GET_NAME ($27) GET_BOOT_VOL (528)

This function returns the filename of the curently running This function refurns the name of the volume from which L’h.r.- file
application narmed PRODOS was last executed. PRODOS is the operating
system loader; it loads both ProDOS 16 and ProDOS 8 into

To get the compete pathname of the current application, wse memory. Execution of PRODOS may ocourr

GET_PHEFIX for prefix number 1/, and affix that prefix to the file

mame retumed by this call ik Ll P
@ MNote: If your program uses SET_PREFIX to reset prefix 1/ o 5 s 0
anything other than ils initial value, be sure it first uses O by execution from an Applesolt BASIC dash (—) command

GET_PREFIX on 1/ and saves the results. Otherwise there may
be no way to recover the full pathname of the current
application

O by loading PRODOS into memory at 002000 and execuling a
JMP 1o that address

The volume name returned by this call is identical to the prefix
specified by */, See Chapler 5

o
1

al data_oufter = Pt
al i F 5

‘_"- data_buffer = paintar
GET_NAME (527) il]
Parameter block :

GET_BOOT_VOL (528)

Farameter block
Porameler description

Oifsel Labal Daseriphon Parameter descripllon

§00-503 data_buffer parameter name: data buffer on“r. Label Description
slze and type: long word pointer Chigh-order byte zero) N F
range of values: $0000 0000-$00FF FFFF $00-$03 data buffer parameter name: data buffer
_ - type: int igh-order byte zero)
Ihe long word address of a buffer, The buffer contains a length byte Sk sna o Ry e

followed by an ASCID string representing the current application’s range of values: $0000 DOO0—$00FT FFFF
file name The long word address of a buffer. The buffer contains a kength by
followed by an ASCII string representing the boot volume's name,

Possible ProDOS 16 emors

07 Prolx25 is busy Rossibie FrOOS 16 oo
07 ProD05 is busy
Chapter 12: Environment Calls 145 184 Part Il: PreDOs 14 System Call Reference

e S L —

QUIT (529)
Calling this function terminates the present application. It also
closes all open files, sets the current system file level to zero, and

deallocates any installed interrupt handlers, Prold05 16 can then
do one of three things:

0 launch a file specified by the quitting program

0 launch a file specified by the user

O automatically launch a program specified in the quit return stack
The guit return stack is a table maintained in memory by

ProDOS 16. It provides & convenient means for a shell program to
pass execution (o subsidiary programs (even other shells), while
ensuting that control evenmally retums to the shell,

For example, a program selector may push its User ID onto the quit
return stack whenever it launches an application (by making a QUIT
call). That program may or may not specify yet another program
when it quits, and it may or may not push its own User 1D onto the
quit return stack. Eventually, however, when no more programs

have been specified and no others are waiting for control (o return

to them, the program selector's User 1D will be pulled from the stack
and it will be executed once again

Two QUIT call parameters control these options, as follows:
1. Pathname pointer:

a. If the pathname poinler in the parameter block points 10 a

pathname of nonzero length, the indicated program Is loaded
and executed

b. Il pathname is null (zero) or if it points to a null pathname
(one with 3 zere length byted, ProDOS 16 pulls a User 1D from
the quit return stack and executes the program with that 1D

c. If pathname is mull and the quit return stack is empty,
ProDOS 16 executes a buill-in interactive dispatcher that
allows the user 1o

0 reboot the computer
O execute the file SYSTEM/START on the bool disk

0 enter the name of the next application w launch

Chapter 12: Envirenrment Calls 167

o pathnome

h B G 83 — O3

" Mogs

QUIT (529
Parameater block

palnter

walua

2. Flag word:

The flag word contains two boolean values: a retsrn flag and a

restart-from-memory flag.

4. If the return flag value is TRUE (bit 15=1), the User D r:-.F1.h:
program making the QUIT callis pushed onto the quit rewm
stack, If the return flag Is FALSE, no ID is pushed onlo the
stack.

b. If the value of the restart-from-memory flag is TRUE {bit
14=1), the program is capable of being restarted from a
dormant state in the computer's memory, I the restart-frome
memary flag is FALSE, the program must always be rclw:d.ed
from disk when it is ren, Every time a program’s User ID s
pushed onto the quit rem stack, the information from this
flag Is saved along with it. The System Loader uses this
information when it reloads or restarts the program later
(see Chapter 170

& Note: The pathname designated in this call may be a prartial
pathname with an implied or explicit prefix number, Howeves,
the total length of the expanded prefix (the full pathname
except for the file name) must not exceed 6 characters. Other
PraDOS 16 calls do not restrict pathname length as severely.

Further details of the operation of the QUIT function are
explained in Chapter 5.

168 Part Il; PreDOS 16 System Call Referance

PForometer descriplion

Offset Label Description

$00-503 pathname parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: S0000 O000-S00FF FFFF
The long word address of a buffer, The buffer contains a length bye
followed by an ASCII string representing the pathname of the next
file to execute.

504-305 flags parameter name: flag word

size and type: word value
range of values: $0000-5C000

Twa boclean flags in a 16-bit field. The bits are defined as follows:

bit significance
15 if = 1, place calling program’s
User I on return stack
14 il = 1, calling program may be
restarted fromm memory
13-0 (reserved)
Chaopter 12: Enwlronment Calls 149

$07 ProDOS is busy

540 Invalid syniax

§dh File not found

55C Not an executable file

35D Operaling sysiem not available
$5E Cannot deallocate /RAM

$5F Return stack overflow

Possible ProDOS 16 errors
QUIT never renurns to the caller, Therefore, it cannot return an
error, However, other parts of ProlO6 16 may. For example, if an
interrupting program (such as a desk acoessory) ignores established
conventions and uses 3 QUIT call, error 307 (ProDOS s busy)
may oocur. For programming rules covering such specialized
applications, see Programmer's Introduction i the Apple HGS.

If a nonfatal ermor ocours, execulion passes 1o an interactive rouling
that allows the user 1o select another program o launch. Ermors that
may cause this include:

Fatal efrors cause execulion 10 hale For example, If the oUIT call
results in the loading of 3 ProDOS 8-based application, and if the
system disk has been aliered with a different version of ProDOS &
(file PB), it is a faral error ($11). Execution halts and the following
message is displayed on the screen:

Wrong 05 wersion 50011

IFthe QUIT cill results in the loading of 3 ProDOS 16-based
application that is too large 1o fit in the available memory or that for
some other reason cannot be loaded, execution halts and the
following message {5 displayed on the screen

can’t run next application. Error=S5XXXX

where SXXXX s an error code—iypically a2 Tool Locator, Memary
Manager, or System Loader error code

Part |I: ProDOs 16 System Call Referance

GET_VERSION ($2A) ' Chnp_fer 13

This function retums the version number of the currently running
ProDOS 16 operating system

The returned version number is placed in the version parameter Inferrupt Con'rOI Cu"s

i Both byte and bit values are significant. It has this format
Byte | Bytal
F chalialetinhnlo el " i
I o3| a|7isa|slalalzg 0
Viave: | B | Mojor Release No Minor Release No

Byie 0 is the minor release number { = 0 for ProDOS 16 version 1.00
Byte 1 is the major release number ¢ = 1 for ProDOS 16 version .07 I
B {the most significant bit of byte 1) = 0 for final releases

= 1 for all prototype releases

GET_VERSIOM (52A)
Parametear block

Parameler descriplion

Gftsel Labed Description

S00-501 veraion parameter name: version
| size and type: word result Chigh-order byte pero)
| range of values: S0D00-5FFFF

The version number of PraDOS 16

Possible ProDOS 16 errors
07 Proli0s i3 busy
|
173
Chopter 12: Envirenment Calls 171

These calls allocte and deallocate interrupt handling routines,

The Pral}05 16 interrupt control calls are described in the ALLDC_INTEREUPT {$3 1)

following order: | This function places the address of an interrupt-handling routine
into the interrupt vector table. You should make this call before
enabling the hardware that can cause the interrupt. 1t is your

Mumber Function Purpose responsibility to make sure that the routine is installed at the proper
| location and that it follows interrupt conventions (see thapl.cr 7.
LLOC INTEREUPT alls an interrupt handlers)
¥ ALLOG INTERENES s P | Ihe returned int _num s a reference aumber for the handler. Its

£32 DEALLOC INTERRUBT removes an interrupt handler | only use is 10 identify the handler when deallocating ity you must
refer to a routine by its interrupt handler number to remove it from

?_ T o reeut the system (with DEALLCC INTERRUPT)
2 i When ProDO5 16 receives an interrupt, it polls the installed
a - int_code - painter handlers in sequence, according to their order in the intermupt
i F - vector lable. The first handler installed has the highest priority,
Each new handler installed is added to the end of the table; each
ALLOC_INTERRUPT (531) one deallocated is removed from the list and the rable is
Parameter block compacted
Note: Under ProDOS 8, the interrupt handler number is equal
o the handler's position in the polling sequence, By contrast,
the value of int_num under ProDOS 16 is unrelated o the
order in which handlers are polled.
174 Part Il: ProDOS 14 Systern Coll Reference Chapter 13: Interrupt Contral Calls 175

Parameler descripion

Ofisel

Labal

Descriplion

F00-501

$02-305

174

int num

int code

parameter name: interrupt handler number
size and type: word result Chigh-order bye sero)
range of values: $0000-300FF

The identifying number assigned to the interrupt handler by
ProDOS 16

parameter name: intermupt code

size and type: long word painter Chigh-order byte zera)
range of values: L0000 OD00-500FF FFTF

The long word address of the interupt handler routine

Possible ProDOS 16 errors

507 ProlX05 is busy
523 Interrupt vector table full
§53 Invalid parameter

Part Il: ProDOs 14 Systermn Call Referance

Important

Parameter descriplion

DEALLOC_INTERRUPT ($32)

This function clears the entry (specified by fr_mum) for an
interrupt handler from the interrupt vector table.

You must disable the associated Interrupt hardware before
making this call. A fatal emor will result If o hordware infermupt
occurs after Its enfry has been cleared from the vector table,

DEALLOC INTERRUFT has no effect on the order of the polling
sequence for the remaining handlers. Any subsequently allocated
handlers will be added 10 the end of the polling sequence

? |— nT_ il -J Wil

DEALLOC_INTERRUPT (532}
Paramater Blask

Qitset

Label

Dascription

$00-501

ink

um

parameter name: interrupt handler number

size and type: wiord value (high-order byte zero)
range of values: $0000-500FF

The identifying number assigned to the interrupt handier by
ProDO5 16

Possible ProDOS 16 errors

507 ProlM05 is busy
$53 Invalid paramerer
Chopter 13: Inferrupt Control Calls 177

F'_cni' _IH

The System Loader

The System Loader is an Apple IGS tool set that workes closely with
ProlX05 16, 1t is responsible for loading all program code and data
into the Apple TGS memory. [t is capable of static and dynamic
loading and relocating of code and data segments, subroutines,
and libraries

Chapter 14 explains in general terms how the System Loader works
Chapter 15 details some of its functions and data structures, Chapter
16 gives programming suggestions for using the System Loader
Chapter 17 shows how o0 make loader calls and describes each call
in detail See Appendix E for a complete list of System Loader error
condes

Chapter 14

Introduction to
the System Loader

This chapter gives a basic picture of the System Loader, defines
some of the important terms needed to explain what the loader
does, describes its interactions with the Memory Manager, and
presents an outline of the procedures it fallows when I{mﬂing*._l
program inta memory, Additional related terms are defined in the

Glossary.

What is the System Loader?

The System Loader is a set of sofiware routines that manages the
loading of program segments into the Apple IIGS. It is an Apple [1G5
toal set; as such, it is independent of ProDdO5 16, However, it works
very closely with ProDOS 16 and with the Memory Manager,
another 1oo] set. The System Loader has several improvements over
the Ioading method under ProD}{OS 8 on other Apple I1 computers:

O 1t makes loading easier and more convenient. Under ProDOS5 8,
the only automatic loading Is performed by the boot code, which
searches the boot disk for the first SYSTEM file (type $FF) and
loads It into location $2000. If a system program needs to call
another application it must do all the work itself, either by
making ProDOS 8 calls or by providing its own loader. On the
Apple IGS, calls to the System Loader perform the task mare
simply.

o It is a melocating loader: it loads relocatable programs at any
available location in memory. Under Prol¥05 B, a program must
be loaded at a fixed memory address, or at an address sp:_:clﬁed
by the system program that does the loading, The rélocating
loader relieves the programmer of the burden (and restriction)
of deciding where to load programs.

It is a sepment loader: it can load different segments of a
program independently, to use memory efficiently.

