file ritle.

If the device specified in the TITLE is not a diskette, then the file is
opened for both input and output; TIf the TITLE indicates a diskette
file, REWRITE creates a new file and opens it for input and output.

If the file is already open, an 1/0 error occurs (see ICRESULT below).
The file remains opens.

An example showing the use of REWRITE in a program follows the
description of GET and PUT below.

THE RESET PROCEDURE

This procedure opens an existing file for both reading and writing.
There are two forms:

RESET (FILEID , TITLE)
RESET (FILEID)

where FILEID is the identifier of a previously declared file, and TITLE
is a string containing any legal file title.

If a TITLF is used and the specified file is already open, an 1/0 error

oceurs (see IORESULT, below). The file’s state remaips unchanged. 1f
the file does not exist, an I/0 error occurs.

BUIT-IN PROCEDURES AND FUNCTIONS 27

A RESET without the TITLE can only be used on an open file; the effect

is simply to reposition the file pointer as if the file had just been
opened.

If the file is not of type INTERACTIVE, RESET automatically performs s
GET action —- that is, it loads the first record of the File into the
file®s buffer variasble and advances the file pointer to the second
record. If the file is INTERACTIVE, no GET is performed; the buffer
variable s value is undefined and the file pointer points to the first
record. (GET is described further on.)

Kote that RESETting a non-INTERACTIVE file to an output-only device,
such as PRINTER:, may cause a run—-time error as a result of the
automatic GET caused by the RESET.

When an existing file is opened with RESET and is then used for output ,
only the file records actually written to are affected.

An example showing the use of RESET in a program follows the description
of GET and PUT helow.

THE CLOSE PROCEDURE

This procedure closes a file which was previously opened with RESET or
REWRITE. The form is

CLOSE (FILEID [, OPTION])

whera FILEID is the identifier of a previcusly declared file, and OPTION
may be any one of the following:

NORMAL -- a normal close is done, i.e. CLOSE simply sets the
file state to closed. If the file was opened using REWRITE
and is a disk file, it is deleted from the directory.

LOCK -- the file is made permanent in the directory if the
file is on a disk and the file was opened with a REWRITE;:
otherwise a NOERMAL close is done. If the TITLE matches an
existing diskette file, the original contents of the file are
lost.

PURGE -- if the file is a diskette file, it is deleted from
the directory. 1In the special case of a diskette file that
already exists and is opened with REWRITE, the original file
remains in the directory, unchanged. If the file is not a
diskette file, the associated unit will po off-line.

CRUNCH == this is like LOCK except that it locks the
end-of-file to the point of last access, i.e. everything after
the last element accessed is thrown away. If the TITLE
matches an existing diskette file, the oripinal contents of
the file are lost.

28 APPLE PASCAL LANGUAGE

TLIT

1Y
"

—_—

-

—-———

, [
WOW W W W R

. N RN EELERE.
-

If the OPTION is omitted, the NORMAL close is performed.

All CLOSEs regardless of the optfon will mark the file closed and will
make the file buffer wvariable FILEID™ undefined. CLOSE on a CLOSEd file
causes no action.

An example showing the use of CLOSE in a program follows the description
of GET and PUT below.

THE EOF FUNCTION

This function returns a BOOLEAN vslue to indicate whether the end of a
specified file has been reached. When EOF is true, nothing more can be
read from the file. The form is

EOF [(FILEID)]
1f (FILEID) is not present, INFUT is assumed.

EOF is false immediately after the file is opened, and true on a closed

file. Whenever FEOF (FILEID) is true, FILEID™ is undefined.

After 2 GET, EOF is true if the GET attempted to access a record that is
after the end of the file. After a PUT or WRITE, EOF is true if the
file cannot be expanded to accommodate the PUT or WRITE (because of
limited diskette space, for example).

For details on FOF after a READ or READLN operation, see the
descriptions of READ and READLN further on in this chapter, and
Appendix C.

When EOF becomes true during a READ or GET operatiom, the value of
FILEID™ is not defined.

When keyboard imput is being read (via the predefined files INFUT or
KEYBOARD), EOF only becomes true when the end-of-file character is
typed. The end-of-file character is ctrl-C (ASCI1 3). EOF remains Etrue
until the file INPUT or KEYBOAFD is RESET, and no more typed characters
can be read until this is done.

An example showing the use of FEOF in a program follows the description
of GET and PUT below.

BUILT-IN PROCEDURES AND FUNCTIONS 29

THE EOLN FUNCTION

EOLN is defined only for a file of type TEXT, FILE OF CHAR, or
INTERACTIVE. This function returns a BOOLEAN value to indicate whether

the pointer for a specified text file is at the end of a line. The
form Is

EOLN [(FILEID)]
If (FILEID) is not present, INPUT is assumed.

EOLN returns false immediately after the file is opened, and true on a
closed file.

When a GET finds an end-of-line character (the CR character, ASCIT 13)
in the file, it sets EOLN to true. Instead of loading the end-of-line
character into the file”s buffer variable it loads a space (ASCII 32).

For the behavior of EOLN after a READ or READLN, see the descriptions of
these statements further one.

THE GET AND PUT PROCEDURES

These procedures are used to read or write one logical record from or to
a typed file. The forms are

GET (FILEID)
PUT (FILEID)

where FILEID is the identifier of a previcusly declared typed file. A
typed file is any file for which a type is specified in the variable
declaration, as opposed ro untyped files (see Chapter 2).

GET (FILEID) advances the file pointer to the next record and moves the
contents of this record into the file buffer wvariable FILEID™. The next
GET or PUT with the same FILEID will access the next record in

Sequence.

PUT (FILEID) advances the file pointer to the next record and puts the
contents of FILEID™ into this record. The next GET or PUT with the same
FILEID will access the next record in sequence.

The actual physical disk access may not occur until the next time the
physically associated block of the disk is no longer considered the
current working block. The kinds of operation which tend to force the
block to be written are: a SEEK to elsewhere in the file, a RESET, and
CLOSE. Successive GETs or PUTs to the file will cause the physical I/0
to happen when the block boundaries are crossed.

The following two example programs illustrate the use of REWRITE, RESET,
CLOSE, EOF, GET, and PUT. The first program creates a new file of type

30 APPLE PASCAL LANGUAGE

e

W oW oW W oW oW oW oW momowow mow ow w

()
o —

)

A WL W&

N W

REAL, with the title REAL.DATA, and puts ten REAL values inte it. The

values are supplied by the user.

To obtain the values, the program uses a WRITE to display a prompt on
the screen and a READ to accept the value typed by the user. READ and
WRITE are described in detail further on in this chapter.

PROGRAM MAKEFILE;

VAR F: FILE OF REAL;
I: INTEGER;

BEGIN
(*Open with REWRITE since this is a new file.*)
REWRITE(F, “*REALS.DATA");
(*Read 1@ numbers and store them in the file.*)
FOR I:=1 TO 1@ DO BEGIN
(*Put a prompt on the screen.¥*)
WRITE(" ==>");
(*Read a number from the keyboard.¥*)
READ(F™);
(*Store the number in the file.*)
PUT(F)
END ;
(*Close the file and lock {it.*)
CLOSE(F, LOCK)
END.

The second program reads values from the file created by the first
program, and displays them on the screen.

PROGRAM READFILE;
VAR F: FILE OF REAL;

BEGIN
(*0pen with RESET since we want to read the file¥)
RESET(F, “*REALS.DATA");
(*Read each number from the file and display them*)
WHILE NOT EOF(F) DO BEGIN
(*Display the current number om the screen%)
WRITELN(F~);
(*Advance to the next number®)
GET(F)
END 3
(*Close the file*)
CLOSE(F) =
END.

Note that these programs offer no flexibility as to the title of the
file. The example under READLN below shows how to let the user specify
the title of the file to be used.

BUILT-IN PROCEDURES AND FUNCTIONS 31

THE IORESULT FUNCTION

This function returns an integer value which reflects the status of the
last completed 1/0 operation. The form is

IORESULT

The values returned by IORESULT are as follows (also see Table 2):

@ No error; normal LI/O completion

1 Bad block on diskette (not used on Apple)

2 Bad device (volume) number

3 Illegal operation (e.g., read from PRINTER:)

4 Unknown hardware error (not used on Apple)

5 Lost device -- no longer on line

6 Lost file -- file is no longer in directory

7 Bad title -- illegal filename

8 No room -- insufficient space on diskette

9 No device —= volume is not on line
1@ No such file on specified volume
11 Duplicate file title
12 Attempt to open an already open file
13 Attempt to access a closed file
14 Bad input format —— error in reading real or integer
15 Ring buffer overflow —— input arriving too fast
16 Write-protect error -- diskette i{s write-protected
B4 Device error -- bad address or data on diskette

In normal operation, the Compiler will generate code to perform run-
time checks after each I/0 operation except UNITREAD, UNITWRITE,
BLOCKREAD, or BLOCKWRITE. This causes the program to get a run-time
error on & bad I/0 operation. Therefore if you want to check IORESULT
with your own code in the program, you must disable this compiler
feature by using the (*$I-%*) option (see Chapter 4).

Note that IORESULT only gives a valid return the first time it is
referenced after an 1/0 operation. If it is referenced apain (without
another 1/0 operation), it will always return @.

K

INTRODUCTION TO TEXT 1/O

In addition to PUT and GET, Apple Pascal provides the standard
procedures READ, READLN, WRITE, and WRITELN, collectively known as the
text 1/0 procedures. They perform the same tasks as in standard Pascal
and have the same syntax (with the addition of STRING variables).

However, the details of their operation are specific to Apple Pascal and

can be complicated. Also, the use of STRING variables and the
distinction between TEXT and INTERACTIVE files have important effects.

32 APPLE PASCAL LANGUAGE

Hit

1
r

LLE

mmmmmW
AW W W Ww W w w

idliaiainilaiaiaiiak

mmm m
W W

-

iy

mam
R

8

The text I/0 procedures can only be used with files of type TEXT or
INTERACTIVE. As already mentioned, RESET makes a distinction between
these two file types: when a TEXT file is RESET, a GET is automatically
performed but when an INTERACTIVE file is RESET, no GET is performed.
This requires READ and READLN to be rather complex procedures. Like
many other complex creatures, they will behave simply if you use them
simply. Therefore, this manual 1s written with some assumptions in mind
about how they will be used. These assumptions can be translated into
the following specific suggestions:

- When using the text I/0 procedures don’t use GET or PUT, and
don“t refer explicitly to the file buffer wariable F~. The
reason is that the text 1/0 procedures themselves use GET and
PUT in complicated ways.

- Don’t mix reading and writing operations on the same diskette
textfile. If you read from a textfile, CLOSE it and reopen it
before writing to it; and vice versa.

- To open an existing diskette textfile for reading, always use
RESET. To open an existing diskette textfile for writing,

always use REWRITE.
- Den“t use READ with a STRING variable. Use READLN.

- Don‘t use the EOLN function with READLN, and don’t use it with
STRING wariables.

If you follow these suggestions, the text 1/0 procedures will work
exactly as described in the following pages. These are not rules of
Pascal; there is nothing in the system that will enforce them. However,
the exact details of what happens if you ignore the suggestlons are
beyond the scope of this chapter.

There may be situations in which these assumptions and suggestions are
too restrictive. If so, you will need the complete details on how READ
and READLN behave in all possible situations, as given in Appendix C.

In particular, you need the information in Appendix C if you want to mix

reading and writing operations or overwrite part of an existing text
file without destroying all of the original contents.

THE READ PROCEDURE

This procedure may be used only on TEXT (FILE OF CHAR) or INTERACTIVE
files. It allows characters and numeric values to be read from a file
without the need for explicit use of GET or explicit reference to the
window variable. The form is

PROCEDURE READ ([FILEID,] VBLs }

where FILEID is the identifier of a TEXT por INTERACTIVE file which must

BUILT-IN PROCEDURES AND FUNCTIONS 33

be open. If the FILEID is omitted, INPUT is assumed. VBLs means one or
more variables separated by commas. The variables may be of type CHAR,

STRING, INTEGER, LONG INTEGER, or REAL. (But you should use READLN for

STRING wvariables).

READ reads wvalues from the file and assigns them to the wvariables in
sequence.

READ With a CHAR Variable

For a CHAR wvariable, READ reads one character from the file and assigns
that character to the variable. There are two special cases: Whenever
the end-of-line character (ASCIL 13) is READ, the value assigned to the
CHAR variable is a space (ASCII 32), not a CR. Whenever EOF becomes
true, the value assigned teo the CHAR variable is not defined.

After the READ, the next READ or READLNK will always start with the
character immediately following the one just READ.

The workings of EOLN and EOF depend on whether the file is of type TEXT
or INTERACTIVE. For a TEXT file, EOF is true when the last text
character in the file has been READ. EOLN 1is true when the last text
character on a line has been READ and whenever EOF is true. (A "text
character”" here means a character that is not the end-of-=line character
or the end=-of-file character.)

For an INTERACTIVE file, EOF is not true until the end-of-file character
has been READ. EOLN {s not true until the end-of-line character at the
end of the line has been READ or until EOF is true.

If you are using READ with a CHAR variable and you need to use EOLN, you
may be able to simplify the situation by using READLN with a STRING
variable instead; this gives you line-oriented reading without the need
to check EOLN (see below).

READ With a Numeric Variable

For a variable of one of the numeriec types, READ expects to read a
string of characters which can be interpreted as a numeric value of the
same CLype. Any space or end-of-line characters preceding the numeric
string are skipped: and a space, end-of=-line, or end=-of=file is expected
after the numeric string. If a numeriec string is not found after
skipping spaces and end-of-lines, an I/0 error oceurs. Otherwise, the
string is converted to a numeric wvalue and the value is assigned to the
variable.