O It is 4 dymamic logder it can load cerlain program Scgments as
they are needed during execution, rather than at boot time only

The System Loader handles files generated by the APW Linker, the
linker handles files produced by an Apple 1G5 assembler or
compiler. The linker, assembler, and compilers are part of the
Apple IGS Programmer's Workshop (APW), a powerful and
flexible set of development programs designed to help
programmers produce Apple [1GS applications effidenty and
conveniently, See Chapter & of this manual for more information
and references an Apple 1165 Programmer's Workshop,

Loader terminology

The System Loader is a program that processes load files. Load fles
aré Prol}0S 16 applications or other types of program files. They
contain machine-language code or data and must follow objec
module format (OMF) specifications, as defined In the Apple Ies
Programmers Workshop Reference Each load file consists of load
segments that can be loaded into memory independently,

Load segments can be either static or dynamiec. A program's static
segments are loaded into memory at initial load time (when the
program is first started up); they must stay in memory until the
program is complele. Dynamic load segments, on the other hand,
are not placed in memory at initial load time; they are loaded as
needed during program execution. Dynamic loading can be
automatic (through the Jump Table) or manual (at the specific
request of the application through System Loader function calls),
When a dynamic segment i no longer needed by the program thar
called it, it can be purged, or deleted, by the Memory Manager.

segments can be absolute, relocatable, or position-
independent. An absolute segment must be loaded Ino a specific
location in memory, or it will not function properly, A relocatable
segment can execule correctly wherever the System Loader places
it. Least restricted of all is a position-independent segment; its
functioning is tdally unaffected by its location in memaory. It can
even be moved from one location to another between executions.
Muost Apple (1G5 code is relocatable, but not position-independent.

182 Part lll: The System Loadar Chapter 14: Infraduetion 1o the System Loader 183
ot l;

184

Load files can contain segments of various kinds, Some segments
consist of program code or data; others provide location
information 1o the loader, The Jump Table segment, when
loaded into memory, provides a mechanism by which segments in
memory can trigger the loading of other needed segments, Each
load file can have only one Jump Table segment. A load file can
also have one segment called the Pathname segment, which
provides a cross-reference between file numbess {in the Jump Table
segment) and pathnames {on disk) of dynamic segments. A third
special type of segment is the initialization segment. It contains
any code that has 1o be executed first, before the rest of the
segments are loaded.

When the System Loader is called to load a program, it loads all
static load segments including the Jump Table segment and the
Pathname segment. The Jump Table and the Pathname Table are
constrected from these two segments, respectively, During this
process, 3 Memory Segment Tahle is also constructed in
memory. These three tables are discussed in more detall in the next
chapter,

A controlling program is a program that requests the System Loader
to perform an initial load on another major program, wsually an
application. The User ID Manager assigns a unique identification
number (User 10} to that application, so the loader may quickly
locate all of the application’s segments if necessary. A switcher is an
example of a controlling program; ProDOS 16 and the APW Shell
are also controlling programs. A word processor is an example of
an application

Interface wﬂﬁ the Memory Manager

The System Loader and the Memory Manager work closely together,

The Memory Manager i an Apple 1G5 teol et (firmwine progem)
that Is responsible [or allocating memery in the Apple 1G5, It
provides space for load segments, tells the System Loader where 1o
place them, and moves segments around within memory when
additional space is needed

Part lll: The Systam Loader

R

When the System Loader loads a program segment, it calls the
Memory Manager 1o allocate a corresponding memory block.
Memory blocks have attributes that are closely related to the load
segments in them. If the program segment is state, its memory
block is marked as unpurgeable {meaning that its contents cannot
be erased) and fAxed (meaning that its position cannot be
changed), as long as the program is running, If the program
segment is dymamic, its memory block is initially marked as
purgeable bul locked (emporarily unpurgeable and fixed; subject
1o change during execution of the program). If the dynamic
segment is positon-tndependent, s memory block is marked as
movable, otherwise, it is fixed,

To unload a segment, the System Loader calls the Memory
Manager 10 make the coresponding memory block purgeable. If the
controiling program wishes to unload all segments associated with a
particular application (for example, at shutdown), it calls the
Systermn Loader's User Shutdown function, which in ture calls the
Memory Manager 1o purge the application’s memory blocks.

To speed up execution of a finder or switcher that may need 1o
rapidly reload shut-down applications, the User Shutdown function
can optionally put an application into a dormant state. The loader
calls the Memory Manager to purge the application’s dymamic
segments, and make all satic segments purgeable. This process
frees space but keeps the unloaded application's essential SERMENnts
in memaory, However, if for any reason memory rans out and the
Memory Manager is forced 1o purge one of those static segments,
that application can no longer be used—ihe next time it is needed,
it evust be loaded from its disk file, See "User Shutdown® and
"Restan” in Chapter 17

¢ Note: Strictly speaking, load segments are never purged or
Jocked, those are actions taken on the memory blocks that hold
the segments. For simplicity, however, this manual may in
cenain cases apply lerms such as purged or locked 1o segmens.,

A typical load segment will be placed in a memory block that is

Locked

Fixed

Purge Level = 0 GF the segment is static)
Purge Level = 3 (if the segment is dynamic)

Chapler 14: Infreduction to the System Loader 185

184

Depending on other requirements the segment may have, such as
alignment in memory, the load segment-memory block
relationship may be more complex. Table 14-1 shows all possible
relationships berween the two that may hold at load time. The
direct-page/stack segment has special characteristics described in

Chapter 6,

Table 14-1

Load-sagmeant/maman-block relationships (at load time)

Load Segment Aftribuie

static

dynamic

absolute (CRG > O}
relocatable
position-independent
not postion-independent
KIND = §11
BANKSIZE =0
BANKSIZE = 510 000
ALIGHN =0

ALIGH = $100

ALIGH = 5§10 000

direa-page/stack (KIND =

Mamory Block AHribute

unpurgeable, fixed
(unmovable}

purgeable, locked

fixed address

(no specific relation)

not fixed (movable)

fixed (unmovablie)
fixed-bank

may cross bank boundary
may not cross bank boundary
not bank- or P:uge-:ﬂ:'gnr:d'_
page-aligned!
'Im:rj]'i-;{.hgﬂl.‘:l:!T

purgeable, fxed-bank (3000,
page-aligned

TMignn;cnl may also be controlied by the value in the BANKSIZE

field—see Appendix D

& Nofe: ORG, KIND, BANKSIZE and ALIGN are segment
header fields, described in Appendix D of this manual and
under “Object Module Format" in Apole G5 Programmery

Waorkshaop Reference,

A memory block can be purged through 2 call to the System Loader,
but other attributes can be changed only through Memory Manager
calls. Memory block properties useful 10 an application may

include
O Start location

O Size of block

O User ID (identifies the application the block is par of)

0 Purge level (0 @ 3: 0 = unpurgeable, 3 = most purgeabls)

Part ll: The System Looder

These properties may be accessed either through the Memory
Segment Table (see Chapter 15}, or through the block’s memory
handle, which is part of the Memory Segment Table. If the memory
handle is NIL (points to 1 null podnter), the memaory block has been
purged

Loading a relocatable segment

The following brief description of pants of the operation of the
Systern Loader shows how the linker, loader, and Memory Manager
work together 1o produce and load a relocatable program segment.
Figure 14-1 diagrams the process in a simplified form,

Load files conform 1o a subset of object module format (OMF), In
OMF, each module (file) consists of one or more segments; each
segment is further made up of one or more records. In a load file
specifically, each segment (apart from specialized segments such as
the load file tables described in Chapter 15) consists of a header
followed by program code or data, in twm followed (if the segment
is relocatable) by a relocation dictionary. The relocation
dictionary is created by the lnker as it convers an object segment
into a foad segment, The program code or data consists of two ypes
of records: LCONST records, which hold all code and data, and DS
records, used for filling space with zeros. The relocation dictionary
consists of two generl types of records; RELOC secords, which
give the loader the information it needs 1o resolve local
{intrasegment) references, and INTERSEG records, which Rive
the loader the information it needs 1o resolve external
(intersegment) references. cRELOC, cINTERSEG, and SUPER
records are also found in elocation dictionaries—they are
compressed versions of RELOC and INTERSEG records. The
detailed formats of all OMF records are presented in Apple G
Programmer’s Workshop Reference.

When a relocatable segment is loaded into memory, it is placed at a
location determined by the Memory Manager. Furthermore, only
the first part of the segment (the program code itself) is loaded into
the part of memory reserved by the Memory Manager; the
relocation dictionary, if present, is loaded into a buffer or work area
used by the loader, After Ioading the segment, the loader relocates
it, using the information in the relocation dictionary,

Chapter 14 Infroduction fo the System Looder 187

Oibject Fiie

Segmenl

seament

Segment
1

188

Part

1ns

Memory Bonk SXX

1 headar

code

ry Fe B local nedd e o) J
/.f O 'ﬁ' Segmant n |

An

1 "
i
i
sy Bonk §YY

Segmant o

code -

Agure 14-1
Leading o relocaotable segment

Relocation

After the System Loader has placed a load segment in memory, it
must (uniess the segment consists of absolute code) relocate s
address references. Relocation descnbes the processing of a load
segment so that It will execute properly at the memory location at
which it has been loaded. It consists of patching (substimuting the
proper values for) address operands that refer 1o locations bath
within and external 1o the segment. The relocation dictionary part
of the segment contains all the information needed by the loader 1o
do this parching. Relocation is performed as follows

1. Local references in the load segment (coded in the original
ohiject file 2s offsets from the beginning of the segment are
paiched from RELOC records in the relocation dictionary,
Using the starting address of the segment (available from the
Memory Manager through the Memory Segment Tabled, the
loader adds that address to each offset, so that the comect
memory addoess is referenced

Il: The Systam Loader

2. External references (references 1o other segments) are coded in
the original object module as global variables (subroutine names
or entry points), The linker and loader handle them as follows:

a. If the reference is 1o a static segment, the linker will have
calculated the proper file number, segment number, and
offset of the referenced (external) segment, and placed that
information in an INTERSEG record in the relocation
dictionary. When the load segment Is loaded, the logderuses
the INTERSEG record and the memory location of the
external segment (available from the Memory Manager
through the Memory Segment Table), and then paiches the
external reference with the proper memory address of the
external segment.

b. If the reference is 1o a dynamic segment, the Nrker will have
created a slightly different INTERSEG record: instead of
referencing the file number, segment, and offset of the
referenced external segment itsell, the INTERSEG record
references the file number, segment number, and offset of an
entry in the fump Table. Therefore, when the load segment is
loaded, the loader patches the reference to point to the Jump
Table entry. That entry, in turn, s what transfers control to the
external segment al its proper memory addeess Gf and when
the referenced segment is loaded),

The Jump Table and the reascns for this indirect referencing are
described further in Chapter 15, The main point of interest here
is that, when it perfforms relocation, the loader doesn't care
whiether an intersegment reference is to a static or to a dynamic
segment—il treals bath in exactly the same way,

The System Loader performs several other functions when it loads
dynamic segments, including searching for the name of the
segment in the Pathname Table before loading, and patching the
appropriate Jump Table entry afterward. These and other functions
are described in more detail in the next two chaplers.

Chapter 14: infroduction fo tha System Loader a9

This chapter describes the data tables set up in memory during a

Chqpfer 1 5 load, 1o E;:u't:w.'i{:h: cross-reference [nfq}rmau'fn to the loader. I:I;!:‘u:"
Memaory Segment Table allows the loader 1o keep track of which
segments have been loaded and where they are in memory. The

Jump Table allows programs (o reference routines In dynamic
srstam Loader Data Tables segments that may not currently be in memory. The Pathname
Table provides a cross-reference berween file numbers and file
pathnames of dynamic segments, The Mark List speeds relocation
by keeping track of relocation dictionaries.

Memory Segment Table

The Memory Segment Table is a linked list, each entry of which
hardle te T describes 4 memory block known 1o the System Loader. Memory
st @niry 1 40 hincks are allocated by the Memory Manager during loading of

segments from a load file, and each block comesponds 1o & single

- O - load segment. Figure 15-1 shows the format of each entry in the
previous ety | 4PV'®0 Memory Segment Table.

The fields have the following meanings:

= Uil - 2oyres
Handle to next entry: The memory handle of the next entry in the

B 1 Memory Segment Table, This numbser is O for the last entry

' memony hondle < 4 byles

= = Hondle o previous eniry: The memory handle of the previous
irsires v M sgrnant Table. This ber is O For the Rt

5 load-fe na 4 2 bvies entry in the Memory Segment Table. This number is O for the firs
cntry.

= - 13 - bBytes s 5 " " .

QOIS NG 2 bytes Usor ID: The identification number assigned o the memory block

L loadsagment kind o 2 bytes this segment inhabits, Normally, the User 113 is available direcily

from the Memory Manager through the memory handle, However,

if the block has been purged its handle is NIL and the User 1D must

Figure 15-1 be read From this Beld
Memory Segment Table eniry catlan i nl it

191 192 Part (li: Tha System Looder

Memory handle: The identifying number of the memory block,
obtained from the Memory Manager. Additional memory black
information is available through this handle, This handle is NIL if
the block has been purged.

Load-file number: The number of the load file from which the
segment was obained. If the segment is in the initial load file, the
number is 1

Load-segment number: The segment number of the segment in the
lpad file

Load-segmaent kind: The value of the KIND field in the load
segment’s header. Segment kinds are described in Appendix D.

Jump Table -

When a program (load file) is initially loaded, only the static load
segments are placed in memory: at that point the System Loader
has all the information it needs to resolve all symbolic references
among them. Until 2 dynamic segment is Ioaded, however, the
loader cannot resolve references o it because it does not know
where in memory it will be, Thus static segments may be directly
referenced (by each other and by dynamic segments), but dynamic
segments can be referenced only through J5L (Jump to Subroutine
Long) calls 1o the Jump Table. This section describes how that
mechanism works

The Jump Table is a structuse that allows a program o reference
dynamic segments. Il consists of the Jump Table Directory and one
or more Jump Table segments,

Cmn dizk, Jump Table segments are load segments Cof kind 5020,
created by the linker to resolve references to dynamic segments

Any load file or run-time library file may contain a Jump Table
Segmenl.

Choptar 15 System Loader Dota Tables 193

194

In memory, the Jump Table Directory is created by the loader as i
Ioads Jump Table segments. The Jump Table Direciory is a linked
list, each entry of which points 1 a singbe Jump Table segment
encountered by the loader, Figure 15-2 shows the format of an entry
in the Jump Table Directory.

andia 10
B |I oo ta d 4 bytes

= 4 bylas

o Lizail - 2 byles

- memory hondle = 4 byles

Flgure 15-2
Jump Table Direchory antry

The fields have the following meanings:

Hondle to next enlry: The memory handle of the next entry in the

Jump Table Directory, This number is O for the last entry.

Handle lo previous enlry: The memory handle of the previous
entry in the Jump Table Directory, This number is O for the frst
entry.

User ID: The identification number assigned to the Jump Table
segment that this Directory entry refers to.

Memory handle: The handls of the memory block containing the
Jump Table segment that this Directory entry refers to.

Like the Directory, the individual Jump Table segments consist of 4
series of entries, The next three subsections describe the creation,
loading, and use of a single Jump Table segment entry. The cntry is
used 1o resolve a single JSL instruction in a program segment

& Note: Throughout this manual, the term fump Table entry
refers to a Jump Table segment entry, not a Jump Table
directory entry,

Fart Ill: Thia System Looder

s

Creation of a Jump Tal';la entry

The Jump Tahle load segment s created by the linker, as the linker
processes an object file. Each time the linker encounters 3 J5L to
4 rouline in an external dynamic segment, it creates an INTERSEG
record in the relocation dictionary of the load segment, and Gf it
has not done so already) an entry for that routine in the Jump Table
segment. The INTERSEG record links the J5L to the Jump Table
entry that was just creaied. Figure 15-3 shows the format of the Jump
Tabie entry that the linker creates. See also section a of Figure 15-5

L
|— UsarD = 2 bytas

o load-fila no - 2 bylas

M loodsegment no, = 2 bytes

loag-segmant

offsat < 4 byles
o J5L 1o —
= Jump Tobée load o 4 bytes
- fumctian -
Figure 15-3

Jump Tabie entry (unlooded state)

The fields have the following meanings:
User ID: The User 1D of the referenced dynamic SCgmEn

Load-flle numbar: The load-file number of the referenced dyvnamic
Sepment.

Load-segmeni number: The load-segment number of the
referenced dynamic segment

Lood-segment offsel: The location of the referenced address within
the referenced dynamic segment

J5L ke J.ump Tubh. Load funclion: A lang subroutine jump 1o the
Jump Table Load function. The Jump Table Load function is
described in Chapter 17

The F:r'.rll. entry in a Jump Table segment has a load-file number of
zefo, (o indicate thal there dre no more entries in the segment.

Chopter 15: Systemn Loader Data Tobles 195

At load time, the loader places the program segment and the Jump
Table segment into memaory (it does not yet load the referenced
dynamic segment). To link the Jump Table segment with any other
Jump Table segments it may have loaded, it creates the Jump Table
Directory. The Jump Table i now complete

Using the information in the INTERSEG record, the loader
patches the JSL instruction in the program segment 5o that it
references the proper pan of the Jump Table in memory. It alse
patches the actual address of the Jump Table Load function into the
Jump Table entry. The Jump Table cnlry is now in s rerlodded
stare, See section A of Figure 15-5

Use duﬂﬁ_g-;x_ai:"ﬁﬂon

During program execution, when the JSL instruction in the
ariginal load segment is encountered, the following sequence of
evenls takes place:

1. Control transfers to the proper Jump Table entry.

2, The J5L in the entry transfers control to the System Loader's
Jump Table Load function.

. The Jump Table Load function gets the load-file number, load-
segment number, and load-segment offset of the dynamic
segment fram the Jump Table entry. Then it gets the file
pathname of the dynamic segment from the Pathname Table
The System Loader loads the dynamic segment inlo memory
The loader changes the dyramic segment's entry in the Jump
Table to its loaded state The loaded state s identical to the
unloaded state, except that the J5L to the Jump Table Load
function is replaced by 2 ML (unconditional Jump Long) to the
external reference itself. Figure 15-4 shows the format for the

T

WA e

loaded state

Part Hl: The Systerm Loader

[Obsact Segment n Lepd Segmmend i HMagmory Bonk $XX
- UserlD - 2 bytes T sagmant
fcoda)
o oad-fia na. - Z bytes
Linker > | I Loader
I lod-segment no. = 2 bytes pid e 2 The A Ly
SnoouUnTens o (relocation codar loods MIERSES
L 2 15, th Lindosr thae load file H ¥ mecoud
load-segment croatas Info mamory, i s e Looder
= offsat - 4 bytes INTERSES Ineluding == det-H
- — recoed in the tegment n fra comed
! Firdeg
1 food sagmant | jump Toble Se t | ond tha Mgrnary Bonk gy S of
- JML to E ﬁ ard an anfry -_r ::"e:.da :,mm dump Tabie E—— !
- the extemc - 4 bytes Pynamic naferancirg : : sogrment Jumo Tabla
L refarence B S0 end g
he e
M Jumo Table - S [—
stn*;_:r'!u"‘) potches
Agure 15-4
Jurrip Table enfry (ooded state) : H
] i
4. The loader transfers control (o the dynamic segment. When the
new segment has finished its task (typically it is a subroutine and
exils with an RTL, Refurn from Subroutine Long), control
returns (o the statement following the original J5L instruction
See section B of Figure 15-5
Fgure 15-5A

How the Jump Table works

Jump Table dlugn:;m

Figure 15-5 s a simplified diagram of how the Jump Table works. Tt
fellows the creation, loading, and use of a single Jump Table entry,
needed 1o resolve a single instruction in load segment 7 The
instruction is a J5L to a subroutine named rowfine in dynamic
segment d.

Chaptar 15: Systern Loader Dato Tables 197 {1+ Part ll: The Systermn Logoder

Marmary Bank 5§30

Marnary Bork 57V

SJmp Tabke

Mesnory Bonk §II

Diyriarmic

S

Sagment
o

a. B
encountesad
during
exacution
I
1l
' 3
Exgcution § 5 Loader
passet 1o i changes
dump Table wemany Bank §¥Y i 1% #from | Jumo Toble
antny gment ariry 1o its
Jump Table a looded
#are
P— et g ;
Juma Table - than b. Routing
Laad function pasas finlshes
cormd to wiin an
: : | g 7L bock to
! H H ML 1o sagmantn
1 ' outing
Memary Sank $IT Memary Bank LI
which 2;3’:? :':—:m;
Lalala] i = f S ,.g'. i
dynoemic :
segrment o J ERE k-

harde 1o
it @iy

nandle to
previoLs entry

Figure 15-58
How the Jumg Table works (continued)

Pathname Table

The Pathname Table provides 4 cross-reference berween file
numbers and file pathnames, 1o help the System Loader find the
load segments that must be loaded dynamically. The Pathname
Table is a linked list of individual pathname entries; it starts with an
entry for the pathname of the initial load file, and includes any
entries from segments of kind $04 (Pathname segments) that the
loader encounters during the load. Also, if run-time library files are
referenced during program execution, their cwn pathname
segments are linked to the original one.

Chapter 15: System Loader Data Tables 199

B UsedD -
- oad-fla na =1
- fle date =
— s time -
adarnass of il
direc page /siack
B sl af a
drect poge/stack
[Jump-Toble-looded |
e

[tenghy byie)

’\,-—“G_”IQK

Flgure 15-&
Pathnome Tabla aniry

4 bytes

4 bytes
2 bytas
2 ovies
2 bytes
2 byles
2 bytes

2 bryhies

A load file's Pathname segment (XIND = $04) is constructed by the
linker and contains one entry for each run-time library file
referenced by the file, Fach entry consists of a lead-file number,
file date and time, and 2 pathname. The exact format for
Pathname-segment entries is given in Apple GS Programmer's
Workshop Reference,

The Pathname Table is constructed in memory by the loader,
its entries are identical 1o Pathname segment entries, except
that each also containg two link handles, a User 1D feld, and
direct-page/stack information, Figure 15-6 shows the formar of
4 Pathname Table entry

The fields have the following meanings:

Handle to next entry: the memory handle of the next entry in the
Pathname Table. For the last entry, the value of the handle s 0.

Handle o previous entry: the memory handle of the previous
entry in the Pathname Table. For the first entry, the value of the
handle is 0.

User ID: the 10 associated with this entry. Generally, each load file
has a wnique User I, and a single entry in the Pathname Table.
Fach new run-time library encountered during execution is assigned
the application’s User 10,

File number: the number assigned to a specific load file by the
linker, File number 1 i reserved for the initial load file

Flle date: the date on which the file was last modified.
File time: the lime a1 which the file was last modified

The file date and file time are ProDOS 16 directory items retrieved
by the linker during linking. They are included in the Pathname
Table as an identity check on run-time Lbrary files (they are ignared
for other file types). To ensure that the run-time library file used at
program execution is the same one originally linked by the linker,
the System Loader compares these values to the directory entries of
the run-time library file to be loaded. If they do not match, the
System Loader will not load the file

Direct-page/stack oddress: the starting address of the buffer
allocated (at initial load) for the file's direct page (zero page) and
stack.

Direct-page/stock size: the size (in bytes) of the buller allocated
for the file’s direct page and stack,

200 Part il The System Looder

-
L]
-

Figure 15-7
Mark List format

The fields have the following meanings:

the
he Mark List) 1o the next wemply space in the Mark
PLY SE

Mex! avalloble space: The relative offset (in bytes i
beginning of

5 o by s List
e o
I's relo n end of loble: The fzer 1o the end of the Mark List—in
location becaos: sther words, its sise n bytes
In' 1 throug f ' . :
I ; ; segmant number: The number of the load segment whose
¥ Lisl WS il o : gra
firectl hee fon | is specified in the following field
+ I 1= 588 s i ol dictionan 2
I N P T he Mk Flte Mark: The relative offset (in bytes from the beginning of the
I Nows i 13t [L :

pad file) 1o the relocation dictionary of the segment specified in
~ceding field. F Wark in this table has the sime meaning &
¢, in Prol0S 16 (see Chapter 2)

abiles 201 202 Part Il The Systemn Looded

C hG pter] é This chapler discusses how you can use Lh::' -;_'::pﬂ!:i“lit‘.s of the
System Loader at several different levels, depending on the
= = complexity of the programs you wish 1o write. It also gives
requirements for designing controlling programs (shells}—
programs that control the loading and execution of other

Programming With peograma
'hE SYSTEITI Lﬂuder Programming suggestions for ProDOS 16 are in Chapter 6 of

this manual. More general information on how to program for
the Apple [1G5 s available in Programmer’s Introduction o the
Apple [iGs. For language-specific programming instructions,
consult the appropriate language manual in the Apple [1G5
Programmer's Workshop (see “Apple [1GS Programmer's
Workshop” in Chapter 6).

Static programs

The functioning of the System Loader is completely transparent 1o
simple applications, Any program that is loaded into mem:
entirety al the beginning of execution, and which does not call any
other programs or routines that must be loaded during run time,
need not know anything about the Systemn Loader. If such a static
program Is in proper object module Tormar, it will be automatcally
loaded, relocated, and executed whenever it is called

Programming with dynamic segments

You may write Apple [IGS programs thal use memory more
efficiently than the simple application described above. 1T your
program is divided into static and dynamic segments, only the
static segments are loaded when the program is started up.
Dynamic segments are loaded only as needed during execution,
and the memory they occupy is available again when they are no
longer needed.

1% 204 Part il The System Loaded

Dynamic loading also is transparent to the typical application; no
System Loader commands are necessary to invoke it If you segment
your program as you write the source code, and if you define the
proper segments as dynamic and static when the object code is
linked, the loading and execution of dynamic segments will be
completely automatic

Because segments are specified as static or dynamic at link time,
you may experment with several configurations of a single program
after it has been assembled. For example, you might fisst run the
program as a single static segment, then run several different statie-
dynamic combinations 1o see which gives the best pedormance for
the amount of memaory required. [n this way the same program
could be taillored to different machines with different memory
configurations.

[n general, the least-used pans of a program are the best candidares
for dynamic segments, since loading and executing a dynamic
segment takes longer than executing a static segment. Furthermore,
making a large, seldom-used segment dynamic might make the
initial load of a program faster, since the static pant of the load file
will be smaller.

Dynamic segments can be used as overdays (segments with the same
fixed starting address that successively occoupy the same memaory
area), but this structure is not recommended for the Apple 11GS, If
all segments are instead relocatable, the Memory Manager has
maore flexibility in finding the best place for each allocated

segment, whether or not it happens to be a space formerly occupied
by another segment of the same program.