After the READ, the next READ or READLN will always start with the
character immediately followlng the last character of the numeric
string.

34 APPLE PASCAL LANGUAGE

PEER AT ME MM AWM E NN NN NN N NN
Lhmmwmmmmmwmmmmumwwmmdw{bi

If the last character of the numeric string is the last character on the
line, then EOLN will be true. If the last character of the numeric
string is the last character in the file, then EOF and EOLN will both be

Erués

1f nothing but spaces are found before the EOF, a value of { is READ.

Note that the behavior of READ with a numeric variable is exactly the
same regardless of whether the file is TEXT or INTERACTIVE.

THE READLN PROCEDURE

This procedure may be used only on TEXT (FILE OF CHAR) or INTERACTIVE
files. It allews line-oriented reading of characters, strings, and
numeric values. The form is

PROCEDURE READLN ([FILEID,] VBLs)

where FILEID is the identifier of a TEXT or INTERACTIVE file which must
be open. If the FILEID is omitted, INPUT is assumed. VBLs means one or
more variables separated by commas. The variables may be of type CHAR,
STRING, INTEGER, LONG INTEGER, or REAL.

READLN works exactly like READ, except that after a value has been read
for the last variable, the remainder of the line is skipped (including
the end-of=line). After any READLN, the next READ or READLN will always
gtart with the first character of the next line, if there is a next
line. If there is no next line, EOF will be true.

READLN with a STRING variable reads all the characters up to but not
including the end-of=line character. Thus repeated READLN's with a
STRING variable have the effect of reading successive lines of the file

as stringss

One of the most common uses of READLN with a STRING variable is to read
a string of characters from the CONSOLE: device. In the following
example, which is a modification of the previous example under GET and
PUT, READLM is used to read a filename typed by the user:

BUILT-IN PROCEDURES AND FUNCTIONS 35

PROGRAM MAKEFILE;

VAR F: FILE OF REAL;
1: INTEGER;
TITLE: STRING;

BEGIN
(*Ask user for title.*)
WRITE(Type name of file: “);
{*Accept line typed by user.%*)

READLN (TITLE);
(*If title has no suffix, add .DATA suffix.*)

IF POS(".”, TITLE)=f THEN TITLE:=CONCAT(TITLE, ".DATA");

{*0pen with REWRITE since this is a new file*)
REWRITE(F, TITLE);

(*Remainder of program is identical to previous example.*)

Another useful example fs given below under WRITE and WRITELN.

THE WRITE AND WRITELN PROCEDURES

These procedures may be used only on TEXT (FILE OF CHAR) or INTERACTIVE
files. They allow characters, strings, and numeric values to be written

to a file without the need for exglici: use of PUT or explicit reference
to the window variable. Also, WRITELN allows line-oriented output. The
forms are

WRITE ([FILEID,] [ITEMs])
WRITELN [([FILEID,] [ITEMs])]

where FILEID is the identifier of a TEXT or INTERACTIVE file which must
be open. If the FILEID is omitted, OUTPUT is assumed.

ITEMs means one or more ITEMs separated by commas. Each ITEM has one of
the following forms:

EXPR
or
EXPR : FIELDWIDTH
or
EXPR : FIELDWIDTH : FRACTIONLENGTH
where EXPR is an expression whose value is to be written, FIELDWIDTH is

an INTEGER expression which specifies the minimum number of characters
to be written, and FRACTIONLENGTH is an INTEGER expression which

36 APPLE PASCAL LANGUAGE

{

oW oW oW W oW W W oWl OW oW Wl oWww W e

(VA |

GO B L
Y

W — i —— — (— i p— i —] e — i —] — - — i — i — - f— i — [et o

VY

specifies the number of digits to be written after the decimal point if
EXPR is of type REAL. The default FRACTIONLENGTH is 5; the default
FIELDWIDTH is 1. Feor a non-negative REAL value, one space is always
written before the first digit; for a negative REAL value, the minus
sign occcupies this position.

WRITE evaluates the expressions and writes their wvalues to the file in
sequence. If EXPR is of type CHAR, STRING, or PACKED ARRAY of CHAR,
WRITE writes the character(s) to the File and advances the file
pointer. If a FIELDWIDTH has been given and the number of characters
written is less than specified, leading spaces are added to fill the
field.

If EXPR is of a numeric type, WRITE converts the value to a string of
characters in standard Pascal numeric format, writes this string to the
file, and advances the pointer. If the wvalue 1is REAL and a
FRACTIONLENGTH has been given, the specified number of digits are
written after the decimal point; if no FRACTIONLENGTH is given, five
decimal places are written. If necessary, the value is rounded (not
truncated) to the number of decimal places avalilable. If a FIELDWIDTH
has been given and the number of characters written is less than
specified, leading spaces are added to fill the field.

WRITELN works exactly like WRITE, except that after the last value has
been written a return character is written to end the line. This allows
line=oriented output with string expressions.

OUTPUT is the identifier of a predeclared INTERACTIVE file which can be
used with WRITE and WRITELN. All characters written to OUTPUT are
displayed on the console screen. When a program is writing to OUTPUT,
the user may type ctrl-5 to stop the output. The program halts until
another character is typed, then resumes the output where it left off.
Also, the user may type ctrl-F. This halts the displaying of characters
on the console screen, but the program continues to run.

The following example program illustrates a number of useful

techniques. It uses line-oriented 1/0 with STRING wvariables, but
performs character manipulations on the STRING variables. It also shows
a useful trick for opening a file for output which may or may not exist
already. The effect of the program is to read the input file line by
line, remove any leading periods from the lines, and write the lines out
to the output file.

PROGRAM FLUSHPERIODS ;
CONST PERIOD=".";

VAR INFILE, OUTFILE: TEXT;
INNAME, OUTNAME, LINEBUF: STRING;

BUILT-IN PROCEDURES AND FUNCTIONS 37

BEGIN

(*First get the files open.%*)
(*Cet input filename.*)
WRITE(“Name of input file: ")
READLN (INNAME) ;
(*Supply the default suffix .TEXT if needed.*)

IF POS(".", INNAME)=Q THEN INNAME:=CONCAT (INNAME, " .TEXT*):

(*Turn off automatic error checking so program can do it.#*)
(#51-#)
(*Input file should already exist, so open with reset.*)
RESET (INFILE, INNAME);
(*If it doesn’t work, complain and stop program.k)
IF IORESULT<>{ THEN BEGIN
WRITELN(“File not found.”’);
EXIT (PROGRAM)
END;
(*Turn automatic error checking back on.*)}
(%514%)

(*Get output filename.*)
WRITE("Name of output file: ");
READLN (OUTHAME) ;

(*Supply default suffix .TEXT if needed.?)

IF POS(".", OUTNAME)=0 THEN OUTHAME:=CONCAT (OUTMAME, “.TEXT"):

{*0pen file with rewrite.*)
REWRITE (OUTFILE,OUTNAME) ;

(*FMow do the joh.#*)
WHILE (HOT EOF({INFILE)) AND (NOT EOF(OUTFILE)) DO BEGIN
READLN (INFILE,LINEBUF);
IF LENGTH(LINERUF) >§ THEN
IF POS(PERIOD, LINEBUF)=1 THEN DELETE(LIKEBUF, 1, 1)
WRITELN (OUTFILE, LINEBUF)
END;

(*How clean up.*)
(*If the output file isn“t complete...*)
IF EOF(OUTFILE) THEN BEGIN
WRITELN("Not enough room in output file!”);
(*+«++Then throw 1t away.*)
CLOSE (OUTFILE, PURGE)
END
(*If it"s okay, then lock it into the directory.*)
ELSE CLOSE(QUTFILE,LOCK);
CLOSE(INFILE)
END.

38 APPLE PASCAL LANGUAGE

Tt

L

_ﬂ_lﬂu

L U U VTt T FT T TR

IRIIAALBLIALIRVIRL

A ERENNEN
Y

E

| B RARN!
d Wl I

THE PAGE PROCEDURE

This procedure sends a top-of—form character (ASCII 12) to the file.
The form 1is

PAGE { FILEID }

where FILEID is the identifier of an open file of type TEXT or
INTERACTIVE.

THE SEEK PROCEDURE

This procedure allows the program to move a file pointer to any
specified record in a file that is not a textfile. This allows random

access to file records. The form is
SEEK (FILEID , RECKUM)

where FILEID is the identifier of an open file that is not a
textfile(i.e. not created with the .TEXT suffix), and RECNIM is an
inteper value interpreted as a record number in the file.

This procedure changes the file pointers so that the next GET or PUT
from/ta the file uses the record of FILEID specified by RECNUM. Records
in files are numbered from @. A CET or PUT must be executed between
SEEK calls since two SEEKs in a row may cause unexpected, unpredictable
junk to be held in the window and associated buffers. Immediately after
a SEEK, EOF will return false; a following GET or PUT will cause EOF to
return the appropriate value.

The following sample program demonstrates the use of SEEK to randomly
access and update records in a file:

PROGRAM RANDOMACCESS;
{*Allows update of any selected record in a file.*)
VAR
RECNUMBER: INTEGER;
FNAME: STRING;
VITALS: FILE OF RECORD
NAME: STRING[2@];
- DAY ,MONTH, YEAR: INTEGER;
ADDRESS: STRING [50];
ALIVE: BOOLEAN
END;

BUILT-IN PROCEDURES AND FUNCTIONS 39

BEGIN

(*0brain filename.*)

WRITE(“Enter filename: “):

READLN (FNAME) ;
(*Use RESET to preserve existing contents of file; but if it doesn’t
exist, use REWRITE to create it.%*)

(*51-*)

RESET (VITALS, FNAME});

IF IORESULT<>@ THEN REWRITE(VITALS, FNAME);:

(*514%)

(*Repeat the follewing "forever," i.e. until EXIT is caused by user
typing ctrl-C and causing EOF (INFUT), or by lack of diskette space for
new records.*)
WHILE TRUE DO BEGIN
{#0btain record number; quit if user types ctrl-C, causing EOF.#)
WRITE (“Enter record number: *);
READLN (RECNUMBER) ;
IF EOF THEN BEGIN
CLOSE(VITALS, LOCK);
EXIT(PROGRAM)
END;

(*GET the specified record*)
SEEK (VITALS,RECRUMBER) ;
GET (VITALS);

(*Update the record#*)
WITH VITALS™ DO BEGIN
WRITELN (NAME) ;
WRITE(Enter correct name: “):
READLN (NAME) :
WRITELN (DAY);
WRITE (“Enter correct day: “);
READLN (DAY);
(*...and so forth with other fields of record.*)
END;

(*Now SEEK the same record again, since the GET advanced the file
pointer to the next record after it got the current record into
VITALS™ *)

SEEK (VITALS ,RECNUMBER) ;

(*PUT updated record into file; exit if this causes EOF.*)

PUT (VITALS);

IF EOF(VITALS) THEN BEGIN
WRITELN(“Not enough file space!”);
EXIT(PROGRAM)

END
END
END.

40 APPLE PASCAL LANGUAGE

FANNERENNARNNASNRNSN

— i —

_nm

iy

R B WE W' E W W W e w

u

L

W & Wk W

il & &

THE UNITREAD AND UNITWRITE PROCEDURES

THESE ARE DANGEROUS PROCEDURES

These are the low-level procedures which do device-oriented I/0. The

forms are

UNITREAD (UNITNUMEER, ARRAY, LENGTH [,
UNITWRITE (UNITNUMBER, ARRAY, LENGTH [,

[BLOCKNUMBER] [, MODE]])
[BLOCKNUMEER] [, [MODE]])

where:

UNITNUMEER, an integer, is the volume number of an 1/0
device. The Apple Pascal Operating System Reference Manual
describes these numbers.

ARRAY is the name of a packed array, which may be subscripted
to indicate a starting position. This is used as the starting
address to do the transfers From/to. A string may alsec be
used, but it should have a subscript greater than @, since the
Pth element of a string contains data which usually should not
be transmitted.

LENGTH is an inteper value designating the number of bytes to
transfer.

BLOCKNUMEER, an integer, is meaningful only when using a disk
drive and is the absolute block number at which the transfer
will start. TIf the BLOCENUMBEER is left out, @ is assumed.

MODE, an integer in the range @..15, is optional; the default
is @. It contrels two UNITWRITE options which are described
below. MODE has no effect on UNITREAD.

The UNITWRITE options controlled by the MODE parameter apply only to
text-oriented I/0 devices such as the console or s printer; they do nof
apply to diskette drives. Both options are enabled by default, if no
MODE parameter is supplied.

One oprion is conversion of DLE codes.=- In a Pascal textfile, any
leading spaces at the beginning of & line are represented by a DLE
character (ASCIT 16) followed by a code value which is 32 plus the
number of spaces. On output to & non-block-structured device such as a
printer, the DLE comversion aption detects the DLE code and converts it
into a sequence of spaces.

Conversion of DLE codes is disabled by a MODE value that has a onec in
Bit 3 (see below).

The other option is autamatic line feeds. 1In a Pascal textfile, the end

of each line is marked by the end-cf-line character CR (ASCIT 13)
without any line-feed character. On output to a non-block-structured

BUILT-IN PROCEDURES AND FUNCTIONS 44

device such as a printer, the automatiec line—feed option inserts an LF
character (ASCII I@) after every CR character (ASCIT 13).

Automatic line feeds are disabled by a MODE value that has a one in
Bit 2 (see below).

Only Bit 2 and Bit 3 of the MODE value have any significance. Bit 2, by
itself, corresponds to a value of 4, and Bit 3 by itself corresponds to
a value of 8. The following values can be used to control the options;

- MODE=f (the default value) causes both options to be enabled.

~ MODE=4 causes automatic line feeds to he disabled, while
leaving DLE conversion enabled.

- MODE=8 causes DLE comversion to be disabled, while leaving
automatic line feeds emabled.

- MODE=12 dissbles both DLE conversion and automatic line
feeds.

THE UNITBUSY FUNCTION

This is a UCSD Pascal procedure used to indicate whether a specified
device is busy. But since the I/0 drivers on the Apple are not
interrupt driven, UNITBUSY will always return the value FALSE. To test
whether a character is available from the Apple keyboard, use the
KEYPRESS function (see Uhapter 7).

THE UNITWAIT PROCEDURE

This is a UCSD Pascal procedure which waits for a specified device to
complete the 1/0 in progress. But since the I/0 drivers on the Apple
are not interrupt driven, UNITWAIT does nothing.

42 APPLE PASCAL LANGUAGE

E =

e B B S e ¥ s o] [et

mEmmmEEm W
WA WA W W R W

THE UNITCLEAR PROCEDURE

This procedure cancels all 1/0 operations to the specified unit and
resets the hardware to its power-up state. The form is

UNITCLEAR { UNITNUMBER)

IORESULT is set to a non-zero value if the specified unit is not present
(you can use this to test whether or not a given device is present ino
the system). The form

UNITCLEAR (1)

flushes the type—ahead buffer for CONSOLE: and resets horizontal
scrolling te full left (displays leftmost 4@ characters on Apple’s
screen}.

THE BLOCKREAD AND BLOCKWRITE FUNCTIONS

These functions transfer data to or from an untyped file. They return
an integer value which is the number of blocks of data actually
transferred. The forms are

BLOCKREAD (FILEID, ARRAYNAME, BLOCKS [, RELELOCK])
BLOCEWRITE (FILEID, ARRAYNAME, BLOCKS [, RELBLOCK])

where

FILEID must be the identifier of a previously declared untyped
file.

ARRAYNAME is the identifier of a previously declared array.
The length of the array should be an integer mltiple of 512.
ARRAYNAME may be indexed to indicate a starting pesition in
the array.

BLOCKS is the number of blocks to be transferred.

RELBLOCE is the block number relative to the start of the

file, the zero-th block being the first block in the file. If
- no RELBLOCK is specified, the reads/writes will be done

sequentially. Specifying RELBLOCK moves the file pointer.

WARNING: Caution should be exercised when using these functions, as the

array bounds are not heeded. EOF(FILEID) becomes true when the last
block in a file is read.

BUILT-IN PROCEDURES AND FUNCTIONS 43

= e e 1]

The following program illustrates the use of BLOCKREAD and BLOCKWRITE.
PROGRAM FILEDEMO;

VAR
BLOCKNUMBER , BLOCKSTRANSFERRED: INTEGER ;
BADTIO: BOOLEAN;

G,F: FILE;
BUFFER: PACKED ARRAY [J..511] OF CHAR;

{* This program reads a diskfile called "SOURCE.DATA’ and copies
the file into another diskfile called "DESTINATION® using untyped
files and the built-ins BLOCKREAD and BLOCKWRITE *)

BEGIN
BADIO: =FALSE;
RESET (G, “SOURCE.DATA");
REWRITE(F, "DESTINATION");
BLOCKNUMBER : =#;
BLOCKSTRANSFERRED: =BLOCKREAD (G, BUFFER, 1, BLOCKNUMBER)
WHILE (NOT EOF(G)) AND (IORESULT=@) AND (NOT BADID) AND
(BLOCKSTRANSFERRED=1) DO
BEGIN
BLOCKSTRANSFERRED: =BLOCKWRITE (F,BUFFER, 1 ,BLOCKHUMBER) ;
BADIO:=((BLOCKSTRANSFERRED<1) OR (IORESULT<>@));
BLOCENUMBER : =BLOCKNUMBER+1 ;
BLOCKSTRANSFERRED ; =BLOCKREAD (G ,BUFFER, 1, BLOCKNUMBER)
END;
CLOSE (F,LOCK)
END.

44 APPLE PASCAL LANGUAGE

B EEREEE.
YRS

MWWl LW

Tatigliigl bttt i it
AR

ALELELELLLLLEL.
W W OR W W

"
&

i

MISCELLANEOUS BUILT-INS

THE ATAN FUNCTION

The ATAN function is simply a different identifier for the ARCTAN

function of Standard Pascal. Along with the other transcendental
functions, it is part of the TRANSCEND UNIT supplied with Apple Pascal

(see Chapter /).

THE LOG FUNCTION

This function returns a real value which is the logarithm (base 1@) of

its argument. Along with the other transcendental functions, it is part
of the TRANSCEND UNIT supplied with Apple Pascal (see Chapter 7). The
form is

LOG (NUMBER)

where NUMBER can be either a real or an integer value.

THE TRUNC FUNCTION

The function TRUNC will accept a LONG INTEGER as well as a REAL as an
argument. Overflow will result if the absolute wvalue of the argument
exceeds MAXINT. With a REAL argument, TRUNC returns an INTEGER value
formed by dropping the fractional part of the REAL value. With a LONG
INTEGER value, TRUNC returns a numerically equivalent INTEGER wvalue.

THE PWROFTEN FUNCTION

This function returns a real value which is 1@ to a specified (inteper)
power. The form is

PWROFTEN (EXPONENT)

where EXPONENT is an integer value in the range @..37.
returns the value of 1@ to the EXPONENT power.

This function

BUILT-IN PROCEDURES AND FUNCTIONS 45

THE MARK AND RELEASE PROCEDURES

The Standard Pascal procedure DISPOSE is not provided in Apple Pascal.
Instead, the MARK and RELEASE procedures are used for returning dynamic
memory allocations to the systems The forms are

MARK (HEAPPTR)
RELEASE (HEAPPTR)

where HEAPPTR is of type TINTEGER and is called by reference in the MARK
procedure. MARK sets HEAPPTR to the value of the system’s current
top-of-heap pointer. RELEASE sets the system’s top-of-heap pointer to
the value of HEAPPTR.

The process of recovering memory space described below is only an
approximation to the function of DISPOSE as one cannot explieitly ask
that the storage occupied by one particular variable be released by the
system for other uses.

Variables created by the standard procedure NEW are stored in a stack-
like structure called the "heap". The following program is a simple
demonstration of how MARK and RELEASE can be used to change the size of
the heap.

PROGRAM SMALLHEAP;

TYPE PERSON=
RECORD
NAME: PACKED ARBAY [(f..15] OF CHAR;
ID: INTEGER

END;

VAR P: “PERSON;
HEAP: “INTEGER;

BEGIN
MARK (HEAP) ;
NEW(P):
P™.NAME:="FARKLE, HENRY J.";
P”.ID:= 999;
RELEASE (HEAP)
END.

The program shows a particularly handy method for deliberately accessing
the contents of memory which is otherwise inaccessable. It first calls
MARK to place the address of the current top of heap into the variable
HEAFP.

46 APPLE PASCAL LANGUAGE

H

o

E i‘tﬂ
.
S
| =
l

I

ar

I tmlliatita
WOR W W

i

I — i — R —— i S—

Ak

I

Below is a pictorial description of the heap at this point in the
program’s execution:

TOP OF HEAP —-> <——— HEAP

contents of heap at
start of program

I |
| I
I I
I I
| |
I |
[I

Mext the program calls the standard procedure NEW and this results in a
new variable P™ which is located in the heap as shown in the diagram
below:

TOP OF HEAP —> |

I

I I

I : I
| | <=—- HEAP

I I

| contents of heap at |

| start of program |

I I

After the RELEASE the heap is as follows:

TOP OF HEAP =——=> <--— HEAF

| |
I |
| econtents of heap at |
| start of program |
I |

Once the program no longer needs the variable P~ and wishes to "release"
this memory space to the system for other uses, it calls RELEASE which
resets the top of heap to the address contained in the variable HEAP.

If HEYW had been called several times between the calls to MARK and
RELEASE, the storape occupied by several variables would have heen
RELEASEd at once. HNote that because of the stack nature of the heap it
is not possible to release the memory space used by a single item in the
middle of the heap.

&

Careless use of MARK and RELEASE can leave "dangling pointers™, pointing
to areas of memory which are no longer part of the defined heap space.

BUILT-IN PROCEDURES AND FUNCTIONS 47

THE HALT PROCEDURE

This procedure generates a HALT opcode thart, when executed, causes a
non-fatal run—-time error to occur. The form is

HALT

For a more orderly way to terminate program execution, see EXIT below.

THE EXIT PROCEDURE

The EXIT
or from the program

procedure causes an ord

erly exit from a procedure or function,
{tself. The forms are

EXIT (procedurename)
EXIT (programname)
EXIT(

he first form shown, EXIT accepts as its single parameter the
1tifier of a procedure or function to be exited. Note that this need
not be the procedure or function in which the EXIT statement occurs.
EXIT follows the trail of procedure or function calls back to the
procedure or function

ide

ction in the trail
ied procedure 1s recursive, the most recent
invocation of that procedure will be exited.

specified; each procedure or fi

is exited. If the sp

local to it
just as if it had terminated normally.

When a procedure or function is exited via

are automatically closed,

EXIT, any files

The use of EXIT to exit a function
fined value if no assignment to
before EXIT is executed.

an cause the function to return an
(identifier is made

u

When the program name or the reserved word PROGRAM is used as the
parameter for EXIT, EXIT brings the program to an orderly halt.

THE MEMAVAIL FUNCTION

This function returns the number of words currently between the top—of-

ck and top=-of-heap. s can be interpreted as the amount of memory
ailable at that time. The form is

LAVAIL

483 APPLE PASCAL

LANGUAGE

oW W w4

w

WOR W W R R W

W OR R W

THE GOTOXY PROCEDURE

This procedure sends the cursor to a specified position on the screen.
The form is

GOTOXY (XCOORD , YCOORD)

where XCOORD and YCOORD are integer values interpreted as X (horizontal)
and ¥ (vertical) coordinates. XCOORD must be in the range ¥ through 79;
YCOORD must be in the range § through 23. The cursor is sent to these
coordinates. ‘he upper left corner of the screen is assumed to be

(@9

This procedure is written to work with the Apple I1°s screen. Lf you
wish to use an external terminal, ¥you will need to bind in a new GOTOXY
using the BINDER package described in the Pascal Operating System
Manual.

THE TREESEARCH FUNCTION

This a fast function for searching a binary tree that has a particular
kind of structures The form is

TREESEARCH (ROOTPTR, NODEPTR, NAME)

where ROOTPTR is a pointer to the root node of the tree to be searched,
NODEPTR is a pointer variable to be updated by TREESEARCH, and NAME is
the identifier of a PACEED ARRAY[l.::8] OF CHAR which contains the
8-character name to be searched for in the tree.

The nodes of the binary tree are assumed to be linked records of the

form
NODE=RECORD
NAY PACKED ARRAY[l..B8] OF
LEFTLINE, RIGHTLINK: “NODE;

CHAR ;

««s (*other fields can be anything*)...
END;

The type name and the field names are not important; TREESEARCH only
assumes that the first eight bytes of the record contain an B-character
name and are followed by two pointers to other nodes.

It is also assumed that names are not duplicated within the tree and are
assigned to nodes according to an alphabetical rule: for a given node,
the name of the left subnode is alphabetically less than the name of the
node, and the name of the right subnode is alphabetically greater than
the name of the node. Finally, any links that do not point to other
nodes should be HIL.

BUILT-IN PROCEDURES AND FUNCTIONS 49

TREESEARCH can return any of three values:

@: The WAME passed to TREESEARCH has been found in the tree.
NODEPTR now points to the node with the specified name.

l; The NAME is not in the tree. If it is added to the tree,
it should be the right subnode of the node pointed to by
NODEPTR.

=1l: The NAME is not in the tree. If it is added to the tree,
it should be the left subnode of the node pointed to by
NODEPTR.

The TREESEARCH function does not perform any type checking on the
parameters passed to it.

50 APPLE PASCAL LANGUAGE

e e e e e e e e e e = e = = e o ——

AW R W OW R W W OR R W W W WO W W W W WEWWa

=

BYTE-ORIENTED BUILT-INS

These procedures and functions are all byte-oriented. The system does
not protect itself from them, as no range checking of any sort is
performed on the parameters and no type checking is performed on the
source and destination parameters. Read the descriptions carefully
before trying them out. Also, some machine dependencies may lurk in the
implementations.

THE SIZEOF FUNCTION

This function returns an integer value, which is the number of bytes
occupied by a specified variable, or by any variahle of a specified
type. SIZEOF is particularly useful for FILLCHAR, MOVERIGHT, and
MOVELEFT built-ins (see below). The form is

SIZEOF (IDENTIFIER)

where IDENTIFIER is either a type identifier or a wvariable identifier.

THE SCAN FUNCTION

This function scans a range of memory bytes, looking for a one-
character target. The target can be a specified character, or it can be
any character that does not match the specified character. SCAN returns
an integer value, which is the mumber of bytes scanned. The form is

SCAN (LIMIT , PEXPR , SOURCE)
where
LIMIT is an integer value which gives the maximum number of
bytes to scan. If LIMIT is negative, SCAN will scan backward.
If SCAN fails to find the specified target, it will return the
= value of LIMIT.

PEXPR is a "partial expression" which specifies the target of
the scan. PEXPR takes one of the following forms:

= CH (target is a character equal to CH)
<> CH {target is a character not equal to CH)

where CH stands for any expression that yields a result of
type char.