Programming with run-time libraries

¢ Note: Although the System Loader supparts ran-time libraries,
initial refeases of other Apple 11GS system software may not,
This section discusses how (0 program [or run-time librarles
when full support for them becomes available

A run-time library is a load file. Like other libraries or subroutine
files, it contains general routines that may be referenced by a
program. As with other libraries, references 1o it are resolved by the
linker)

Chapter 14: Programming with the System Looder

Unlike other libraries, however, ils segments are not physically
appended 1o the program that references [t; instead, the linker
creates 4 reference to it in the program’s load file. The run-time
library remains on disk (or in memory) as an independent load file;
when one of its segments is referenced during program execution,
the segment is then loaded and executed dynamically.

As with dynamic segments, loading of mun-time library segments &
transparent to the typical application. No System Loader
commands are necessary (o invoke it; as far as the loader is
concerned, the run-lime library is just another load file with
dynamic segments.

The most useful difference between mun-time library segments and
other dynamic segments is that they may be shared among
programs. Routines for drawing or calculating, dialog boxes or
graphic images, or any other segments that might be of use 1o mone
than one program can be put into run-time libraries. And, being
dynamic, they help keep the initil load file small.

Important I wing both run-time librardes and othar dynamic sagmants,
make sureé that the volumes containing all needed segments
and llbrafes are on line at run fime. A fatal emor occurs |f the
System Looder cannot find a dynomic segment it nesds o
|,

User control of segment loading

To make the greatest use of the System Loader, programs may make
loader calls directly. For most applications this s not necessary,
but for programs with specialized needs the System Loader offers
this capability.

Your application can manually load other segments using the Load
Segment By Mumber and Load Segment By Name calls. Load
Segment By Number requires the application to koow the load Ele
number and segment number of the segment (o load; Load Segmvent
By Name uses the load file pathname and segment name of the
desired segment. Both require User 1D as an input; the User 1D for
each segment and each pathname are available from the Memaory
Segment Table and Pathname Table, respectively. Other segment
information available through the Get Load Segment Info call.

Part lll: The Systarn Loadar

——

One advantage of manually loading a dynamic segment is that it can
be referenced in a more direct manner. Automatically-loaded
dynamic segments can be referenced only through a J5L o the
Jump Table; however, if the segment is data such as a able of
vilues, you may wish to simply access those values rather than pass
execulion to the segment. By manually loading the segment,
locking it, and dereferencing its memory handle (obtaining a
pointer to the star of the segment), you may then directly reference
any location in the table. OF course, since the loader does not
resolve any symbolic references in the manually loaded segment,
the application must know ils exact structure.

A program is responsible for managing the segments it loads, That
is, it must unload them (using Unload Segment By Number) or make
them purgeable and unlocked (through Memory Manager calls)
when they are no longer needed.

Dﬁiéning a controlling program

A program may cause the loading of another program in one of two

WY

O The program can make a ProDOS 16 QUIT call. ProDOS 16 and
the System Loader remove the quitting program from memory,
then load and execute the specified new program.

O The program can call the System Loader directly. The loader
Isads the specified new program without unloading the original
program, then hands control back to the original program.

A controlling program Is an application that loads and executes
other programs using the second method. It uses powerful System
Loader calls that are normally reserved for use by ProDOS 16,
Certain types of finders, switchers and shells may be controlling
programs; if you are writing such a program vou should follow the
conventions given here.

Chapter 14: Programming with the System Loader 207

208

An application needs 1o be a controlling program only if it must
remain in memory after it calls another program. I it is necessary
only that control retirm o the original program after the called
program quits, the ProDOS 16 QUIT call is sulfictent for that. For
example, a finder, which always returns after an application that it
calls quits, does not have to be a controlling program; it is not in
memory while the application is running. On the other hand, the
Apple 1165 Programmer's Workshop Shell, which has functions
needed by the subprograms that it calls, &5 2 controlling program, i
remains active in memory while its subprograms execute.

% Note: Subprograms are [ile type §B5, called shell
applicatlons. They too must follow cerain conventions See
“Object Module Format® in Apple [Gs Frog rammer's
Workshop Reference, and Programmer’s Introduction io the
Apple TGS

If you write a controlling program, please follow these guidelines:

1, The contralling program should request a User 1D for the
subprogram, either directly from the User ID Manager or
indirectly, by calling the System Loader's Initial Load function
with an input User ID (Main1n) of zero. The controlling program
should then pass the returned User I 1o the subprogram in the
accumulator

2, Use the System Loader's Initis] Load function to first load any
subprogram. The function returns the subprogram's stasting
address and User 1D 10 your controlling program; the
controlling program can then decide when and where Lo pass
contral to the subprogram

3, YWhen your controlling program passes execution (o the
subprogram, it may also pass parameters and an identifier
string. The painter 1o the buffer containing that information
should be placed in the X (high-order word) and ¥ (low-arder
word) registers. The buffer should contain an 8-characer shell
identifier string, followed by a null-terminated string consisting
of the complete input line or command line through which the
subprogram was called.

& Note: ProDOS 16 does not pass an identifier string of
command line when it launches a shell application. It places
peros in the X and Y registers

Part lll: The System Loader

ol

Your controlling program is responsible for establishing the
appropriate input and culpul vectors for its subprograms. For
example, when Prolx35 16 launches a $85 file, it sets the global
/0 hooks to point to the firmware Pascal drivers for BO-column
screen and keyboard. The identifier string your controlling
program passes to the subprogram allows it to check 1o make sure
it is running in the proper 170 environment (that is, under your
controlling program and not another).

. The controlling program should observe the ProDOS 16
conventions for register initialization and direct-page/stack
allocation. See Chapter 6

bl

6. If you want your controlling program to support shell
applications that lerminate with 2 ProDOS 16 QUIT call, the
tontrolling program must intercept all ProDOS 16 calls. Thar
way when a subprogram quits, the controlling program, rather
than ProlX25 16, regains control

When the shell application exits back to the controlling
program, it leaves an error code in the accumulator, Two values
are reserved: S0000 means no error, and $FFFF means 3 non-
specific shell-application error. Your controlling program and
subprograms may define any other errors as needed,

~J

8. Your controlling program is totally responsible for the
subprogram's disposition. When the subprogram Is finished, the
controlling program must remove it from memory and release
all resouerces associated with Its User 1D, The best way to do this is
to call the System Loader's User Shutdown function.

9. IF the subprogram diself manually loads other programs, then it is
also a controlling progsam and must observe all the conventions
listed here. in particular, it must be certain 1o dispose of all
memory resources associated with the subprogram than
loaded, before isell quitting and passing contral back to the
original controlling program.

The practice of using shell applications as controlling programs
is discouraged

Shutting down and restarting applications

Through alternate use of the User Shutdown and Restart functions, 1
controlling program can rapidly switch execution among several
applications. If none of an application's static segments have been
removed from memory since shutdown, Restart brings the
application back rapidly because disk access is not requined,

Chapter 14: Programming with the Systemn Loodar 209

210

However, only software that is restartable can be restarted in this
way, Restartable software reinitializes its variables every time it gams
contral; it makes no assumptions about the state of the machine .
when it starts up. If a subprogram exits with a QUIT call, it specilics
whether |t Is restartable or not; otherwise, the controlling program
i5 responsible for deciding whether a program qualifies as
restartable.

Summary: loader calls cmegn'ri_zad

The following table categorizes System Loader calls by the types of
programs that make them. Most applications, whether their
sdgments are static or dynamic, and whether or not they use mun-
time libraries, need make none of these calls. Applications that
load dynamic segments manually may call any of the user-cailabis
functions. Controlling programs and ProDOS 16 call the system-
wide functions. Only the System Loader itself may call the infernal
functions. Functions not listed in Table 16-1 either do nothing or
are execuied only at system starup

Table 15&-1

Systemn Leader functiors cotegorized by caller

I.Illl'-Ci:.Il:I:.il Sysfem-Wide Imtarmol

Loader Version Inital Load Jumgp Table Load
Loader Status Restart Cleanup

Load Segment By Number Get User 1D
Unload Segment By Number Get Pathname
Load Segment By Name User Shutdown
Unload Segment

Get Load Segment Info

Part lil: The Systemn Loocder

Chapter 17

System Loader Calls

Introduction

This chapler explains how System Loader functions are called, and
describes the following calls:

Hurmibsar

Function

Purpose

501

s02
§03

504

311

i
ra

21 212 Part Il Thia System Looder

Loader Initialization

Loader Startup
Loader Shutdown

Loader Version

Loader Reset

Loader Satus

Initial Load

Restart

Load Segment By Mumber

Unload Segment By Number

Load Scgment By Mame
Unload Segmeant

Get Load Segment Info
Gel User I

Get Pathname

User Shutdown

1. T

Jump Table Load

Cleanup

(executed at system
startup)

(no function)
(no function)

returns System Loader
version

(no fencriond

retums initialization
slatus

loads an application

slarts a dormant
application

loads a single segment
unloads 3 single segment
loads a single segment
pnloads a single segmenl

reluins a segment's
handle

returns User ID fora
pathname

refurns pathname for a
User 1D

f‘_’:lktﬁ an .'|_|'_'|;1-.;|';I|I:::'|
l_i:}r_',11.;4'.l|
loads a dynamic segment

frees memory space

How calls are made

The System Loader is an Apple 11G5 ool set (ool number 17, or
hexadecimal $11). Yoo call its functions using either macro calls
{not described here) or the standard Apple TIGS tool calling
sequence, as (ollows:

. Push any required space for returned results onto the stack.
Push each input value onto the stack, in the proper order,
3. Execute the following call block:

LDX BSll+FuncRum|@
Jd5L Dlspatcher
whens

#3511 is the System Loader tool set number
FuncBum is the number of the function being called

(18 means "shift left by B bits™.)
Dispatcher is the address of the Tool Dispatcher
(3E1 0000,

It is the responsibility of the caller (uswally a controlling program)
to prepare the stack for each function it calls, and to pull any results
off the: stack. Error status is retumned in the accumulator (A register);
furthermore, the carey bit i set (1) iF the call is unsuccessful, and
ceared (0) if the call s sucessful

The Jump Table Load function does not use the above calling
sequence, and cannot be called directly by an application, It is
called indirectly, through a call to a Jump Table entry, The absolute
address of the function is patched into the Jump Table by the System
Loader at load time

Parameter types

There are four types of parameters passed in the stack: values,
results, pointers, and handles. Each is either an tnpmaf fo or an
oo from the loader function being called.

1 A value is 2 numerical quantity, either 2 bytes (word; see Table 3-

13 or 4 bytes Jong word) in length, that the caller passes (o the
System Loader. It is an inpul parameter,

A result is & numerical quantity, either 2 bytes (word) or 4 bytes
long word) in length, that the System Loader passes back to the
caller, It is an output parameter,

Chapter 17: System Loader Colls 213

214

a

Format 'féTs'ystem Loader call dascrip_ﬁans

A polnter is the address of a location containing data, code, or
buffer space in which the System Loader can recelve or place
data. A pointer may be 2 bytes (word) or 4 bytes {long word] in
length. ‘The pointer iself, and the data it points 1o, may be either
input or cutput

A handle is a special type of pointer: it is 2 pointer 1o a pointer.
It is the 4-byte address of a location that itself contains the
address of a location containing data, code, or buffer space. In
Systemn Loader calls, a handle is always an output.

The following sections describe the System Loader calls in detail
Each description contains these clements:

the full name of the call
a briel description of what function it performs

1 the call’s function number

the call’s assembly-language macro name (use it if you make
macro calls)

the call's parameter list (input and cutpul)
the stack configuration bath before and after making the call

1 4 list of possible error codes

the sequence of events the call invokes (if the brief deseription is
not complete enoughl

Porometer list note: In the parameter lists, fmfd paramelers are

listed in the order in which they are pushed omto the stack; ot
parameters are listed in the order in which they are pulled from the
stack. Check the stack diagrams if you are uncertain of the proper
arder in which (o push any of the parameters,

Stack diogrom nobe: Unlike other memory tables in this manual,
the stack diagrams are organized in units of words—that is, each tick
mark represents (o vtes of stack space

Bart ll: The Systerm Loader

Loader Initialization ($01) Loader Startup (302)

The Startup routine s required for all Apple 1G5 ol sets, For the
System Loader, this function does nothing and need never be
called

This routine initializes the System Loader; it s called by the system
software at boot time. Loader Initialization clears all loader tables
and sets the initial state of the system, making no assumplions about
the: current or previous state of the machine. The System Loader's Function Number: 302

global variables (see Appendix D) are defined at this time
Mocro Name: LoaderStartup

The [nitialization routine is required for all Apple IG5 tool sets,

Functien Number: $01

Mocro Name: LoaderTnis Paramelers
LAone)

Parameters

S Possible errors
rome)

Possible errors

Cnone)

Chapter 17; Systermn Loader Calls 215

Loader Shutdown ($03) Loader Version (504)

The Shutdown routine is required for all Apple [IGS ool sets. For the The Loader Version function retums the version mumber of the

System Loader, this function does nothing and need never be System Loader currently in use. The version number has this

called format:
Funcllon Number: 503 Byte 0
Byie yte O
M N : LoaderShutde . = = T
ocro Nome: LoaderShutdown L '5|M|=..3]EI'Ill'Cll‘?!Ei ?lﬁlh!dial?“l“

Value: |B] Maojor Relegse Mo Minor Release No.