BUILT-IN PROCEDURES AND FUNCTIONS 3

SOURCE is a variable of auy type except a file type. The
first byte of the variable is the starting point of the scau.

SCAN terminates when it finds the target or when it has scanuned LIMIT

bytes. Tt theu returus the number of bytes scanuned. If the target is
found at the startiong point, the value returned will be zero. If LIMIT

is negative, the scan will go backward and the value returued will also
be negative.

Examples: Suppose that DEM is declared as follows:
VAR DEM: PACKED ARRAY [f..1{@@] OF CHAR;
and then the first 53 elements of DEM are loaded with the characters

+++«.THE PTERO IS A MEMBER OF THE PTERODACTYL FAMILY.

We then have the following:
SCAN(=26,=":" ,DEM[30]) will return =26
SCAN(19@,<>"." ,DEM) will return 5

SCAN(15,=" ",DEM([5]) will return 3.

THE MOVELEFT AND MOVERIGHT PROCEDURES

These procedures do mass moves of a specified yumber of bytes.
forms are

The

MOVELEFT (SOURCE , DESTINATION , COUNT)
MOVERIGHT (SOURCE , DESTINATION , COUNT)

where SOURCE and DESTINATION are two variables of any type except a file
The first byte of S0URCE is the begiuning of the rauge of bytes
The first byte of DESTINATION is the beginuning
COUNT is an

tvpe.
whose values are copied.
of the rauge of hytes that the values are copied into.
luteger aud specifies the mumber of bytes moved.

MOVELEFT starts from the left end of the SOURCE rapnge. It proceeds from
left to right, copylng bytes {ute DESTINATION, starting at the left end
of the DESTINATION range.

MOVERIGHT starts from the right ead of the SOURCE rauge. Tt proceeds
from right to left, copying bytes iuto DESTINATION, startiug at the
right end of the DESTINATION range.

The reason for having both of these is that the SOURCE and DESTINATION
rauges may overlap. If they overlap, the order in which bytes are moved

52 APPLE PASCAL LANGUAGE

SR W W R W W oW N Wom W we W e

| B |
i

“—-'r-—-l'-‘—-.-—-lu—-u_-h—-—r_..—.-—a.l—“——-b_h_-.—_n

is cricical: each byte must be moved before it gets overwritten by
another byte.

In general this consideration applies when SOURCE aud DESTINATION are
subarrays of the same PACKED ARRAY OF CHAR. If bytes are being moved to
the right (DESTINATION has a higher subscript than SOURCE), use
MOVERIGHT. If bytes are being moved to the left (DESTINATION has a
lower subscript than SOURCE), use MOVELEFT.

THE FILLCHAR PROCEDURE

This procedure fills a specified range of memory bytes with a specified
character value. The form is

FILLCHAR (DESTINATION , ODUNT , CHARACTER)

where DESTINATION is a variable of any type except a file type. The
first byte of DESTINATION is the begiunning of the range of bytes to be
filled. COUNT is an iuteger value and specifies the number of bytes to
be filled. CHARACTER is a character value to be copied into each hyte
in the specified range.

BUIT-IN PROCEDURES AND FUNCTIONS 53

SUMMARY

STRING BUILT-INS

Integer-Valued Functions:

LENGTH (STRG)} returns lenpth of string.
POS (SUBSTRG , STRG) returns index of first
occurence of SUBSTRG within STRG.

String-Valued Functions:

CONCAT (STRGs) returns concatenation of strings.
COPY (STRG , INDEX , COUNT) returns a substring
of STRG.

Procedures:

DELETE (STRG , INDEX , COUNT) deletes a substring
of STRG.

INSERT (SUBSTRG , STRG , INDEX) inserts a substring
into STRG.

STR (LONG , STRG) converts integer or long integer to
string of decimal digits.

INPUT AND OUTPUT BUILT-INS

Opening and Closing Files:

RESET (FILEID [, TITLE]) opens existing diskette file,
or resets pointers to beginning if already open.

REWRITE (FILEID , TITLE) opens new diskette file.

CLOSE (FILEID [, OPTION]) closes file. OPTION may be
LOCK, NORMAL, PURGE, or CRUNCH. Default is NORMAL.

File Pointer Status:

EOF [(FILEID)] boolean, true if end of file has been reached

or file is closed. Default FILEID is INPUT.

EOLN [(FILEID)] boolean, true if end of line has been reached-

Default FILEID is INPUT.
SEEE (FILEID , INTEGER) moves file pointer to specified
record.

54 AFPLE PASCAL LANGUAGE

i

Wom & W & ww s R WY W

Typed File I/0:

GET (FILEID) reads current file record into window & advances
file pointer. Default FILEID is INPUT.

PUT (FILEID) writes window into current file record & advances
file pointer. Default FILEID is QUTPUT.

IORESULT returns an Integer value which depends on status of
most recent L/0 operation. Value is zero for OK completion.

READ (([FILEID,] VBLs) where VBLs means one or more variables
separated by commas. Successive values are read from file
into variables. Default FILEID is INPUT. FILEID must be
of type TEXT (FILE OF CHAR) or INTERACTIVE.

READLN ([FILEID,] VBLs) Like READ, but skips to beginning

of next line after reading value for last VBL.
WRITE ((FILEID,] [EXPRs]) where EXPRs means one or more

expressions separated by commas. Each EXPR may also be
followed by field width and number of decimal places.
Expression values are written to successive file records.
Default FILEID is OUTPUT. FILEID must be of type TEXT
(FILE OF CHAR) or INTERACTIVE.

WRITELN [([FILEID,] [EXPRs])] Like WRITE, but writes an
end-of-line after last EXPR value.

PAGE (FILEID) writes a top-of-form (ASCII 12).

Device 1/0:
These built-ins are described in detail in the text.

UNITREAD (UNITNUMBER , ARRAY , LENGTH [, [BLOCKNUMBER] ([, MODE]])

UNITWRITE (UNITNUMBER , ARRAY , LENGTH [, [BLOCKNUMBER] [, MODE]])
UNITBUSY (UNITNUMBER) : BOOLEAN

UNITWALIT (UNITRUMBER)

UNITCLEAR (UNITNUMBER)

Untyped File 1/0:
These built-ins are described in detail in the text.

BLOCKREAD (FILEID, ARRAY, BLOCKS [, RELBLOCK]) : INTEGER
BLOCKWRITE (FILEID, ARRAY, BLOCKS [, RELBLOCK]): INTEGER

BUILT-IN PROCEDURES AND FUNCTIONS 55

MISCELLANEOUS BUILT-INS == CHAPTER 4

ATAN (NUMBER)} returns a REAL value. This is the ARCTAN

function of Standard Pascal. NUMBER may be REAL or THE PASCAL COMPILER
INTEGER.

LOG (NUMBER) returns a REAL value, the log base 1§ of
NUMBER. NUMBER may be REAL or INTEGER.

TRUNC (WUMBER) returns an INTEGER value. This is like
Standard Pascal except that NUMBER may be LONG INTEGER
instead of REAL. NUMBER may not exceed MAXINT.

PWROFTEN (EXPONENT) returns a REAL value which is
1# to the EXPONENT power. EXPONENT is an INTEGER in the
range #..37.

MARK (HEAPPTR) where HEAPPTR is of type "INTEGER. HEAPPTR
is called by name and 15 set to current top-of=heap.

RELEASE (HEAPPTR) where HEAPPTR is of type ~INTEGER. The
current top-of-heap pointer is set to HEAPFTR.

HALT causes non-fatal run-time error; halts program.

EXIT causes orderly exit from procedure, function, or
programs

MEMAVAIL returns an INTEGER value, the number of words between
top-of-stack and top—of-heap.

GOTOXY (XCOORD , YCOORD) moves screen cursor to specified
coordinates. XCOORD is an INTEGER in the range @..79 and
YCOORD is an INTEGER in the range ¥..23.

TREESEARCH (ROOTPTR , NODEPTR , NAME) searches for NAME in
a binary tree. See text for details.

BYTE-ORIENTED BUILT-INS

These built=ins are described in detail in the text.

SIZEOF (VARIABLE OR TYPE IDENTIFIER)

SCAN (LIMIT , PEXPR , SOURCE)

MOVELEFT (SOURCE , DESTINATION , COUNT)
MOVERIGHT (SOURCE , DESTINATION , COUNT)
FILLCHAR (DESTINATION , COUNT , CHARACTER)

56 APPLE PASCAL LANGUAGE

INTRODUCTION

The purpose of the Apple Pascal Compiler is to translate the text of a
Pascal program into the compressed P-code version of the program. This
P-code is the "machine language" of the UCSD Pascal interpreter or

"pseudo-machine," described in the Apple Pascal Operating System
Manual.

Complete details on operation of the Compiler are in the Pascal

Operating System Reference Manual; the following two sections on
diskette files needed and on using the Compiler are somewhat abridged.

DISKETTE FILES NEEDED

To operate the Pascal Compiler, you need the following diskette files:

Textfile to be {Any diskette, any drive; default

Compiled is boot diskette’s text workfile
SYSTEM.WRK.TEXT, any drive)
SYSTEM.COMPILER (Any diskette, any drive)
SYSTEM.LIBRARY

(Boot diskette, any drive; required
only if any of the UNITs in the
system library are USEd by the
program. See Chapter 5.)

Other Libraries (Any diskette, any drive; required if
any UNITs not in the system library
are USEd by the program being

compiled. See Chapter 5.)
SYSTEM.EDITOR {Any diskette, any drive; optional;

to fix errors found by Compiler)
SYSTEM.SYNTAX

(Boot diskette, any drive; optional
messages given on entering Editor)

In addition to the above files, the following files may be needed if you
are invoking the Compiler automatically via the R(un command (see Apple
Pascal Operating System Reference Manual for details):

SYSTEM.LINKER
SYSTEM.PASCAL
SYSTEM.CHARSET

One-drive note: The files SYSTEM.COMPILER, SYSTEM.EDITOR, and
SYSTEM.SYNTAX are all on diskette APPLEQ:, which is the normal one-
drive boot diskette. If you have been working on a program in the
Editor, and U(pdating the workfile, your boot diskette has all the files
needed to R{un or C({ompile the workfile. If you wish to R{unm or
Clompile a textfile that is not already on the boot diskette, use the

58 APPLE PASCAL LANGUAGE

k

TR m@ETmE MMM EENRNNENNRRNNNENN80N N

e = e — i —— —— — e e - — i — — i — e —

-

W u i

WO R W W R W W e

A W W AR W WA

oW

Filer‘s T(ransfer command to transfer that textfile onto your boot
diskette before compiling. If your program requires Linking to extermal
routines, see the Apple Pascal Operating System Manual.

Multi-drive note: The files SYSTEM.EDITOR and SYSTEM.SY¥NTAX are both on
diskette APPLEl:, which is the pormal milti-drive boot diskette. The
file SYSTEM.COMPILER is on diskette APPLE2:, which is normally kept in
drive volume #5: in a multi-drive system. With APPLEl: in the boot
drive and APPLE2: in a non-boot drive, your system has all the files
needed to R{un or C(ompile the workfile.

Two-drive note: If you wish to R{un or C(ompile a textfile that is not
already on APPLEl: or APPLE2:, and your system has only two drives, use
the Filer’s T(ransfer command te transfer that textfile onto either
APPLEl: or APPLEZ: before compiling. Another possibility for two-drive
systems is to make APPLEQ@: your boot diskette (just put APPLE@: in the
boot drive and press the Apple’s RESET key). This Erees your second
drive to hold a source or destination diskette for compllations, saving
you from T(ransferring the source file onto APPLEl: or APPLEZ:. APPLE@:
does mot contain SYSTEM.LINKER; if your program requires Linking to
external routines, use APPLEl: and APPLEZ:.

USING THE COMPILER

The Compiler is invoked by typing C for C(ompile or R for B{un from the
outermost Command level of the Pascal system: The screen immediately
shows the message

COMPILING. .

The Compiler automatically compiles the .TEXT part of the workfile and
saves the resulting code (if compilation is successful) as the .CODE
part of the workfile. If there is a workfile, but you do not wish to
compile that file, use the Filer’s N{ew command to clear away the
workfile before compiling. If no workfile is available, you are
prompted for a source filename:

COMPILE WHAT TEXT?

You should respond by typing the name of the text file that you wish to
have compiled. Do NOT type the suffix .TEXT —— that suffix is
automatically supplied by the Compiler, in addition to any suffix you
may specify.

Next, if there is no workfile, you will be asked for the name of the
file where you wish to save the compiled wersion of your program:

TO WHAT CODEFILE?
If you simply press the RETURN key the command will not be terminated,

as you might expect. Instead, the source file will be compiled and'the
compiled version of your program will be saved on the boot diskette’s

THE PASCAL COMPILER 59

workfile SYSTEM.WRK.CODE. This is handy if you then wish to R{un the
programs.

If you want the compiled version of your program to have the same name
as the text version of your program (of course, the suffix will be .CODE
instead of .TEXT), just type a dollar sign and press the RETURN key.
This is & handy feature, since you will usually want to remember only
one name for both versions of your program. The dollar sign repeats
your entire source file specification, including the volume identifier
so do NOT specify the volume identifier hefore typing the dollar Eign.'

Note that this use is different from the use of the dollar sign in the
Filer.

If you want your program stored under ancther filename, type the desired
filename. Do NOT type the suffix .CODE -- that suffix is automatically
supplied by the Compiler, in addition to any suffix you may specify.