Parameters wher
{none) 1 Byte 0 is the minor release number { = 0 for System Loader
version 1.00
3 Byte 1 is the major release number { = 1 for System Loader
Possible errors veuion 1.0)
» B (the most significant bit of byte 1) = 0 for final releases
(none) = 1 for all prototype releases
The Version routine is required for all Apple 1G5 1ool sets
Funcilon HNumbaer: 504

Mocro Name: LoaderVersion

Parameters
Name Size and Type
Input (none)
Cutput Loader version word result {2 bytes)
Chapter 17 Systam Loadar Calls N7 218 Part 11l Tha System Looder

Stack Before Call:

Loader Reset (-5 05)

The Reset routine is required for all Apple IG5 ol sets. For the
Systemn Loader, this function does nothing and need never be
called

| |- 5p

Stack After Call: Function Number: $05

C '_":‘ Mocre Mome: LoaderBeset
-op

Parameters
Possible errors {nonc)

Lnone)

Possible ermrors

{none)

Chapter 17: System Loades Calls 219 220 Part Ill: The Systam Loadar

e

Loader Status (506)

This routine returns the current status (initialized or uninitalized) of
the System Loader. A nonzero result means TRUE (initialized); a
zero result means FALSE (uninitialized), A result of TRUE is always
refumed by this call because the System Loader is always in the
Indtalized state.

The Status routine is required for all Apple [IGS ool sets,
Funclion Number: 506

Mocro Name: LoadarStatus

Parameters
Hams Size and Type
Input (none)
Cutput status wond result (2 bytes)

Stack Before Call:

pravvidus Conlents
frgsit space)

*+-zp
Stack After Call:
| previous contents
Ston'us
I -+ 5p
Possible errors
(none)
Chapter 17: Systermn Loader Calis 221

Initial Load ($09)

This function is called by a controlling program (such as a shell or a

swilcher) 1o ask the System Loader to perform an initial load of a
program.,

Funchon Mumber: 509

Mocro Nome: Tnitialload

Parameters
Hames Size ond Type
Input User 1D word value (2 byies)
address of load-file long word pointer (4 bytes)
pathname
special-memory flag word value (2 byies)
Output User ID word result {2 bytes)
slarting address long word painter (4 bytes)

address of direct-page/ word pointer (2 bytes)
stack buffer

size of direct-page/ word result (2 bytes)
stack buffer

Stack Before Call:

Crdaed! Apccel

[

adarass of
g nama

o

Special -memary fog

- 5p

Part Hl: The System LoQdar

Stack After Call:

pravious contents
o, popa/Sfack STg
aw. EQQE‘J’.‘?IJE‘E oo,
- Savting oddess

LisgviD)
-+ 5P

Possible errors
51104 File is not a load file
$1105 System Loader is busy
31109 SegMum out of sequence
5110A legal load record found
31108 Load segment is foreign
$005ex Pral¥}38 16 error
§02xx Memory Manager error

Sequence of events

When the Inital Load function is calied, the following sequence of
evenis ooours

1. The function checks the TypeID and MainID felds of the
specified User [D.

a, If both fields dre nonzero, the Svstem Loader uses it o allocte

space for the segments 1o be loaded.
b, If the TypeID field is zero, the System Loader obtains a new

User ID from the User ID Manager, to assign to all segments of

that file. The new TypeID is given the value 1, meaning that
the new file is classified as an application

¢, M only the MainID field is zero, the System Loader obtains a
now User ID) from the User ID Manager, using the supplied
TypelD and AuxID.

The User 1D Manager (described in Apple (65 Toolbox
Refevence) guaraniees that User 1D'S are unique 1o each
application, tool, desk accessory, and so forth, See Appendix
I of this manual for a brief description of the User ID
format and the TypeID field.

Chaptar 17: System Looder Calls 223

e ot

224

2]

i

. The function checks the value of the spedial-memory flag 1 it

is TRUE (nonzero), the System Loader will not load any staric
segments into special memory (banks 300 and $01—see
Chapter 3), The special-memory flag does not affect the load
addresses of dynamic segments.

. The function calls ProDOS 16 1o open the specified (by

pathname) load file. If any ProDO5 16 ermor ocours, or if the file
is not a load file (type $B3-$BE), the System Loader retumns the
appropriate error code.

Nate: If the load file is a ProDOS & system file (type $FF) or a
ProDOS B binary file (ype $06), the loader will not load it

. Once the load file is opened, the System Loader adds the load-

file information to the Pathname Table, and calls the Load
Segment By Number function for each static segment in the load
file,

o If any statc segment loaded s an Initialization Segment
(segment kind=$100, the System Loader immediately transfers
conteol 10 it When the Systemn Loader regains control, it loads
the rest of the static segments without passing control 1o them.

O If a direct-page/stack segment (RIND=§12) Is loaded, the
System Loader returns the segment’s starting address and size

Note: The System Loader treals a direct-page/stack segment as a

locked, unpurgeable, static segment. The segment cannod be

moved or purged as long is the application is active, but i

becomes purgeable at shutdown,

o If any of the stalic segments cannot be loaded, the System
Loader aboris the load and returns the error from the Load
Segment By Number function

. Once it has loaded all the static segments, the System Loader

returns the starting address of the first segment (other than an
initialization segment) of load file 1 to the controlling program
It then transfers execution o the controlling program. The
controlling program itself is responsible for setting the stack and
direct registers and lor transferring control 1o the just-loaded
program.

Part Hl: The System Loader

Restart ($0A)

This function is called by a controlling program (such as a shell or 2
switcher) to ask the System Loader to resurrect 4 dormant
application—one that has been shut down (by the User Shutdown

functicn}, but is stll in memory,

Only programs that are restanable can be successfully resurrected
through this call. A restanable program always reinitializes its

il execules

and makes no assumptions about machine state each time

To make it restartable, a program may include a Reload segment
containing all necessary initalization information, A Reload
segment is always loaded from the file at startup, even when a

Program Is res arted

@ Mofe: The control

ng program that makes the Restart call is

responsible for making sure that the program it specifies is
indeed restartable. The System Loader makes no such checks

Funclion Mumber: 50A

Macre Name: Kestart

Parameters
Name Size ond Type
Input User D

Output User D

sarting address

address of direct-pages

stack buller

size of direct-page/
stack buffer

word value (2 bytes)
word result (2 bytes)
long word pointer (4 bytes)

word pointer (2 bytes)

word result (2 bytes)

Stack Before Calk

(resLat S

frasu 5
Liseni

- 5P

Stack After Call:

previouws corlents

dir._page
dir._ Dage/sstack ool

= sfodling oddvess o

1 Lisar

Possible errors

51101 Application not found
51105 System Loader Is busy
$1104 User 11} error

L0 ProDO5 16 error
SOace Memiory D\1;4:1agr_'r Error

Sequence of events

When the Restart function is called, the following sequence of

EVENLS OCCurs.

1, An existing, nonzero User [D must be specified (the Aux [D part
is ignored), If the User ID is zero, eror 31108 is retumed. IF the
Llser 1D is unknown o the Svstem Loader, error $1101 is

returned,

Chapter 17: System Looder Calls 225 224 Part |ll: The Systern Looder

Z. The Restart function can work only if all of the specified
program's static segments are still in memory. What that means
is that no segments in the Memory Segment Table with the
specified User [can have been purged.

a. The System Loader checks the memory handle of each
Memory Segment Table entry with that User [D. I none are set
1o NIL the segments are all in memory,

Iv. The System Loader then resurrects the application by calling
the Memory Manager to make each of the application’s
segments unpurgeable and locked,

¢. The loader reloads any Reload segments it finds, and executes
any initialization segments it finds,

d. The loader returns the application's complete User ID, the
first segment’s starting address, and the direct page and stack
information {from the Pathname Table) 1o the caller

3. If any of the application’s stalic segmenis are no lomger in
memory, the function does the following:

a. It calls the Cleanup routine to purge all references 1o that User
1D from the System Loader's tables and delete the User 1D
itself

b. 1t calls the Initial Load function 1o load the application. The

application receives a new User I, which is returned to the
caller

Chapter 17: Systemn Loader Calls 227

Load Segment By Number ($0B)
The Load Segment By Number routine is the workhorse function of
the System Loader. Other System Loader functions that load
s:_*gu:.énts do so by calling this function. 1t loads a specific load
segment into memory;, the segment is specified by is load-file
number, load-segment number, and User 1D,

% Note: Applications use this function to manually load dynamic
segments. An application may also wse Load Segment By
Mumber o manually load a static segment. However, in that
case the System Loader does not patch the correct address of
the newly loaded segment onlo any existing references to it
‘Therefore the segment can be accessed only through 18 starting

" address.

Funclion Number: S0B

Mocro Nome: LoadSegium

Parameters
Hame Size and Type

Input User 112 word value (2 bates)
load-file numbser wird vahue (2 byles)

lpad-segment number word value (2 bytes)

Output address of segment long word pointer (4 bytes)
Stack Before Call:

pravicus contants

— {rasuat space) 1
Liseri)

fpod-file number

isod-segment no

228 Part lll: The Systerm Looader

Stack After Call:

pravious confents

oddress of]
sagrmeant
-+ 5P

Possible errors
£1101 Segment not found
£1102 Incompatible OMF version
£1104 File is not a load file
51105 System Loader &s busy
£1107 File version error
31109 Seghum oul of sequence
$1104 lliegal load record found
51108 Load segment is foreign
$00: ProD0s 16 error
$02xx Memory Manager erfor

Sequence of events

When the Load Segment By Number function is called, the
following sequence of events oocurs,

1

First the loader checks to find out if the requested load segment
is already in memory: it searches the Memory Segment Table
te determine if there is an entry for the segment. If the entry
exists, the loader checks the value of the memory handle to
find oul whether the corresponding memory block is still in
memory. [f so, the function terminates without returning an

error. If an entry exists but the memory block has been purged,
the entry is deleted,

If the segment is not already in memary, the System Loader

looks in the Pathname Table to get the load-file pathname from
the load-file number

The System Loader checks the file type of the referenced fle. If

it is not a load file (lype $B3-3BE), then error $1104 is
returned

Chapter 17: Systern Loadar Calls 229

230

Part Iil: The System Loader

If the file is type $B4 (run-time library file), the System Loader
compares the file's modification date and time values to the file
date and file tme in the Pathname Table. If they do not match,
error $1107 is returned and the load is not pedformed.

Prol}5 16 is called to open the file, If ProlX05 16 cannot open
the file, it returns an appropriale ercor code.

After ProDO5 16 successfully opens the load file, the Systiem
Loader searches the file for a load segment corresponding 1o
the specified load-segment number. If none is found, efror

§1101 is reurned.

If the load segment is found, its header is checked (segment
headers are described under "Object Module Format” in
Apple Has Programmer's Workshop Reference). If the
segment's OMF version number is incompatible with the
current System Loader version, error $1102 is returned. If the
value in the header's SEGNUM ficld does not match the
specified load-segment number, error $1109 is returned, Il the
values in the NUMSEX and NUMLEN ficlds are not O and 4,
respectively, error $1108 is returned.

If the load segment is found and the header is corredt, a
memory block of the size specified in the LENGTH feld of the
segment header is requested from the Memory Manager. I the
oRG field in the segment header is not zero, then a memory
block starting at the address spedified by CRG s requested
(ORG is normally zero for Apple (1G5 programming; that is,
most segments are relocatable). Other segment attribules are
set according 1o values in other segment header fields—see
Chapier 14,

If 2 nonzero User 1D is specified, the memory block &5 given
that User ID. If the specified User 1D is 2zero, the memory block
is given the current User ID (value of USERID global
varable).

2. If the requested memory is not available, the Memory Manager o — e —
and System Loader use these techniques 1o free space: . Unload segmﬂnf B'f Number ($DC]

d. The Memory Manager unloads unneeded segments by
purging their corresponding memory blocks. Blocks are
purged according to their prrge levels, For example, all
level-3 blocks are purged before the first level-2 biock is)
purged. Any dynamic segment whose memory block's Funcilen Mumber: 50C
purge level is zero cannot be unicaded

b. If all purgeable segments have been unloaded and the
Memory Manager still cannot allocate enough memory, it .
moves any mouable blocks (0 enlarge contiguous memaory 7
areas. Parameters

c. IF all eligible memory blocks have been purged or moved,
and the Memory Manager stll cannot allocate enough

This function unloads a specific load segment from memory, The
segment is specified by its load-file number and load-segment
number, and lts User ID.

Mocro HNome: UnLoadSegium

Hame 5kze and Type L |
memory, the System Loader Cleanup routine is called 1o
: - . = ; g
free any unused parts of the System Loader's memary. The Input User I word value (2 bytes)
Memory Manager then wies once more to allocate the load-file Aumber word value (2 bytes)
requested memaory, ha A viilas {3 Bitee)
. load-segment number word value Le DiRes
d. If the Memory Manager is still unsuccessful, the System B
Loader returns the last Memory Manager error that Crutpart {nonel
ooourmed
10. Once the Mn‘-l‘l’lur}." .'-{.magm has allocated the rf_*qu(r_s[gd Stack Before Call:
memory, the System Loader puts the load segment into P
vieus canfants
memory, and processes the relocation dictionary (if any). :"'5"'"1'_"’“',?" i I
@ Mote: If any records within the segment are not of a proper type I'W*trzl"l::::.nf; r
(3E2, $E3, 5F1, $F2, or 3000, error $110A s returned. See ood-seQmeT —5p
Appendix [for an explanation of record types.