By default, the compiler places the code file at the beginning of the
largest unused space on the diskette. To override this, you can give a
size specification with the filename. In this case, you DO type the

suffix .CODE, followed by the number of blocks 1
Bt iy & pucioat® ks in square brackacs,

TO WHAT CODEFILE? MYPROG.CODE([B].

The period at the end prevents the system from adding the .CODE prefix
after the size specification. The size specification [8] causes the

code file to be placed in the first location on the diskette where at
least B8 blocks are available.

While the compiler is running, messages on the screen show the Progress
of the compilation as in the following example:

P&SCSL COMPILER II.l1 [B2B]
< Passees

TUNAFISH [2334 WORDS]
< - S ——

14 LINES
SMALLEST AVAILABLE SPACE = 2334 WORDS

The identifiers appearing on the screen are the identifiers of the
program and its procedures. The identifier for a procedure is displayed
at the moment when compilation of the procedure body is started.

The numbers within [] indicate the number of (lh-bit) words available
for symbol table storage at that point in the compilation. If this
number ever falls below 55@, the compiler will fail. You must then put
the swapping option (described below) into your program and recompile.

The numbers enclosed within < > are the current line numbers.
on the screen represents one source line compiled.

Each dot

If the Compiler detects an error in your program, the screen will show
the text preceding the error, an error number, and a marker <<<<

60 APPLE PASCAL LANGUAGE

o B e B e B e W —— . —

W w e

TR T TRV TR VR T T

A A & W W R W W R W W R W

pointing to the symbol in the source where the error was detected. The
following is an example:

[<<<x
LINE 9, ERROR 18: <SP>(CONTINUE), <ESC>(TERMINATE), E(DIT

This shows that the bracket [is an illegal symbol at this point inm the
program. You have three options when you see a message like this.
Pressing the spacebar instructs the Compiler to continue the
compilation, in case you want to find more of the errors right now.

Pressing the ESC key causes termination of the compilation and return to
the Command level.

Editor, which automatically reads in the
workfile, ready for editing. If you were not compiling the workfile,
the Editor requests the name of the file you were compiling. Ycudah:uld

filename of the file you were compiling, and that
;?igﬂﬁglgytﬁﬁﬁiﬁg :::d ii:o the Editor. WhZu the corr:gt file has been
read into the Editor, the top line of the screen displays the error
message (or number, if SYSTEM.SYNTAX was not available) and the cursor
is placed at the symbol where the error was detected.

Typing E sends you to the

If SYSTEM.SYNTAX is not available, you can look up the error in Table 6
of Appendix B. (You may wish to delete the file SYSTEM.SYNTAX to obtain

more diskette space.)

THE COMPILER OPTIONS
COMPILER OPTION SYNTAX

Compiler options (see the following section for details) are placed in
the text to be compiled, and take effect when the Compiler arrives at
the option during compilation.

Compiler options look like a special kind of comment, and take the
following form:

(*Soption¥*)

The Compiler treats material between (*$ and *) as a compiler optiom.
As shown below, there must be no spaces in (*§ or immediately after rhe
§ character:

(*5G=—*) This is a compiler option.
(* SG—*) This is a comment.
(*$ G=%) This is a comment.

THE PASCAL COMPILER 64

Several options can be combined in one set of (*§...%) brackets,

by
separating the options with commas (don’t add extra spaces):

(*5option,option*) Example: (*51=,5+,G=%)

You can’t do this with the options that involve names or strings of
characters.

A given optlon may be turned on or off at any point in the compilation.
The compilation is affected only from the point where the option is
turned on until the point where the option is turned off again. Thus

you can turn an option on (or off) just during the compilation of a
particular routine in your program.

Some options require a filename immediately following the option letter,
instead of the usual + or -. In this case, all characters between the

option letter and the closing *) are taken as the filename,
blanks preceding or following the filename are ignored.
filename must be the last item before the #*),
a filename is + or -, you must place a blank between the option letter

and the filename. For examples of specifying a filename, see the
section describing the Include-file mechanisme.

In Apple Pascal, curly brackets { and } are equivalent to the normal
comment or option delimiters (* and *). The curly brackets cannot be
generated by the Apple keyboard, so no confusion exists for pPrograms
written on the Apple computer. However, other terminals may be able to
generate the curly brackets in programs. These programs will be
executed correctly on the Apple, but the curly brackets will be
displayed on Apple’s screen as square brackets [and] .

except that
Therefore, the
If the first character of

THE "COMMENT" OPTION

This option consists of the letter C and a line of text. The text is
placed, character for character, in Block § of the codefile (where it
will not affect program operation). The purpose of this is to allow a
copyright notice or other comment to be embedded in the codefile.
Example:

(*$C COPYRIGHT ALLUVIAL 0. FANSOME 1979%)

The Comment option must precede the heading statement of the program.

62 APPLE PASCAL LANGUAGE

@ F @ mwEEmwWm MM EWNWENNENNNNNWNWN

DA & W W R W E W W W W W AW WWWEWwwwa

THE "GOTO STATEMENTS” OPTION

Tells the Compiler whether to allow or forbid the use of the Pascal GOTO
statement within a program.

Default value: G-

(*SG+%) Allows the use of the GOTO statement.

(*50G-%) Causes the Compiler to treat a GOTO as an error.
Teachers sometimes use the G- option to keep novice programmers from
using the GOTO statement where more structured approaches using FOR,
WHILE, or REPEAT statements would be more appropriate.

THE “IO CHECK" OPTION

This option tells the compiler whether or not to create error-checking
code after each structured file I/0 statement (not the BLOCK or UNIT I/0

statements).
Default value: I+

Instructs the Compiler to generate code after each
statement which performs any 1/0, in order to check
that the I/0 operation was accomplished successfully.
In the case of an unsuccessful I/0 operation, the
program will be terminated with a run-time error.

(*5T+*)

Instructs the Compiler not to generate any 1/0-
checking code. In the case of an unsuccessful 1/0
cperation, the program is not terminated with a run-
time error.

(%SI-*)

The (*$I-*) option is useful for programs where I/0 checking is not
desirable, or which do their own checking via the TORESULT function.

The program can then detect and report the 1/0 errors, without being
terminated abnormally with a run-time error. However, the disadvantage

of setting the (*$I-#*) option {s that I/O errors, (and possibly severe
program bugs), may go undetected.

THE “INCLUDE FILE" OPTION

The syntax for instructing the Compiler to include another source file
into the compilation is as follows:

(*S1 filename ¥*)

All characters between (%51 and *) are taken as the filename of the
source file to be included. Thus, the filename must be the last item

THE PASCAL COMPILER 63

before the *).
ignored.

e

Note that if the first character of a filensme is + or =, you MUST place

@ blank space between (*SI and the filename. Also, you may not use the
* or *: notation in the filename to specify the boot diskette.

Spaces preceding the filename and following it are

If the initial attempt to open the file which is being included (also
called the "include file") fails, the Compiler concatenates the suffix
«TEXT to the filename and tries again. If this second attempt fails, or
if some I/0 error occurs while reading the include file, the Cnmpile;
responds with a fatal error message and terminates its operation.

If the include file option occurs within the body of a procedure or
within the body of the main program, the includ file must not contain
any USES, LABEL, CONST, TYPE, or VAR declarations. Otherwise, the
compiler accepts include files which contain such declarations even

though the declarations of the original program have already been
compiled.

The Compiler cannot keep track of nested include options, i.e. an

include file must not contain an include file option.

This results in a
fatal Compiler error.

The include file option makes it easier to compile large programs
without having the entire source in one very large file. This is
especially useful when the combined file would be too large to edit in
the existing Editor”s buffer.

THE “LISTING” OPTION

Controls whether the Compiler will generate & program listing.

Default value: L=

(*SL+%) Instructs the Compiler te save a compiled listing on the
boot diskette under the filepame SYSTEM.LST.TEXT.
(*5L—*) Tells Compiler to make no compiled listing.

(*SL filename*) Tells Compiler to save compiled listing in the

specified file.

For example, the following will cause the compiled listing to be sent to
the printer:

(*SL PRINTER:*)

64 APPLE PASCAL LANGUAGE

M fi—iﬂffﬁdﬂjﬂ}

a

AEEENE RN RRERRRRRRREN.
"R

?—-_-_Iﬁ
W oW R

-

The following will cause the compiled listing to be sent to & diskfile
called DEMOL.TEXT on the diskette named MYDISK:

(*$L MYDISK:DEMO1.TEXT #)

The specified filename, which must be the last item before the *), is
used exactly as typed. No suffix is added. Note that a diskette
listing file may be edited just like any other text file, provided the
filename which is specified contains the suffix .TEXT.

In the compiled listing, the Compiler places next to each source line
the line number, segment number, procedure number, and the number of
bytes or words (bytes for code, words for data) required by that
procedure’s declarations or code to that point. The Compiler alse
indicates whether the line lies within the actual code to be executed or
is a part of the declarations for that procedure by printing a "D" for
declaration and an integer ®..9 to designate the level of statement
nesting within the code part.

Here is a sample listing, to which column headings have been added:

Source Segment Procedure Lexical Byte number Program
line number number : level within procedure text
1 1 1:D 1 (*SL SCRATCH:LIST1.TEXT#*)
2 1 1:D 1
3 1 1:D 1 PROGRAM DOCTOR;
&4 1 1:D 3 VAR DAY,CURE:INTEGER;
5 1 1:D 5
6 1 2:D 1 PROCEDURE DOSE;
7 1 2:9 @ BEGIN
8 1 2:1 @ WRITE(AN APPLE A DAY"});
9 1 2:1 26 WRITE(® AND *)
19 1 2:p 43 END;
11 1 2:9 56
12 1 3:D 1 PROCEDURE TREATMENT;
13 1 3:9 ¢ BEGIN
14 1 3:1 ¢ FOR CURE:=1 TO 4 DO
15 1 3:2 11 BEGIN
16 1 3:3 11 DOSE
17 1 3:2 11 END
18 1 3:¢ 13 END;
_ 19 1 3:0 34
20 1 1:9 @ BEGIN
21 1 1:1 g FOR DAY:=f TO 25 DO
22 1 1:2 13 BEGIN
23 1 1:3 13 TREATMENT;
24 1 1:3 15 WRITELN(" ")
25 1 1:2 a5 END
26 1 1:9 35 END.

The information given in the compiled listing can be very valuasble for
debugging a large program. A run-time error message will indicate the
segment number, procedure number, and the offset (byte number within the

THE PASCAL COMPILER 65

current procedure) where the error sccurred.

Here is a sample run-time error message:

EXEC ERR # 1@
s# 1, p# 7, 1I# 56
TYPE <SPACE> TO CONTINUE

where S# is the segment number, P# is the procedure number, and Iff is
the byte number in that procedure where the error occurred.

THE “NOLOAD"” OPTION

This option prevents the code of a UNIT used by the program (see Chapter
3) from being kept in memory when the program is executed. Instead, the
UNITs code is in memory only when some portion of it is active.

Default value: R
{ *SN+*) UNIT code will be loaded only when active.

(*5N=%*) UNIT code will be loaded as soon as program
begins executing.

The (*$N*) option should be placed ar the beginning of the main

program. Note that use of the (*SN+*) option does not prevent the
initialization portion of a UNIT from being executed.

THE “"PAGE" OPTION

If a listing is being produced, the P option causes one form-feed (ASCII
12) to be inserted into the text of the listing, just before the line
containing the P option. For example, {f your program contains the line

(*5P%)

that line will appear at the top of a new page when you print the
program’s compiled listing.

THE "QUIET COMPILE" OPTION

The Q Compiler option is the "quiet compile" option which can be used to
suppress the screen messages that tell the procedure names and line
numbers and detail the progress of the compilation.

66 APPLE PASCAL LANGUAGE

I I
AN R W W R W W R W W WA

mTaE RN
S o — — f—

Default value: Q-

{ %S0+%) Causes the Compiler to suppress output to the
BCTEENs
(*50-%) Causes the Compiler to send procedure name and

line number messages to the screen.

This is mostly useful when the CONSOLE: device is not the Apple’s TV
or monitor screen, for example 1f you are using a printing terminal. Im
normal use with your Apple, this option is not needed.

THE “RANGE CHECK" OPTION

With the (*$k+*) option, the Compiler will produce code which checks on
array and string subscripts and on assignments to variables of subrange
and string types.

Default value: R+
(*SR+%) Turns range checking on.
(*SR=%) Turns range checking off.

Note that programs compiled with the (*$R-*) option selected wil% run
slightly faster. However if an invalid index occurs or an invalid
assignment is made, the program will not be terminated with a run-time
error. Since you should never assume that a program is absolutely
correct, use (*SR-*) only when speed is critical.

THE “"RESIDENT” OPTION

This option forces the code of a specified UNIT or SEGMENT procedure to
be kept in memory, for as long as the procedure that contains the option
is active. It can thus override the automatic swapping out of a SEGMENT
PROCEDURE or FUNCTION (see Chapter 5), and the automatic swapping out of
a UNIT caused by the NOLOAD option (see above). For example, suppose
that MOBY is a large SECMENT PROCEDURF. Normally it is in memory only
when it is active (thus allowing the memory space to be used for
something else). But another procedure, RATS, calls MOBY repeatedly. We
don"t want the disk drive to be whizzing MOBY in and out of memory each
time RATS calls it, so we make MOBY a "resident procedure" within RATS:

PROCEDURE RATS (HATS, BATS, CATS:INTEGER);
VAR FOON, MOON: STRING;
BEGIN
{*SR MOBY*)

THE PASCAL COMPILER 67

Now MOEY will be kept in memory as long as RATS is active. The resident
:p;ion mst immediately follow the BEGIN that starts the procedure
odys

The resident option is also useful in connection with the noload option
described above.