11. An entry for the segment is added to the Memory Segment Stack After Call:
Tahle

12. The System Loader returns the starting address of the segment previous contants .
1o the controlling program. 3¢

Possible errors

§1101 Segment not found

$1105 System Loader is busy

$0000c ProlHO5 16 error

S0Zace Memory Manager error
Chapter 17: System Loader Calls 231 73z Part lil: The Systern Looder

Sequence of events

When the Unload Segment By Number function is called, the
following sequence of events ooours.

1. The System Loader searches the Memory Segment Table for the

specified load-file number and load-segment number. If there is
no such entry, error $1101 is returned.

2, If the Memory Segment Table entry Is found, the loader calls the
Memory Manager 10 make prrgeable (purge level = 3) the
memaory block in which the segment resides.

3. The loader changes all entries in the Jump Table that reference
the unlaaded segment to thelr unloaded states,

Special conditions:

O 1If the specified User ID is zere, the current User 1D (value of
USERIDY is assumed,

o If both the load-file number and Ioad-segment number are
nonecro, the specified segment is unloaded regardless of
whether it is static or dynamic, If either input is 2ero, only
dymamic segments are unloaded, a5 noted next.

O If the specified load-file number is zero, all dynamic segments
for that User ID are unloaded,

If the specified Ioad-segment number is zero, all dynamic
segments for the specified load file are unloaded.

@ Note: If a static segment is unloaded, the application that it is
part of cannot be restarted from a dormant state. See "Restan”
and *Ulser Shutdown,® in this chapter.

Chaptar 17: Systen Loader Calls 233

Stack Before Call:

pravipus confents
(resull pace)
{result space]
rrasull spoce)
L (resulf spocel -1

LisariD
B oodrass of E
Joad-fils nama
aagress of

™ ioad-segmeant name |

Load Segment By Name ($0D)

This Fenction loads a named segment into memory. The segment i§
named by its load file's pathname, and its segment name (from the
sEGNAME field in the segment header). A nonzero User [0 may be
specified if the loaded segment is to have a User I different from
the current User ID.

Function Mumber: 300

Macto Mome: LoadSagiame

Parameters
Harme Sire and Type

Input: User 1D word value (2 bytes)
address of load-file long word pointer (4 bytes)
name
address of load-segment long word pointer (4 bytes)
name

long word pointer (4 bytes)
User Id waord result (2 bytes)
load-fle number

Output: address of segment

word result (2 bytes)

load-segment number word result (2 bytes)

5" possible errors
Stack After Call: 51101 Segment not found
51104 File is not a load file
|_previous contents | $1105 System Loader is busy
[Hzodsagment ng, $1107 File version error
img;*:%nc 51109 Seghum out of sequence
M oodesof $110A llegal load record found
segmant = $110B Load segment is foreign
u-5P 000 PeaDOS 16 error
S0 Memory Manager error
234 Part lll: The System Looadar

Sequence of events

When the Load Segment By Name function s called, the following
sequence of events occurs.

The System Loader gets the load-file pathname from the pointes
given in the function call,

5]

The System Loader checks the file type of the referenced file,
from the file’s disk directory entry. I it is not a load file (type
SB3-5BE), error 51104 is returned

If it is a load file, the loader calls ProDOS 16 1o open the file. If

ProDO5 16 cannot open the file, it returns the appropriate error
code,

L

s

+ After the load file has been successfully opened by ProDOS 16,
the System Loader searches the file for 2 segment with the
specified name. If it finds none, error $1101 is returmed.

5. 1f the load segment is found, the Syslem Loader notes the
segment number. 1L also checks the Pathname Table 1o see if the
load file is listed. IF the file is listed, the loader gets the load file
number from the wabie; if not, it adds 3 new entry to the
Pathname Table, assigning an unused file number 1o the load
file. If the Jump-Table-loaded flag in the Pathname Table is
FALSE, the loader loads the Jump Table segment (if any) from
the load file and sets the Jump-Table-loaded flag to TRUE

. Mow that it has both the lpad-file number and the segment
number of the requested segment, the System Loader calls the
Load Segment By Number function to lead the segment, I the
Load Segment By Number function returns an error, the Load
Segment By Name function returns the same error, I the Load
Segment By Number function is successful, the Load Segment By
Name function returns the load file number, the load segment
number, the User ID, and the starting address of the memory
block in which the load segment was placed.

Chapter 17: Systerm Loader Calls 235

Unload Segment ($0E)

This function unloads the load scgment containing the specified

address, By using Unload Segment, an application can unload a
segment without having to know its load-segment mumber, load-file
number, name or User 1D,

Funclon Number: $0E

Mocro Name: UnloadSeg

Parameters
Hame Size and Type
Input address in segment long word pointer (4 bytes)
Wlpul Lisr 1y el lesdls C2 LF?I.Lﬂ._I
load-file number word result (2 bytes)

load-segment number word result (2 bytes)
Stack Before Call:

pevious conlants

[
{resull SpOce

= ccicvess in segrient =

= 5P
Stack After Call:
pravious contents |
iood-segmant_na |
\ood-fig na
Lisgnl
5P

Part ll: The Systermn Loader

Possible errors Get Load Segment Info ($0F)

5?1'1_.” Segment not found This function retums the Memory Segment Table entry
51105 System Loader is busy comesponding to the specified (by number) load segment.
002 ProlED5 16 emar

e Memory Manager error Function Mumber: $0F

Mocro Name: GetLoadSeglnfo

E&qu&n ce of events

When the Unload Segment function is called, the following Parameters
sequence of evenls occurs

1. The function calls the Memory Manager to identify the memeory
block containing the specified address. IF the address is not

within an allocated memory block, error $1101 5 returnied Input User I word value (2 bytes)

Name Size and Type

2. If the memory block is found, the function wses the memory load-file mumber word value &b}'{ﬂ'—&}
handle returmed by the Memory Manager to find the block's User vies)
| ID. It then scans the Memory Segment Table for an entry with load-segment number word value (2 b
| that User 1D and handle. If no such entry is found, eror $1101 is address of user buffer long word pointer (4 bytes)

relurned.

: Output (filled user bulfer)
3. If the Memory Segment Table entry is found, the function does

one af two things: Stack Before Call:
a. I the Memory Segment Table entry refers to any segment

other than a Jump Table segment, the function extracts the previous contents |
load-file number and load-segment number from the entry llsTj
< : ood-ie no
b. If the Memory Segment Table entry refiers to a Jump Table ko s0gMEnt no.
segment, the function extracts the load-file number and load TS ety
" 1 1
segment number in the fump Table entry at the address earbuler

e . 5P
specified in the function call,

4. The function then calls the Unload Segment By Sumber function tack Call
1o unload the segment . . AT '

The outputs of this function (load-fle number, load-segment

1 pravious contents I
number, and User ID) can be used as inpuls 1o other System Loader P

funciions such as Load Segment By Number,

Possible errars

51101 Entry not found

51105 Systemn Loader is busy

$00x Prol¥3S 16 error

02 Memory Manager error
Chapter 17: Systemn Loader Calls 237 238 Part (I The System Loader

Sequence of avents

When the Get Load Segment Info function is called, the following
sequence of evenls ooours,

1. The Memory Segment Table is searched for the specified entry. If
the entry is not found, error $1101 s renumed.

. If the entry is found, the contents of the entry (except for the link
pointers) are copled into the user buffer.

Chapter 17: System Looder Calls 239

Get User ID (510)

This function returns the User 1D associated with the specified
pathname. A controlling program can use this function to
determine whether it can restart an application of must perform an
initial load

Funclion Number: 310

Mocra Nome: GetlUsecID

Parameters

Haoma Sipe and Type x:
Input address of pathname long word pointer (4 bytes)
Ouiput User ID word result (2 bytes)

Stack Before Call:

Stack After Call:

& zp

Tha System Loader

——

Possible errors Get Pu-ihnuma (C10))

5!1{11 I_-‘.nm_v not found This function returns the pathname associated with the SE‘“‘_:E":_‘J
§1105 Syslem .Lnnr!er 18 busy User ID. ProDO5 16 uses this call 1o set the application prefix (17
th?.nc ProDO5 16 error for & program that is restarted from memory,

S02acx Memory Manager error

Function Number: 511

Macro Name: GetPathname

Sequence of events

When the Gel User ID function is called, the following sequence of

evenls ooours Parameters

1. The System Loader searches the Pathname Table for the
specified pathname. If the input pathname is a partial pathname Nome Site ord yps
and stans with a prefix number other than 1/ or 2/, it is .
expanded to a full pathname before the search,

Input User 1D word value (2 bytes)
2. If it finds a match, the loader returns the User 1D from that entry File number word value (2 bytes)
in the Pathname Table, :
Outpiat Address of pathname long word result (4 bytes)

Stack Before Call:

pravious contents |
L frasut Jhoce)
| UserD
o= féer Aumbe

Chaopter 17: Systemn Looder Calls 241 242 Part lll: The Systerm Loader

Possible errors

User Shutdown ($12)

i} [o} : i v _
$1101 Entry not ‘r"l'”"'l A This function is called by the controlling program to close down an
51105 system Loader is busy R i

(b : application that has just terminated
00200 ProlD5 16 error i ;
S Memory Manager error

Funchlion Number: 512
Mocre Name: UserShutdown
Sequence of events

When the Get Pathname function is called, the following sequence Parameters
of evenls occurs

The System Loader searches the Pathname Table for the

o Hame Size ond Type
specified User 1D and file number,
2. If it finds a match, the loader returns the address of the pathname Input: User ID word value (2 bytes)
from that entry in the Pathname Table quit flag word value (2 bytes)
Cutput: User I word result (2 bytes)

Stack Before Calk

Stack After Call:

pravious © anfents
Lisanl}

- op

Possible errors

51105 System Loader is busy
SO0y Prald05 16 error
Fldex Memory Manager error

Chapter 17 Systemn Looder Calls

o]
£
[

244 Part Il The System Loodes

Sequance of avents

% Naote: This function is designed to suppon the options providad
in the ProD0O5 16 QUIT function. The quit flag in this call
corresponds o the flag word parameter in the ProDOS 16
QUIT call Only bits 14 and 15 of the flag are significant: If bit
15 is set, the quitting program wishes control 1o return o It
eventually; if bit 14 is set, the program is restartable, See the
description of the Restart function in this chapter,

When the User Shutdown function s called, the following sequence

of events occurs

1. ‘The System Loader checks the specified User ID, IT it {s zero, the
loader assumes it is the current User ID (= value of USERID
global variable). In any case, loader ignores (by setting 1o 2erc)
all values in the AuxID field of the User ID.

2. The loader checks the value of the quit flag.

a. If the quit flag is zero, the Memory Manager disposes
(permanently deallocates) all memory blocks with the
specified User 1D, The System Loader then calls its Cleanup
routine to purge the loader's internal tables of all references o
that User I, The User 1D itself is deleted so that the system no
longer recognizes it

In this case the application is completely gone. It cannot be
restarted from memory or quickly reloaded

b. If the quit flag is $8000 (bit 15 set to 1), the Memory Manager
pruarges (temporarily deallocates) all memory blocks with the
specified User 1D, The System Loader's internal tables for that
User 1D, including the Pathname Table entry, remain intact.

In this case the application can be reloaded quickly but it
cannol be restarted from memory,

c. If the quit flag has any other value, the Memory Manager

o

dispages all blocks corresponding to dynamic segments with
the specified User 11D

makes purgeable all blocks corresponding to statc segments
with that User 1Dy

O perpes all other blocks with that User [D

In addition, the System Loader removes all entries for that
User 1D from the Jump Table Directory.