THE “SWAPPING" OPTION

This option determines whether or not the Compiler operates in
"swapping" mode. There are two main parts of the Compiler: one
processes declarations; the other handles statements. In the S+
swapping mode, only one of these parts is in main memory at a time.
This makes about 39P@ additional words available for symbol-table
Storage at the cost of slower compilation speed (approximately 3@
lines/minute in 5- mode, versus sbout 15¢ lines /minute in S+ mode)
because of the overhead of swapping the Compiler segments in from disk.
This option must occur before the Compiler emcounters any Pascal
syntax.

Default value: 5=

(*55+%) Puts Compiler in swapping mode.
(*55-%) Puts Compiler in non-swapping mode.
(*$8++*) Compiler does even more swapping than with the S+

option. The program compiles still more slowly, but
still more room is left in memory for symbol-table
storage.

The S+ option should be used when compiling a UNIT.

THE "USER PROGRAM"” OPTION

This option determines whether this compilation is a user program
compilation, or a compilation of & system program.

Default value: U+

(*SU+*) Informs the Compiler that this compilation is to take
pPlace on the user program lex level.
(*5U-*) Tells the Compiler to compile the program at the system

lex level. This setting of the U compiler option
also causes the following options to be set: R-, G+, I-

NOTE: The U- option will generate programs that do not behave as

expected. Not recommended for non-systems work unless you know its
method of operation.

68 APPLE PASCAL LANGUAGE

L

W
WO R W W OR W W R W W W W W R oW Ww W W W WwWww

}_

THE “USE LIBRARY" OPTION

This option consists of the letter U and a filename. The named file

becomes the library file in which subsequent USEed UNITs are sought.

The specified filename, which must be the last item before the *), is
used exactly as typed. No suffix is added.

The default filename for the library is SYSTEM.LIBRARY, on the boot
diskette. If any USEd UNITs are in the boot diskette”s SYSTEM.LIBRARY,

and you refer to those UNITs first, you do not need the Use-library
Compiler option for those UNITs. See Chapter 5 for more details on

UNITs.

Following is an example of a valid USES clause employing the U filename
Compiler option:

USES UNIT1,UNIT2, (*FOUND IN *SYSTEM.LIBRARY#*)
(*5U0 MYDISK:A.CODE *) UNIT3,

(%50 APPLEL:B.LIBRARY *)

UNIT4,UNITS;

Note: In a U filename option, you may not use the * or *: notation to
specify the boot diskette.

“‘§§&

Some programs require the Compiler to access another diskette file --
for example, an "include" file. When this is done, 2K of memory is
required for the diskette directory. If the program is very large, this
additional memory is not available and the compilation fails. If this
happens to you, try the following technique:

Use the Filer command M(ake to create a 4~block file named
SYSTEM.SWAPDISK on the same diskette that contains the Compiler. Now,
when the Compiler reads a diskette file during compilation, it will
write out 2K of information from memory to SYSTEM.SWAPDISK, thus freeing
2K of memory for the diskette directory. When the diskette directory is
no longer needed, the 2K of information is read back into memory from
SYSTEM. SWAPDISK.

THE PASCAL COMPILER &9

COMPILER OPTION SUMMARY

All Compiler options are placed in the source text in "dollar-sign
comments" :

CHAPTER 5
PROGRAMS IN PIECES |

(*5option*) Examples: (*5G-+*)
(*$1 TURTLE.TEXT #*)

Lompiler-option specifications may be combined in one set of (*5...%)
brackets:

(*Soprion,option*) Example: (*$F-,5+,G+%)

f a filename is specified, it must be the last item before the *).

G Fellowing characters are placed directly into codefile.

G+ Allows GOTO statements.
= Forbids GOTO statements (default).

1+ Generates 1/0-checking code (default).
1- Wo I/0 checking.
I filename Includes named source file in compilation.

L+ sends compiled listing to SYSTEM.LST.TEXT, on boot disk.
L- Makes no compiled listing (default).
L filename Sends compiled listing to named File.

N+ Prevents UNITs from being loaded until activated.
N- Loads UNITs immediately when program runs (default).

| 4 Inserts a page-feed into compiled listing.

g+ Suppresses screen messages.
U= Sends procedure names and line numbers to CONSOLE: (default)

K+ Generates range—-checking code (default).
B= Wo range checking.
R nane Keeps named procedure loaded while current one is active.

3
2
E
e
IE;
o
3
E
-
E
E
-

-

»
]

S+ Puts Compiler in swapping mode.

S+ Compiler does even more swapping.
$=- Won-swapping mode.

U+ Compiles user program (default).
U=- Compiles system program.
U filename Specifies name of library file for finding UNITs.

m T anmm

”

70 APPLE PASCAL LANGUAGE

INTRODUCTION

Apple Pascal supports the separation of procedures and functions, or
groups of them, from the main program. When you are developing a large
or complex program, this can be very useful as it allows you to reduce
the size of code files, to reduce the memory space used by the program,
and to use a set of procedures and functions in more than one programs

Separation can be achieved both at the P-code level and at the source-
language level. At the P-code level, any procedure or funetion can be
designated as a SEGMENT. The result is that its code 1s not loaded into
memory until it is called by some other part of the program. As soon as
the SEGMENT procedure or function is no longer active it is "swapped
out;" that is, its memory space is made available for some other use
such as dynamic memory allocation or swapping in another SEGMENT. This
technique is sometimes called "overlaying."

At the source-language level, a group of onme or more procedures or
functions can be compiled separately as a UNIT. The result of compiling
a UNIT is a library file; it can either be used directly or incorporated
into some other library file such as SYSTEM.LIBRARY.

Separate compilation has several advantages in the development of any
large or complicated program, because it allows you to approach the task
as a group of smaller tasks which are linked together in a simple and
logical way. Several of the powerful features of Apple Pascal are
implemented as UNITs, as we will see in Chapter 7. To use a separately
compiled UNIT, a program must contain a USES declaration with the name
of the UNIT; the program is then called a host programs.

There are two kinds of UNITs: Regular UNITs and Intrinsic UNITs. When a
host program USES a Regular UNIT, the UNIT"s code is inserted into the
host program’s codefile by the Linker. This need only be done once
unless the UNIT is modified and recompiled; then it must be relinked
into the host program.

When a host program USES an Intrinsic UNIT, the UNIT’s code remains in
its library file and is automatically loaded into memory when the host
program is executed. This keeps the size of the host program’s codefile
down, which is particularly important if many programs use the UNIT. It

also allows the UNIT to be modified and recompiled without the need to
relink.

The Compiler”s NOLOAD and RESIDENT options (see Chapter 4) allow further
control over the handling of Intrinsic UNITs and SEGMENT procedures and
functions. NOLOAD prevents any UNIT from being automatically loaded
until its code is activated by the host program. The RESIDENT option
can modify the effect of NOLOAD or of a SEGMENT procedure or functionj
it forces a procedure or function to be kept in memory over a specified
range of program execution -- specifically, as long as the procedure or
function containing the RESIDENT option is active, the procedure named
in the RESIDENT option is kept in memory.

72 APPLE PASCAL LANGUAGE

AN S MW R W W R W WN W W W WWE e WwEa

p |

Finally, there is the EXTERNAL mechanism. This allows a procedure or
function to be declared in a Pascal host program, without any statements
except a heading and the word EXTERNAL. The procedure or function is
implemented separately in assembly language, assembled, and then linked
into the host program with the Linker. This can be advantageous for
procedures or functions which must run very fast.

PROGRAMS IN PIECES 73

SEGMENT PROCEDURES
AND FUNCTIONS

Declarations of SEGMENT procedures and functions are identical to

crdinary Pascal procedures and functions except that the word PROCEDURE
or FUNCTION is preceded by the word SFGMENT. For example:

SECMENT PROCEDURE INITIALIZE;
BEGIN

(* Pascal statements *)
END;

SEGMENT FUNCTION FFT (DOMAIN:MPTE) : MPTR;
BEGIN

(* Pascal statements *)
END;

Program behavior does not differ; however, the code and data for a
SEGMENT procedure or function are in memory oenly while the procedure or
function is actuvally running. This can be modified by use of the
Compiler option (*$R name*) as explained in Chapter 4.

Any procedure or function definition may have the word SEGMENT. This
includes FORWARD definitions and nested definitions.

The advantage of using SECMENT procedures is the ability to fit large
programs into the available memory. To write such a program, divide it
into two or more main tasks which are implemented as SEGMENT

procedures. To be effective, each SEGMENT should be substantial in size

and the program should be designed so that SEGMENTs are not swapped in
and out too frequently.

REQUIREMENTS AND LIMITATIONS

The disk which holds the code file for the program must be on line (and
in the same drive as when the program was started) whenever one of the
SEGMENT procedures 1s to be called. Otherwise, the system will attempt
to retrieve and execute whatever information now occupies that

particular location on the disk now in that drive, usually with very
displeasing results.

SEGMENT procedures must be the first procedure declarations that contain
code-generating statements.

74 APPLE PASCAL LANGUAGE

e e e e e e e e e e — . e—— e —— e — i —— e — i —

AW R W W R W W R W W W W W R W W Wl YWk

-

LIBRARIES AND UNITS

So far, we have seen Pascal programs which are compiled into codefiles;
a codefile can be R{un or eX(ecuted. Now we will consider UNITs, which
are compiled into libraries. Two or more libraries can be combined into
one file- A library is not R{un or eX({ecuted; instead, it is used by

one Or more Programs.

A library contains code for procedures and/or functions which are
available-to any program that uses the library, just as if they were
defined in the program itself. For example, the Apple Pascal System
comes with a library called SYSTEM.LIBRARY which contains code for
several UNITs; one of the UNITs is called TURTLEGRAPHICS, and it
provides a set of procedures and functions for high-resolution graphics
on the Apple. To use these procedures and functions, a program need
only have the line

USES TURTLEGRAFHICS;

after the program heading. The program can then use a TURTLEGRAPHICS
procedure such as TURNTO or MOVE.

You can create and compile your own UNITs, and either add them to
SYSTEM.LIBRARY or build your own libraries by using the LIBRARY utility
described in the Apple Pascal Operating System Reference Manual.

If a UNIT used by your program is contained in the SYSTEM.LIBRARY file,
a B(un command will automatically invoke the Linker to do the necessary
linking. Otherwise, you must explicitly invoke the Linker. Note that
if the UNIT is not contained in the SYSTEM.LIBRARY file, you must use
the (*$U filename*) option of the compiler to tell the compiler which
library file contains the unit. The (*5U filename*) 1s placed anywhere
before the appearance of the UNIT name in the USES declaratione.

UNITS AND USES

The source text for a UNIT has a form somewhat similar to a Pascal
program, as explained in detail further on. Briefly, it consists of
four parts:

A heading.

An INTERFACE part which defines the way the host program
communicates with the procedures and functions of the UNIT.

An IMPLEMENTATION part which defines the procedures and
functions themselves.

= An "initialization" which consists of a BEGIN and an END with
any number of statements between them. This is the "main
program" of the UNIT, and is automatically executed at the
beginning of the host program. Note that the initialization

PROGRAMS IN PIECES 75

may consist of just the BEGIN and END, with no statements
between them.

There are two different flavors of UNITs called Regular and Intrinsic.

Regular UNITs
The heading of a Regular UNIT has the form
UNIT name;

The UNIT is linked into the host program just once after the program is
compiled, and the entire UNIT's code is actually inserted in the host
program’s codefile at that time.

Intrinsic UNITs

Intrinsic UNITs can only be used by installing them in the
SYSTEM.LIBRARY file. This is done after compilation by using the
LIBRARY utility program (see Apple Pascal Operating System Reference
Manual).

An Intrinsic UNIT is "pre-linked," and its code is never actually
inserted into the host program’s codefile. When you R(un the host
program, the Linker is not called and does not have to be on line. The
Intrinsic UNIT s code is loaded into memory when the host program is to
be executed. Thus an intrinsic UNIT can be used in many different
programs, but there is only one stored copy of the UNIT's code.

This can be especially useful when writing for a one-drive system which
does not have room for the Linker or for large programs on the main
system diskette. Note that the SYSTEM.LIBRARY file must be on line each
time the calling program is executed.

The heading of an Intrinsic UNIT has the form

UNIT name;
INTRINSIC CODE csegnum [DATA dsegnum];

where csegnum and dsegnum are the segment numbers to be assoclated with
the UNIT in when it is installed in the SYSTEM.LIBRARY file. You choose
these numbers, and the system uses them to identify the UNIT at run
time. Segment numbers range from @ to 31, but certain numbers between @
and 15 must not be used (see below). The UNIT will generate a data
segment if it declares any variables not contained in procedures or
functions.

The code segment will be associated with segment esegnum and its data
segment (if there is one) will be associated with sepment dsegnum.

76 APPLE PASCAL LANGUAGE

T T Ll I b S it B il B s 5 e

W W R W W R W W R R W e W W e W W e WWW e

ol

|

Every unit im a library has a specific segment number assoeciated with
it. The segment numbers used by items already in the library are shown
in parentheses by the LIBRARY and LIBMAF utility programs (see Apple
Pascal Operating System Beference Manual). 1In choosing segment numbers
for an Intrinsic UNIT, the constraint is that when the host program
runs, the segment numbers used by the program must not conflict.
Observe the following:

- While any program is executing, the system uses segment @ and
the main program body uses segment l. Therefore, never use
these numbers for an Intrinsic UNIT.

- Segments 2 through 6 are reserved for use by the system.

= If the program declares any SEGMENT procedures or functioms,
these procedures or functions use sequentially increasing

segment numbers starting at 7.

- Each UNIT used by the program uses the segment number shown in
the library listing.

- If possible, aveld any duplication of segment numbers in the
library.

Generally, it is & good idea to use segment numbers in the range from 16
through 31.

e
The compiler”s SWAPPING option,

(*S5+%)

should always be used when a UNIT is compiled.
heading of the UNIT.

It should precede the

The INTERFACE Part of a UNIT

The first part of a UNIT is the INTERFACE.

The INTERFACE part immediately follews the UNIT"s heading line. It
declares constants, types, variables, procedures and functions that are
public -- that is, the host program can access them just as if they had
been declared in the host program. The INTERFACE portion is the only
part of the UNIT that is "visible" from the outside; it specifies how &
host program can communicate with the UNIT.

Procedures and functions declared in the INTERFACE are sbhbreviated to

nothing but the procedure or function name and the parameter
specifications, as shown in the example below.

PROGRAMS IN PIECES 77

The IMPLEMENTATION Part of a UNIT

The IMPLEMENTATION part immediately follows the last declaration in the
INTERFACE.

The IMPLEMENTATION begins by declaring those labels, constants, types,
variables, procedures and functions that are private -— that is, not
accessible to the host program. Then the public procedures and
functions that were declared in the INTERFACE are defined. As shown in
the example below, they are defined without parameters or function
result types, since these have already been defined in the INTERFACE.

The Initialization Part of a UNIT

At the end of the IMPLEMENTATION part, following the last Function or
procedure, there is the "initialization" part. This is a sequence of
statements preceded by BEGIN and terminated with END. The resulting
code runs automatically when the host program is executed, before the
host program is run. It can be used to make any preparations that may
be needed before the procedures and functions of the UNIT can be used.
For example, the initialization part of the TRANSCEND UNIT in
SYSTEM.LIBRARY generates a table of triponometric values to be used by
the transcendental functions. If you don”t want any initialization to
take place, you must still have the END followed by a period.

AN EXAMPLE UNIT

Let“s sketch out an imapginary Intrinsic UNIT that needs a DATA segment,
to demonstrate the information given above.

78 APPLE PASCAL LANGUAGE

.

e e = e m A e— . — — e e —— . — ——

- —— — i e R e o

AW oW W W W Wwwwa

WO R W W R W W OR W W R W W

(*554+%) (* Swapplng 1s required for compiling UNITs *)

UNIT FROG; INTRINSIC CODE 25 DATA 26;

INTERFACE
CONST FLYSIZE = 1§;
TYPE WARTTYPE = (GREEN,BROWN);
VAR FROGNAME:STRING[2§];
PROCEDURE JUMP(DIST:INTEGER);
FUNCTION WARTS:INTEGER;

(* This stuff is public *)

(* Will need Data segment *)

IMPLEMENTATION
CONST PI = 3.14159;
TYPE ETC = {@..13;
VAR FROGLOC:INTEGER;

(* This stuff is private *)

PROCEDURE JUMF;
BEGIN
FROGLOC := FROGLOC + DIST
END;

{* Note: no parameters here #*)

FUNCTION WARTS;:
BEGIN
(* Function definition here *)
END;

(* More procedures and functions here %)

BEGIN
(* Initialization code, if any, goes here *)
END.

<

Variables of type FILE must be declared in the INTERFACE part of a
UNIT. A FILE declared in the IMPLEMENTATION part will cause a syntax
error upon compilation.

USING THE EXAMPLE UNIT

The UNIT above, properly completed, would then be compiled. Then the
UNIT would be installed in SYSTEM.LIBRARY, using the LIBRARY utility.
Once in the library, the UNIT could then be used by any Pascal host
program. A sample program to use our UNIT is sketched out below:

PROGRAMS IN PIECES 79

PROGRAM JUMPER;

USES FROG;
CONST .o 3
TYPE «»s 3

VAR - .. ;
PROCEDURE ... ;
FUNCTION ...

BEGIN

RN

LR

TRTE L

END .

A program must indicate the UNITs that it USES before the declaration
part of the program; procedures and funections may not contain their own
USE declaratious. At the occurrence of a USES declaration, the Compiler
references the INTERFACE part of the UNIT as though it were part of the
host text itself. Therefore all constants, types, variables, functions,
and procedures publicly defined fn the UNIT are global. Name conflicts
may arise if the user defines an ideutifier that has already been
publicly declared by the UNIT. If the UNIT is not in the
SYSTEM.LIBRARY, the USES declaration must be preceded by a "use library"
option to tell the compiler what library file contains the UNIT.

NESTING UNITS

A UNIT may also USE another UNIT, in which case the USES declaration
must appear at the beginoniug of the INTERFACE part. For example, our
UNIT FROG might use the graphics UNIT TURTLEGRAPHICS:

(*55++)
UNIT FROG; INTRINSIC CODE 25 DATA 26;

INTERFACE

USES TURTLEGRAPHICS;
CONST FLYSIZE = 1§;

etc.

When you later use such a UNIT, your host program must declare that it
USES the deepest nested UNIT first:

PROGRAM JUMPER;
USES TURTLEGRAPHICS,FROG;

There is one limitation: an Intrinsie UNIT canwot USE a Regular UNIT.

80 APPLE PASCAL LANGUAGE

e [— . — i —) — T — — — i — - — e i | o e (. e [et e L

WOR W WO W W R W W W W W R e WW W W W wa

W

CHANGING A UNIT OR ITS HOST PROGRAM

For test purposes, you may define a Regular UNIT right in the host

program, after the heading of the host program. In this case, you will
compile both the UNIT and the host program together. Any subsequent

changes in the UNIT or host program require that you recompile both.

Normally, you will define and compile a Regular UNIT separately and use
it as a library file (or store it in another library by using the
LIBRARY utility). After compiling a host program that uses such a UNIT,
you must link that UNIT inte the host program’s codefile by executing
the Linker. Trying to R(un an unlinked code file will cause the Linker
to run automatically, looking for the UNIT in the system library.

Trying to X(ecute an unlinked file causes the system to remind you to
link the file.

Changes in the host program require that you recompile the host
program. You must also link in the UNIT again, if it is not Intrinsic.

Changes in a Regular UNIT require you to recompile the UNIT, and then to

recompile and relink all host programs (or other UNITs) which use that
UNIT.

INTRINSIC UNITs and their host programs can be changed as described
above, but they do not have to be relinked.

PROGRAMS IN PIECES 81

CHAPTER 6
OTHER DIFFERENCES

EXTERNAL PROCEDURES AND FUNCTIONS

EXTERNAL procedures (.PROC"s) are separately assembled assembly-
language procedures, often stored in a library file. Host programs that
require EXTERNAL procedures must have them linked into the compiled code
file.

A host program declares that a procedure (or function) is EXTERNAL in
much the same way as a procedure is declared FORWARD. A standard
heading is provided, followed by the keyword EXTEENAL:

PROCEDURE FRAMMIS (WIDGET, CGIDIBRION:INTEGER);
EXTERNAL;

There is one special rule for the heading of an EXTERNAL procedure or
function: A VAR parameter can be declared without any type.

Calls to the EXTERNAL procedure use standard Pascal syntax, and the
Compiler checks that calls toe the EXTERNAL agree in type and number of
parameters with the EXTERNAL declaration. It is the user’s
responsibility to ensure that the assembly-language procedure respects
the Pascal FXTERNAL declaration. The Linker checks only that the number
of words of parameters agree between the Pascal and assembly-language
declarations. For more information see the Apple Pascal Operating
System Reference Manual.

The conventions of the surrounding system concerning register use and
calling sequences must be respected by writers of assembly-language
routines. On the Apple, all registers are available, and zero-page
hexadecimal locations @ through 35 are available as temporary
variables. However, the Apple Pascal system also uses these locations
as temporaries, so you should not expect data left there to be there
when you execute the routine the next time. You can save variables in
NON=-zE&ro page memory using the .BYTE or .WORD directiv in your
program to reserve space.

(T3

For assembly language functions (.FUNC’s) the sequence is essentially
the same, except that:

4
i

- Two words of zeros are pushed by the Compiler after any
parameters are put on the stack.

After the stack has heen completely cleaned up at the routine
exit time, the .FUNC must push the function result on the
stack.

For an example of an EXTERMAL assembly-language procedure and an
EXTERNAL assemhly-languape function, called from a Pascal program, see
the example in the Apple Pascal Operating System Reference Manual. The
EXTEPMAL routine in that example is manually Linked into the calling
program.

T BT m
] i | 8

¥l 1

B2 APPLE PASCAL LANG

IDENTIFIERS

The underscore character _ is allowed in identifiers; however, the
compiler ignores it. Therefore the identifiers

FIG_LEAF
FIGLEAF

are equivalent. (The Apple keyboard does not have the underscore
character; but some external terminals do.)

CASE STATEMENTS

In Standard Pascal, if there is no case label equal to the value of the
case selector, the result of the case statement 1s undefined. In Apple
Pascal, 1f there is no case label matching the wvalue of the case
selector, then the next statement executed is the statement following
the case statement.

COMMENTS

The Apple Pascal compiler recognizes any text appearing between either
the symbols (* and *) or the symbols { and } as a comment. Text
appearing between these symbols is ignored by the Compiler unless the
first character of the comment is a dollarsign, in which case the
comment is interpreted as a compiler option (see Chapter 4).

If the beginning of the comment is delimited by the (* symbol, the end
of the comment must be delimited by the matching *) symbol, rather
than the } symbol. When the comment begins with the { symbol, the
comment continues until the matching } symbol appears. This feature
allows you to "comment out" a section of a program which itself contains
comments. This applies to external terminals only, since the only
comment delimiter available on the Apple is the pair (* and *).
example of how the two kinds of comment delimiters are used on an
external terminal:

An

{ ECP = XCP + 1; (* ADJUST FOR SPECIAL CASE... *) }

The compiler does not keep track of nested comments. When a comment
symbol is encountered, the text is scanned for the matching comment
gymbol. The following text will result in a syntax error!

END OF FIRST COMMENT #)
“error here.

(* THIS IS A COMMENT (* NESTED COMMENT *)

84 APPLE PASCAL LANGUAGE

e e e e e o —— . — e ——— ——— — e —— s = — = —

AW oW o W W oW W W oW W W W R W W Wl w W wa

GOTO

Apple Pascal has a more limited form of GOTO statement than Standard
Pascal. The destination of the GOTO statement must be in the same
prgcgdure as the GOTO statement itself {ccnsidering the main program to
be a procedure).

The compiler considers a GOTO statement to be illegal unless the
compiler option (*$G+*) is used; see Chapter 4.

PROGRAM HEADINGS

Although the Apple Pascal Compiler will permit a list of file parameters
to be present following the program identifier (as in Standard Pascal),
these parameters are ignored by the compiler and have no affect on the
program being compiled.

SIZE LIMITS

The following is a list of maximum size limitations impeosed upon the
user by the current implementation of Apple Pascal:

= Maximum number of bytes of object code in a PROCEDURE or
FUNCTION is 12¢¢. Local variables in a PROCEDURE or FUNCTION
can occupy a maximum of about 18f@P words of memory.

- Maximum number of characters in a STRING variable is 255.

- Maximum number of elements in a SET is 32 * 16=512.

= Maximum number of segments a program can use is 16. This

includes one segment for the main program, ome for each
SEGMENT PROCEDURE and SEGMENT FUNCTION declared in the
program, and one for each Regular UNIT that the program USES.

= Maximum number of PROCEDUREs or FUNCTIONs within a segment
is 149.

= Maximum integer that can be represented is 32767; minimum
is =32768.

= Maximum precision for REAL values is 32 bits.

EXTENDED COMPARISONS

Apple Pascal allows = and <> comparisons of arrays of exactly the same
type and of record structures of exactly the same type. This can be

OTHER DIFFERENCES 85

-—

Aa W m W N W W W W W W Wl Wl

When the ORD function is given a BOOLEAN value as an actual parameter,
the result is not always @ or 1. It is most unlikely that a working
program will ever encounter this situation, since there is little reason
to take the ORD of a BOOLEAN value.

done without subscripting (in the case of arrays) or field identifiers
(in the case of records). For example, given the declarations

VAR A: ARRAY[@#..1@#] OF INTEGER;
B: ARRAY[@..1@#] OF INTEGER;

then the following statement is legal:
1F A=BE THEN ...

and the statement following the THEN will be executed if each element of
A 1s equal to the corresponding element of B.

PROCEDURES AND FUNCTIONS
AS PARAMETERS

Apple Pascal does not allow a PROCEDURE or FUNCTION to be declared as a
formal parameter in the parameter list of another PROCEDURE or
FUNCTION.

e et . e pr— . — . — i S—] S— —

RECORD TYPES

There are two restrictions on record type declarations which are
different from Standard Pascal syntax:

= A null field list is illegal; in other words the construction
RECORD END;
will cause an error.

= A null field within the parentheses of a variant field list is

illegal; in other words a semicolon just before the closing
parenthesis will cause an error.

THE ORD FUNCTION

The ORD function will accept a parameter of type POINTER, and return the
numerical value of the pointer.