Chapter 17: Systemn Loader Calls 245

244

The application is now in a dormant state—disconmected but
not gone, It may be resurrected very quickly by the Sysiem
Loader because all its state segments are still in memory
Once any of its static segments is purged by the Memory
Manager, however, the program is truly lost and must be
reloaded from disk if it is needed again

Part ll: The System Loodar

Jump TEge_l.aua

This function is called by an unloaded Jump Table entry in order o
load a dynamic load segment. Besides the function call, the
untloaded Jump Table entry includes the load-file number and load-
segment number of the dynamic segment 1o be loaded. The Jump
Table is described in Chapter 15,

Funclion Number: none

Mocro Name: none

quﬂm&"ﬂ rs
Hame Slre and Type

Input User ID word value (2 bytes)
load-file number word value (2 bytes)

load-segment number word value (2 bytes)
load-segment offset long word value (4 bytes)
Cutput (none)

Stack Before Call:

previous comtants
L]

Baa-fe no
FOTIEn’ g

[=

—load-sagment offiel =

Chapter 17: System Looder Calls 247

248

Stack After Calls

| previous ::'_E-H'EF o] |
|-sp

& Note: Because this function is never called directly by a
controlling program, the program need not know what
parameters it requines

Possible errors

$1101 Segment not found
£1104 File is not a load file
£105 System Loader is busy
$00ax Prold5 16 error
S02aex Memory Manager error

Sequence of events

When the Jump Table Load function is called, the Tollowing

sequence of evenls Doours

1. The function calls the Load Segment By Number function, using
the load-file number and load-segment number in the Jump
Table entry. If the Load Segment By Number function returns any
errar, the System Loader considers it a fatal error and calls the
Svstem Failure Manager

=]

If the Load Segment By Number function successfully loads the
segment, the Jump Table Load function changes the: Jump Table
entry to its fogded state: it replaces the [51 1o the Jump Table
Lead function with a JML to the absolute address of the reference
in the just-loaded segment

3. The function tansfers control © the address of the reference

Part II: The Systerm Looder

——

Cleanup

This routine is used to free additional memory when needed, It
scans the System Loader's intermal able and removes all entries that
reference purged or disposed segments

% Note: Because this function is never called directly by a
controlling program, the program need not know what
parameters it requines

Funclion Number: none

Maocro Name: none

Parameters

Name Slze and Type
Input User 1D word value (2 bytes)
Output (none)

Stack Before Calk

-+ p

previous contents
_11— 5P

Possible errors

Lnane}

Choptar 17: Systemnm Loadear Calls 249

Sequence of evenls
When the Cleanup routine is called, the following sequence of
EVEnls ooours
If the specified User ID is 0
1, The System Loader scans all entries in the Memory Segment
Table.
b. All dynamic segments for all User ID¥s are purged
2. Il the spedified User ID) is nonzero
a. The System Loader scans all entries in the Memory Segment
Table wilh that User I
Al load segments (both dynamic and stauc) for that User ID
are purged
c. All entries in the Memory Segment Table, Jump Table
directory, and Pathname Table for that User 1D are deleted,

250 Part i The Systermn Loader

——

Appendixes

Appendix A

ProDOS 16 File Organization

This appendix describes in detail how ProDOS 16 stores files on
disks. For most applications, the operating system insulates you
from this kevel of detail. However, you must use this information if,
for example, you want to

list the Nles in a directory
O copy a sparse file without increasing the file's size
O compare (wo sparse files

Keep in mind that ProDOS B and ProDOS 16 have identical file
structures. The information presented here applies equally to bath
sysiems

This appendix first explains the organization of information on
volumes, Next, it shows the format and organization of volume
directories, subdireciories, and the various stages of standard files.
Finally It presents a set of diagrams showing the formats of
individual header and entry fields,

& Note; In this appendix, format refers to the arrangement of
information (such as headers, pointers and data) within a file,
Chganization refers to the manner in which a single file is stored
on disk, in terms of ndividueal 512-byie blocks.

253

254

When a volume is formatted for use with ProDdO5 16, is surface is
partitioned into an array of tracks and sectors. In accessing a
volume, ProlO5 16 requests not a track and sector, but a logical
block from the device comesponding to that volume. That device's
driver translates the requested block number into the proper track
and sector number; the physical location of information on 2
volume is unimporant w ProDOS 16 and to an application thar uses
ProDOS 16. This appendix disousses the organization of
information ©n a volume in terms of logical blocks, not tracks and
sectors

When the volume is formatted, information needed by ProDOS 16
is placed in specific logical blocks, starting with the first block
(block 03, A loader program is placed in blocks 0 and 1 of the
volurmne, This program enables ProDOS 16 (or ProDOS 8 o be
booted from the volume, Block 2 of the volume is the key block
(the first Block) of the volume directory file; it contains descriptions
of (and pointers 1) all the fles in the volume directory. The
volume divectory oocupies a number of consecutive blocks,
typically four, and is immediately followed by the volume bit
map, which reconds whether each block on the volume is used or
unused. The volume bit map ocoupies consecutive blocks, one for
every 4,096 blocks, or fraction thereof, on the volume, The rest of
the blocks on the disk contain subdirectory file information,
standard file information, or are emply. The first blocks of a
volume look something like Figure A-1,

Lo Wolume LE L Yolume Yoluma LR Yoluma
Cirac oy Directony Bit Mo Bit Moo
ey Dlock) / {lost block) | ified Diock) ‘_/ (ot biock)
Figure A-1
Block organlzation of a walume
Appendiies

The precise format of the volume directory, volume bit map,
subdirectory files and standard files are explained in the following
sections,

Format and organization of directory ﬂla_.;.

The format and organization of the information contained in
volume directory and subdirectory files is quite similar. Each
consists of a key block followed by zero or more blodks of additional
direciory information. The fields in a directory's key block are:

O a pointer to the next block in the direciory
O a header that describes the directory

O a number of file entries describing, and pointing to, the files in
that directory

1 zerd or more unused byies
The fields in subsequent (nonkey) blocks in a directory are:
O pointers (o the preceding and succeeding blocks in the directory

0 a number of entries describing, and pointing 1o, the files in tha
directory

0 zero or more unused byles
The format of a directory file is represented In Figure A-2

Koy Block Any Block Liost Block
0 e s oo — ponlar |e— s e o] DONTET |

POINE e w8 ——] O e a
hiegder fie ariry fike enlry
g antry fie omdny i antry

I mare | I more | | moem o

ki i 1 [1 [

1 Ma | fle i te

| aririey | 1 i | | antios |

Il:'l 1 I I ant Hjl I(‘ Hes |

—
e srilny filg gnley
(¥) nigad
Bace mooca
Figure A-2
Directory fle format and arganization
Appendix A: ProDOS 146 Fle Orgontzation 2E5

=

e

254

Appandites

The header is the same length as all other entries in a directory file
The only difference between a volume directory file and a
subdirectory file is in the header format

Pointer fields

The first fowr bytes of each block used by a directory file contain
pointers to the preceding and succeeding blocks in the directory
file, respectively. Fach pointer is a two-byte logical block
number—Ilow-order byte first, high-order byte second. The key
block of a directory file has no preceding bloclk; its first pointer is
zero, Likewise, the last block in a directory file has no successor; s
second pointer Is zero,

& Note: The block pointers described In this appendix, which
hold disk addresses, are two bytes long. All other ProDOS 16
pointers, which hold memory addresses, are four bytes long
In either case, Prol»05 16 pointers are always stored with the
low-onder byte first and the high-order byte last See Chapter 3,
"PralO5 16 and Apple 1165 Memory.”

Volume directory headers

Block 2 of a volume is the key block of that volume's directory file,
The volume directory header is at byte position $0004 of the key
bleck, immediately following the block’s rao pointers, Thirteen
fields are currently defined to be in a volume directory

header: they contain all the vital information about that volume
Figure A-3 illustrates the format of a volume directory header.
Following Figure A-3 is a description of each of its felds.

Byte of Fiadd
Block Length
ol
1
.) —
k]
& | storage_fype mams_lengih | byte
5 b= —
— file_name === 153 bytes
13 r _1
e L g
il {resarvad) == B bvied
;_: = creqie_date 4 2owtes
; :E - crpate time - 2 bytes
.4 WEIEOn 1 Evie
21 min_versian 1 byle
20 OCCBES I tyle
) entylength] 1byie
2 |__entries_par block | tyie
-1 F = F
2 - a_count - 2 byles
a7 _'_ pRC L LT ——
s Ditmap painter o 2 bytes
= sty ” _-
o4 otal_blocks - 2 byias
Flgure A-3

The volume directory haodar

slorage_type ond nome_lengih (1 byte Two four-bit (nibble)
fields are packed into this byte, A value of $F in the high-order
nibble (storage type) identifies the current block as the key
block of a volume directory file, The low-order nibble contains the
length of the volume's name (see the file name field, below),
The value of name length can be changed by a CHANGE PATH
call

file_mome (15 bytes): The first 7 bytes of this field, where 1 is the
value of name length, contiin the volume's name, This name
must conform (o the file name (volume name) syntax explained in
Chapter Z. The name does not begin with the slash that usually
precedes volume names, This field can be changed by the
CHANGE_PATH call

reserved (8 bytes): Reserved for fumere expansion of the file
sysiem.

Appendix A: ProDOS 14 Fle Crganization 257

258

Appandhias

create_dale (2 bytes): The date on which this volume was
initialized. The format of these bytes is described under “Header

and Entry Fields,” later in this appendix,

creale_time (2 bytes): The time at which this volume was
initialized, The format of these bytes is described under "Header
and Entry Fields,” later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or
ProD¥5 16 under which the file pointed to by this entry was created,
This byte allows newer versions of Prolx05 16 to determine the
format of the file, and adjust their inerpretation processes
accordingly. For PraDOS 16, version = 0,

4 Note: Version in this sense refers to the file system version
only. At present, all ProDOS operating systems use the same
* file system and therefore have the same file system vermsion
number (03, In particular, the file system version number Is
unrelated to the program version number rewrned by the
GET_VERSION call

min_vermlon: Reserved for future use, For Prold0OS 16, It is 0,

access (1 bytek Determines whether this volume directory can
be read, written, destroyed, or renamed, The format of this Geld s
described under “Header and Entry Fields," in this appendix.

enlry_length (1 byte): The length in bytes of each entry in this
directory. The volume directory header itsell is of this length. For
Pro[d35 16, entry length = §27,

oniries_per_block {1 byte): The number of entries that are stored
in each block of the directory file. For ProDOS 16,

entries_per_block = 500
Me_counl (2 bylas) The number of active file entries in this

directory file. An active file is one whose storage type is not(
Figure A-5 shows the format of file entries.

bil_map_polnter (2 bytas): The block address of the first block of
the volume's bit map. The bit map occupies consecutive blocks,
one for every 4,096 blocks (or fraction thereof) on the volume. You
can calculate the number of blocks in the bit map using the

tetal blocka field, described below,

The bit map has one bit for each block on the volume: a value of 1
means the blodk is free; O means it is in wse, I the number of blocks
used by all files on the volume is not the same as the number
recorded in the bit map, the directory structure of the volume has
been damaged.

lolol_blocks (2 bytas): The total number of blocks on the volume.

Subdirectory headers

The key block of every subdirectory file is paointed to by an entry in a
parent directory; for example, by an entry in a volume directory
(Figure A-2). A subdireciory's header begins at byte position $0004
of the key Block of that subdirecory file, immediately following the
wo pointers

In format, a subdirectory header is quite similar to a volume
directory header (only its last three fields are differenty, A
subdirectory header has fouricen fields; those fields contain all the
vital information about that subdirectory, Figure A-4 Dlustrates the
format of a subdirectory header. A description of all the Felds in
the header follows the figure.

Byle of Field
Block Length

oL |

: 4

20

k]

4 | shorage_type|name_lengih Enli
5

= fils_namea ﬁ:fﬂv'l.'.\
M i

14 1

= {resdrved) == B ytes
B B
ic
oF cracte_date = 2 bvtas
1E TP

i craate_tima - 2 bytes
0 VEIFSIon | byte
21 min_wirshon 1 byte
2 OCCREs 1 byle
bk | eniny_kength 1 byle
24 aniries_paf Block I bvie
b}
= e _court e =T
2 &
[panent poirter = 2 biytes
2 | parent_aniry_number | byte
245 p:\rl"'"u.'_ani"v_lﬁi‘al'l | byt

Figure A-4

The subdirectory heoder

Appendix A: PraDOS5 16 Flle Organization 259

260

Appendizes

slorage_type and name_length (1 byte): Two four-bit (nibble)
fields are packed into this byte. A value of SE in the high-order
nibble (storage_type) identifies the current block as the key
block of a subdirectory file. The low-order nibble contains the
length of the subdirectory's name (see the £ile name field,
below). The value of name_length can be changed by a

CHANGE _PATH call

file_name (15 bytes): The fist mame_length bytes of this Held
contain the subdirectory’s name. This name must conform to the
file name syntax explained in Chapter 2, This field can be changed
by the CHANGE PATH call.

reserved (8 bytes): Reserved for fumre expansion of the file
system.

creale_dale (2 bytes): The date on which this subdirectory wis
created, The format of thess bytes is described under “Header and
Entry Fields,* later in this appendix.

create_lime (2 bytas): The time at which this subdireciory was
created. The format of these bytes is described under “Header and
Entry Fields,” later in this appendix

version {1 byte): The file system version number of ProDdO5 B or
ProDOS 16 under which the file pointed 1o by this entry was created
This byte allows newer versions of ProDOS 16 (o determine the
format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, veraion ={.

% Note: Version in this sense refers to the file system version
only. At present, all ProDOS operating systems use the same
fite system and therefore have the same file system version
number (0). In particular, the file system version number i
unrelated to the program version number returned by the
GET_VERSION cafl.

min_version {1 byte} The minimum version number of ProlOs 8
ar Peold0S 16 that can acoess the information in this file, This byte
allows older versions of Prold05 8 and Prold05 16 1o determine
whether they can access newer files. For ProDOS 16,

min_version =0

access {1 byte): Determines whether this subdirectory can be
read, written, destroved, or renamed, and whether the file needs
be backed up. ‘The format of this field is described under *Header
and Entry Fields,” in this appendix. A subdirectory's access byie
can be changed by the 38T _FILE INFO and

CLEAR BACKUP BIT calls

entry_length (1 byte): The length in bytes of each entry in this
subdirectory. The subdirectory header itself s of this length. For
ProDOS 16, entry_length = §27

entres_per_bleck (1 byta): The number of entries that are stored
in each block of the directory file. For ProDOS 16,
entries_per block = 30D,

m-_l.:_umt (2 bytes): The number of active file entries in this
subdirectory file. An active file is one whose storage type is
not 0. See “File Entries” for more information about file entries,

parent_polnter (2 bytes): The block address of the directory file
block that contains the entry for this subdirectary. This and all

other two-byte pointers are stored low-order byte first, high-order
byie, second.

pumpf_qnw_mmb-r{l byta): The entry number for this
subdirectory within the block indicated by parent pointer.

p_uun!,_mrrv_lnngfh {1 byta): The entry_length for the
directory that owns this subdirectory file. Note that with these last
three fields you can caloulate the precise position on a volume of
this subdirectory’s file entry, For ProDOS 16,

parent_entry length = £27,

File enfries

Immediately following the pointers in any block of a directory file
are a number of entries. The first entry in the key block of a
directory file is a header, all other entries are file entries. Each
entry has the length specified by that directory’s entry length
fietd, and each file entry contains information that describes, and
points 1o, a single subdirectory file or standard file. I

An entry in a djn:_dmv file may be active or inactive, that Is, it may
ar may nol describe a file currently in the directory, If it is inactive,

the first byte of the entry {storage_type and name_length)
has the value zero. -

The maximum number of entries, including the header, in a block
of a directory is recorded in the entries per bleck field of
that directory’s header. The total number of active file entries, not
including the header, is recorded in the £ile count field of that
directory's header, =

Figure A-5 describes the format of a file entry.