OTHER DIFFERENCES 87

B&6 APPLE PASCAL LANGUAGE

CHAPTER 7

SPECIAL UNITS
SUPPLIED FOR THE APPLE

mEEEmEEM RN MMM NN NN NN N NN

88 APPLE PASCAL LANGUAGE

APPLE GRAPHICS:
THE TURTLEGRAPHICS UNIT

This graphics package is called "Turtlegraphics" since it is based an
the "turtles" devised by S. Papert and his coworkers at the
Massachusetts Institute of Technology. To make graphies easy for
children who might have difficulty understanding Cartesian coordinates,
Papert et al. invented the idea of a "turtle" who could walk a given
distance and turn through a specified angle while dragging a pen along.
Very simple algorithms in this system (which could be called "relative
polar coordinates") can give more interesting images than an algorithm
of the same length in Cartesian coordinates.

Before any graphics can be used, they must be enabled by placing this
declaration immediately after the program heading:

USES TURTLEGRAFHICS;

If this declaration appears, the graphics procedures and functions
deseribed in this section can be used. This declaration tells the
Pascal system to get the graphics programs from the library. The
SYSTEM.LIBRARY file must be on line when the program is R{un or
eX{ecuted.

THE APPLE SCREEN

The Apple screen is a rectangle, with the origin (X=§,Y=@) at the LOWER
LEFT corner. The upper right corner has the coordinates (X=279,¥=191).
Since points may only be placed at integral coordinates, all arguments
to the graphics functions are INTEGERs. (You can supply a REAL
argument; it will be rounded to an INTEGER.)

There are two different screen images stored in the Apple’s memory. One
of them holds the text that you see when the computer is first turned
on. The other holds a graphic image. There are three procedures that
switch between the modes. They are INITTURTLE, TEXTMODE and GRAFMODE.

THE INITTURTLE PROCEDURE

This procedure has no parameters. It clears the screen, and allows the
screen to be used for graphics rather than text. It is a pood idea to
use this routine before starting any graphics.

INITTURTLE does a few other things as well: the turtle (more about it
later) is placed in the center of the screen facing right, the pen color
is set to NONE (more about this later too) and the viewport is set to
full screen (read on).

90 APPLE PASCAL LANGUAGE

Wow ow W W R W W R R WO W Wl W WA WKW W e

= =

THE GRAFMODE PROCEDURE

This procedure has no parameters. It switches the monitor or TV to show
the graphics screen, without the other initializaticn that INITTURTLE
does. It is usually used to show graphics in a program that switches
between graphics and text display.

THE TEXTMODE PROCEDURE

This procedure has no parameters. It switches from graphics mode
{obtained by INITTURTLE or GRAFMODE) to showing rext. When you BWiFEh
to text mode, the image that you saw in GRAFMODE is not lost, but will
still be there when you use GRAFMODE te go into graphics mode again
{unless you deliberately changed it.) Upon termination of any program
that uses graphics, the system automatically goes back into text mode «

THE VIEWPORT PROCEDURE

This procedure has the form
VIEWPORT (LEFT, RIGHT, BOTTOM, TOP)

where the four parameters give the boundaries you want the VIEWPORT to
have. If you don’t use this procedure, Apple Pascal asgsumes that you
want to use the whole screen for your graphics.

There are occasions when it is handy to use only part of the screen,
while safeguarding the rest from accidental use. For example, a small
square near the middle of the screen might be selected as a viewport by
the statement:

VIEWPORT (13§, 15@, 86, 1P&)

This example would allow the screen-plotting of all points whose
X-coordinates are from 13¢ through 15§ and whose Y-coordinates are from
B6 through 1@6.

i “3N

When a line is drawn using any of the graphic commands, it is
automatically clipped so that only the portion which lies within the
current viewport is displayed. Points whose coordinates are not in the

current viewport, even those points that would not be on the screen at
all, are legal but are ignored.

SPECIAL UNITS 4

This allows some dramatic effects. It also allows you to plot off-

screen all day, and never see a thing or get an error message. Clipping
cannot be disabled.

USING COLOR: PENCOLOR

The PENCOLOR procedure sets the pen color. It has the form

PENCOLOR (COLOR)
The simplest colors are
WHITE

WHITEL (two dots wide, for use with green and violet)

WHITE2 (two dots wide, for use with orange and blue)

BLACK

BLACK]l (two dots wide, for use with green and violet)

BLACKZ (two dots wide, for use with orange and blue)

GREEN
VIOLET
ORANGE
BLUE

If you®d like the drawing to be in GREEN, use the statement:
PENCOLOR (GREEN})

It may seem strange that aside from WHITE, BLACK, GREEN, VIOLET, ORANGE,
and BLUE, there are two additional flavors of WHITE and BLACK. These
are due to the intriecate (not to say bizarre) way that color televisions
produce their color, interacting with the technique that Apple uses to
get a lot of color very economically. Rather than explaining how this
all works, suffice it to say here that WHITE and BLACK give the finest
lines possible, and the colors give a wider line in order to make the
colors show. If you wish to make a white or black line that corresponds
exactly in position and width with a green or violet line then you
should use WHITEl or BLACKl. TIf you wish to make a white or black line
that corresponds exactly in position and width with an orange or blue
line, then you should use WHITE2 or BLACK2.

On a black-and-white monitor or TV set, just use WHITE and BLACK.

92 APPLE PASCAL LANGUAGE

AW R W W W W W oW e W W W e e W oW wa

.’

—-—

The remaining colors are not really colors at all but are equally
useful:

- NONE: Drawing with this "ecolor" produces no change on the

screens It is useful for moving the turtle without drawing a

line.

= REVERSE: Drawing with REVERSE changes BLACK to WHITE and WHITE
to BLACK. It also changes WHITEl to BLACKl, WHITE2 to BLACKZ,
GREEN to VIOLET and ORANGE to BLUE and vice versa. It is
rather a magical "color". It allows you to draw, say, a line
across a complex background and have it still show up.

- RADAR: This "color"™ has been left unused for future
applications.

MORE COLOR: FILLSCREEN

The FILLSCREEN procedure has the form
FILLSCREEN (COLOR)

FILLSCREEN fills the entire viewport with the specified color. For
example

FILLSCREEN (BLACK)
clears the viewport. The statement

FILLSCREEN (REVERSE)

makes a "negative" of the contents of the viewport.

79

When you invoke TURTLEGRAPHICS, a new variable type called SCREENCOLOR
is automatically created. It is defined as follows:

SCREENCOLOR = (NONE, WHITE, BLACK, REVERSE, RADAR, BLACKl, GREEN,
- VIOLET, WHITEl, BLACK2, ORANGE, BLUE, WHITEZ2);

SCREENCOLOR has all the usual characteristics of a Pascal type. It is
useful when you declare a variable that will be used to store a color.

SPECIAL UNITS 93

I

TURTLE GRAPHIC PROCEDURES:
TURNTO, TURN, AND MOVE

At last we’re back to the imaginary turtle. Initially, the turtle sits
at the center of the screen, facing right. The turtle can only do two
things: it can turn or it can walk in the direction it is facing. As it
walks, it leaves behind a trail of ink (!) in the current pen color.

The TURNTO procedure has the form
TURNTO (DEGREES)

where DEGREES is an integer which is treated modulo 36@; thus its
effective wvalue is in the range =359 through 359. When invoked, this
procedure causes the turtle to turn from its present angle to the
indicated angle. @ is exactly to the right, and counterclockwise
rotation represents increasing angles. This command never causes any
change to the image on the screen.

The TURN procedure has the form

TURN (DEGREES)
where DEGREES is again an integer which is treated modulo 36@; thus its
effective value is in the range -359 through 359. This procedure causes

the turtle to rotate counterclockwise from its current direction through
the specified angle. It causes no change to the image on the screen.

The MOVE procedure has the form
MOVE (DISTANCE)

where DISTANCE is an integer. This procedure makes the turtle move IN
THE DIRECTION IN WHICH IT IS POINTING a distance given by the integer
DISTANCE. It leaves a trail in the current pen color. The sequence of
statements:

PENCOLOR (WHITE);
MOVE (5@);

TURN (120):

MOVE (5@);

TURN (120

MOVE (5@8)

draws an equilateral triangle, for instance.

94 APPLE PASCAL LANGUAGE

= R g § T TRy pTEEE -2 TEEE § JEEEN § . TEEN . JEEEL § LU) NS § NN G S L W

mmmmmimmmmmmmwuwwwml&l&ﬂWl

o o = — - — . — —

TURTLE GRAPHIC FUNCTIONS:
TURTLEX, TURTLEY, TURTLEANG, AND SCREENBIT

These functions allow you to interrogate the computer about the current
state of the turtle and the screen.

The TURTLEX and TURTLEY functions (ne parameters) return integers giving
the current X and ¥ coordinates of the turtle.

The TURTLEANG function (no parameters) returns an integer giving the
current turtle angle as a positive number of degrees. Note that if you
use TURNTO and then TURTLEANG, the wvalue returned by TURTLEANG may not
be the same value you gave with TURNTO. For example, after

TURNTO (-9@)
TURTLEANG will return 27¢, not =-9{.
The SCREENBIT function has the form

SCREENBIT (X,Y)
where X and Y are screen coordinates. This function returns the BOOLEAN
value TRUE if the specified location on the screen is not black, and

FALSE if it is black. It doesn’t tell you what color is at that point,
but only whether there is something non-black there or not.

CARTESIAN GRAPHICS: THE MOVETO PROCEDURE

Earlier we said that in turtle graphics, the turtle can only walk in the
direction it is facing. But in Cartesian graphics, the turtle can move
to a specified point on the screen without turning. The MOVETO
procedure has the form

MOVETO (X, Y)
where X and Y are screen coordinates. MOVETO moves the turtle to the
point (X,Y). This creates a line in the current pen color from the

turtle’s last position to the point (X,Y).

The direction of the turtle is not changed by MOVETO.

SPECIAL UNITS 95

GRAPHIC ARRAYS: THE DRAWBLOCK PROCEDURE

The DRAWBLOCK procedure has the form

DRAWBLOCK (SOURCE, ROWSIZE, XSKIP, YSKIP, WIDTH, HEIGHT,
XSCREEN, YSCREEN, MODE)

where the SOURCE parameter is the name (without subscripts) of a
variable which should be a two-dimensional PACKED ARRAY OF BOOLEAN (see
note below). All the other parameters are integers.

DRAWBLOCK treats each BOOLEAN element of SOURCE as a "dot" —— true for
white or false for black. It copiles the array of "dots" (or a portion
of it) from memory onto the screen to form a screen image. The first

dimension of the array is the number of rows in the array; the second

dimension is the number of elements in each rows

You may choose to copy the entire SOURCE array, or you may choose to
copy any specified "window" from the array, using only those dots in the
array from XSKIP to XSKIPHWIDTH and from YSKIP to YSKIPHHEIGHT.
Furthermore, you can specify the starting screen positiom for the copy,
at (XSCREEN, YSCREEN).

= SOURCE is the name of the two-dimensional PACKED ARRAY OF
BOOLEAN to be copied (see note below).

- SIZE is the number of bytes (not dots) per row in the array.
You can caleculate this from the formula

2%((X+15) DIV 16)
where X is the number of dots im each row.

— XSKIP tells how many horizomtal dots i

before the copying process is started.

the array to skip over

= YSKIP tells how many vertical dots in the array to skip over
before beginning the copying process. Note that coples are
made starting from the bottom up —— i.e. the first row copiled
from the array is the bottom row of the screen copy.

- WIDTH tells how many dots® width of the array, starting at
XSKIP, will be used.

— HEIGHT tells how many dots” height of the array, starting at
YSKIP, will be used.

= XSCREEN and YSCREEN are the coordinates of the lower left

corner of the area to be copied into. The WIDTH and HELGHT
determine the size of the rectangle.

96 APPLE PASCAL LANGUAGE

ETN

i1

- MODE ranges from @ through 15. The MODE determines what
appears on the portion of the screen specified by the other
parameters. [t is quite a powerful option, which can simply
send white or black to the screen, irrespective of what is in
the array, copy the array literally, or combine the contents
of the array and the screen and send the result to the
screen. The following table specifies what operation is
performed on the data in the array and on the screen, and thus
what appears on the screen. (The logical notation uses A for

the array, and S for the screen. The symbal ~ means NOT.)
MODE Effect
[} Fills area on screen with black.
1 NOR of array with screen. (A NOR 5)
2 AND of array with complement of screenm. (A AND 78)
3 Complements area on Screen. (™5)
4 AND of complement of array with screen. (7A AND 8)
5 Complements the array. (7A)
& ¥OR of array with screen. (A XOR §)
7 NAND of array with sereen. (A NAND S5)
8 AND of array with screen. (A AND S)
9 EQUIVALENCE of array with screen. (A = 5)
19 Copies array to screen. (A)
11 OR of array with complement of screen. (A OR 78)
12 Screen replaces sereen. (§)

13 OR of complement of array with screen. (7A OR 5)
14 OR of array with screen. (A OR §5)
15 Fills area on screen with white.

The demonstration program GRAFDEMO.TEXT, on APPLE3:, contains many
examples of how to use the turtlegraphics routines. In particular,
procedures BUTTER], etc., give strings to procedure STUFF, which
converts them to a PACKED ARRAY OF BOOLEAN named BUTTER; and procedure
FLUTTER uses the DRAWBLOCK routine to display the array BUTTER on the
screens

K

Actually, the SOURCE parameter can be of any type except a FILE type;
DRAWBLOCK really deals with an array of bits in memory which begins at
the address of SOURCE and whose size and organization depend on the

other parameters. For example, the following procedure uses a single
BOOLEAN variable instead of an array. The procedure plots a single dot

on the screen at specified coordinates (X,Y):
PROCEDURE PLOTDOT (X, Y: INTEGER):
VAR DOT:BOOLEAN;
BEGIN
DRAWBLOCK (DOT, 1,0,@,1,1,X,Y,3)
END;

SPECIAL UNITS 97

- —