Appendix A: PraDOS 16 Flle Organization 281

242

Appandide

Byte of Fiald
Block Length

o [Fiofopge_fype] nome_lengin | 1 oyte
1

i fila_nama == 15 bytes
Py ..

o filg_fype 1 byt
u - key_pointer - 2 bytes
}i = olocks_used -1 2 bytes
15[=

8 EOF 1 dbyles
nr

18 B - Zbytes
el creote_data E
1:3 - create_time = Zbytes
= Warsion 1 byta
i[] Fruif_VErsson 1 byte
E OCCEEs | byte
;; - oux_type — 2 bytes
5‘12 B mod_date o 2bytes
%i - miod_time - 2bytes
g - neader_pointar =1 2 byies

Figure A-5
The file entry

storage_type and name_length (1 bytel: Two four-bit (nibhle)
fields are packed into this byte. The value in the high-order nibble
{storage type) specifies the type of file pointed o by this file
entry:

51 = Seedling file
§2 = Sapling file
3 = Tree file

%4 = Pascal area
5D = Subdirectory

Seedling, sapling, and uee files ase described under "Format a.rui
Organization of Standard Files” in this appendix. The low-order
nibhle contains the length of the file's name (see the £ile nama
field, below). The value of name_length can be changed by a
CHANGE PATH call

flle_name (15 bytes): The first name_length bytes of this field
contain the file's name. This name must conform 1o the file name

syniax explained in Chapter 2. This field can be changed by the
’:HH.T\;GE_PATH call,

fle_type (1 byte): A descriptor of the internal format of the file.
Table A-1 (at the end of this appendix) is a list of the currently
defined values of this byte.

key_polnter (2 bytesy: The block address of:

O the master index block (if the file is a tree Ale)

0 the index block (if the file is & sapling fle)
O the data bleck (if the fle is a seedling file)

blogks_used (2 byltes): The 1otal number of blocks acually used
by the file. For a subdirectory file, this includes the blocks
containing subdirectory information, but not the blocks in the fles
peinted to, For a standard file, this incdudes both informational
blocks (index blocks) and data blocks. See “Formal and
Organization of Standard Files" in this appendix.

EOF (2 bytes): A thres-byte integer, lowest byte first, that
represents the (o6l number of bytes readable from the file. Note
that in the case of sparse files, EOF may be greater than the number
of bytes actually allocated on the disk

creale_date (2 bytesk The date on which the file pointed to by
this entry was created. The formal of these bytes is described under
“Header and Entry Fields,” later in this appendix.

create_lime (2 bytes): The ume at which the file pointed (o by
this entry was created, ‘The format of these byies Is described under
“Header and Entry Fields," later in this appendix.

verslon (1 byte) The file system version number of ProDOS 8 or
Prol05 16 under which the file pointed 1o by this entry was created,
This byte allows newer vemsions of ProDOS 16 to determing the
formaz of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version =0

Appendlx A: ProDOS 14 Fle Organlzaton 243

Nofe: Version in this sense refers to the file system version
only. At present, all ProDO5 operating syslems use the samo
file system and therefore have the same file system version
number. The file system version number iz unrelated 1o the
program version number returned by the GET_VERSION call

min_version {1 byte): The minimum wErsion number of ProDOs B
ar ProDXO8 16 that can access the information in this file. This byie
allows older versions of ProDOS 8 and PraDOS 16 o determins
whether they can access newer files. For Prol}Os 16,
min_version =0

access (1 byte): Determines whether this file can be read,
written, destroved, or renamed, and whether the file needs 10 be
backed up, The formal of this field ts described under "Header and
Entry Fields,” later in this appendix The value of this field can be
changed by the SET_FILE_INFD and CLEAR BACKUF BIT
calls, ¥ou cannot delete (destroy) a subdireciory that contains any
files.

aux_type (2 bytesk A general-purpasc field in which an
application can store additional (nformation about the internal
farmat of 2 fle, For example, the ProDOS & BASIC system progm
uses this feld to recored the load address of a BASIC program of
hinary file, or the record length of a text file.

mod_date (2 bytes): The date on which the last CLOSE
pperation afier 2 WRITE was performed on this file. The formit of
these byies is described under "Header and Entry Fields,” later in
this appendix. This feld can be changed by the SET_FILE_INFD
call

mod_fime (2 bytes): The time at which the last CLOSE operation
afier a WRITE was performed on this file. The format of these
bytes is described under “Header and Entry Flelds,” later in this
appendix. This field can be changed by the SET_FILE_INFO
call,

header_polnter (2 bytas): This field & the block address of the key

block of the directory that owns this file entry. This and all two-byie
painters are stored low-order byte first, high-order byte second.

Cpan|DirPathname. RatfNum)}

ThisBlock
Entcylangth
EntriesPer3lock

FileCount

Reading a directory file

Eis section deals with the general techniques of reading from
wgingmﬁ]es$u[with the specifics. The ProDOS 16 calls with
i se techniques can be implemented a i i

Chapters 9 and 10. ’ e

Before you can read from a directory, you must know the directony's
pathname. With the directory’s pathname, you can open the o
directory file, and obtain a reference number Cref_num) for that
open file. Before you can process the entries in the direciory, you
must read three values from the directory header: rl

O length of each entry in the directory (eniry_lengehy

O number of entries in cach block of the directony
(entries_per_block)

0 total number of files in the dircctory (fife_couns),

Using the reference number to identify the file, read the first 512
bytes from the file, and into 2 buffer (ThisBlock in the followin
example). The buffer contains two two-byte pointers, followed b y
the entries; the fisst entry is the directory header, ‘The three valu }
are at positions $1F through $22 in the header (positions $23 -
through 526 in the bulfer), In this example, these values are

assigned (o the variables Entrcvlength i
L Entr
and FileCount, : T T A

{Get reference numbar)

Read5liBytas (RefHum) ¢ [RBead a block late

buffer)

Thiat Fla
ThlsBloek [523]; 1Ge -] T =
£4] 15 directory infol

ThisBlock {241,

ypEE " .
ThlisBlock [5258 & {2568 * ThieBleck[$2&]):

Appandlx A: ProDOS 146 File Organization 265

EntryPolnter
BlockEntries
RativeEntries

while ActiveEntries < FileC

Onee these values are known, an application can scan through the
entries in the buffer, using a pointer (Ent ryPointer) o the
beginning of the current entry, 4 counter I:EIch:kEntriE:El} that
indicates the number of entries that have been examined in the
current block, and a second counter (Aot iveEntries) that
indicates the number of active entries that have been processed.

An emtry is active and is processed only if its first byte, the _
storage_type and name_length, is nomzero All entries have
been processed when ActiveEnsries is equal to FileCount. 1 all the
enilries in the buffer have been processed, and ActiveEniries doesnt
equal FleCoun), then the next block of the directory is read into the
bulTer.

:= EntryLength + 534; [Sklp header
= $02% [Prepare to process antry L¥o)
1= §007 [Ho actlve entries foumd ye: |

ount do beglns

T a Actclwve entryl
Lt ThisBlock |EntryPolnter] <> 500 then begln I ¥
ProcessEntry (ThisBlock [EntcyPolnter]l:

ActiveEntries

o “ +a FESERE
1f ActiveEntries < FilleCount then [More antries to pPréd
if BlockEntries = EntrliesferBlock
chan baegln {ThisBlock done. Do next onel
Th ack 1= ReadS12Bytes (Reflum]
BleckEntries r= $01;
EntryFPolnter = 504
and
mlae begln (0o next entry 1n ThisBlock)
EnptrcyPolnter L En::yl-“u'_.-lte:r & E ylength;
Blo rles := BlockEntries + 501
end
end;

Close {Raf¥uam)

2t Appeandixes

;= RActlveEntrles + 501

This algorithm processes entries until all expected active entries
have been found. If the directory structure is damaged, and the end
of the directory file is reached before the proper number of active
entries has been found, the algorithm fails.

Ermai and orgunlzﬁlicn of standard files

Each active entry in a directory file points to the key block (the first
block) of anather file, which itself is either a subdirectory fle or a
standard file. As shown below, the key block of a standard file may
have several types of information in it The storage type field
in that file's entry must be wsed to determine the contents of the key
blaek. This saatian explains the organization of the three stages of
standard file: seedling, sapling, and tree. These are the fles in
which all programs and data are stored.

Every block in a standard file is either a data block or an index
black. Data blacks have no predefined format—they contain
whatever Information the file was ereated to hold, Index blocks, on
theother hand, have a very specific format—they consist of
nothing but 2-byte pointers, giving the (disk) adresses of other
blocks that make up the file, Furthermore, the low-order byte of
each pointer is in the first half of the block, whereas the high-order
byte of the pointer is in the second half of the block. An index black
can have up 10 256 pointers, so i a pointer's low-order byte is at
address # in the block, its high-order bye is at address m+256,

@ Note: Deleting a file or changing its logical size (EOF) can alter
the contents of its index blocks, See *DESTROY™ in Chapter 9
and *"SET_EOF" in Chapter 10

Erow[ng a tree file

The following scenario demonstrates the growth of a wee file on 4
volume. This scenario is based on the block allocation scheme used
by ProDOS 16 on a 280-block fexible disk that contains four blocks
of volume directory, and one block of volume hit map. Larger
capacity volumes might have more blocks in the volume bit map,
but the process would be identical,

A formatied, but otherwise empty, ProD0S 16 volume is used like
thuis:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Blocks 7-279 Unused
Appendl A: ProDOS 16 Fle Crganization 247

268

Appandbons

If you open a new file of & nondirectory type, one data blodk Is
immediately allocated to that file. An entry is placed in the volume
directory, and it points to block 7, the new data block, as the key
bilock Tor the file. The key block is indicated belew by an amow.

The volume now [ooks Hke this:

Blocks 0-1 Loader

Blochks 2-5 Volume directary

Block 6 Volume bit map
—> Bk 7 Dxata block 0

Blocks 8-270 Unused

This is a seedling file: its key block contains up 10 512 bytes of
data. If vou write more than 512 bytes of data to the file, the fle
grows into a sapling file. As soon as a second block of data
becomes necessary, an index block is allocated, and it becomes the
file's key block: this index block can point 1o up 1o 256 data blocks
{it uses two-byte pointers). A second data block (for the data that
won'l fit in the first data block) is also allocated.

The volume now looks like this:

Blocks -1 Loader

Blocks 2-5 Volume directory

Block 6 Volume bit map

Block 7 Diata block O
—= Plock B Index block O

Block 9 Data block 1

Blocks 10-279 Unused

This sapling file can hold up to 256 data blocks: 128K of data, If the
file becomes any bigger than this, the file grots again, this time
inlo a teee file, A master index block is allocated, and it becomes
the file's key block: the master index block can point to up to 128
index blocks, and each of these can paint to up 1o 256 data blocks
Index block 0 becomes the first index block pointed to by the master
index block. In addition, a new index blodk is allocated, and a new
data block 1o which It points,

Here's a new picture of the volume:

Blocks (-1 Loader

Blocks 2-5 Volume directory

Block 6 Volume bit map

Block 7 Data block 0

Block 8 Index block 0

Blocks 9-263 Dvata blocks 1-255
—>= Block 264 Master index block

Block 265 Index block 1

Block 266 Data block 256

Blocks 267-279 Unused

As data is written to this file, additional data blocks and index blocks
are allocated as needed, up (0 a maximum of 129 index blocks (one
a master index block), and 32,768 data blocks, for 3 maximum
capacity of 16,777,215 bytes of data In a file. If you did the
multiplication, you probably noticed that a byte was lost
samewhere. The last byte of the last block of the largest possible file
cannot be used because EOF cannot exceed 16,777,216, If you are
wondering how such a large file might fit on 2 small volume sach as a
flexible disk, refer to the description of sparse files in this appendix.

This scerario shows the growth of a single file on an otherwise
emply volume, The process is a bit more confusing when several
files are growing—or being deleted—simultaneously, However, the
biock allocation scheme is always the same: when a new block is

needed, ProDOS 16 always allocates the first unusad block in the
volume bit map.

Appendix A: ProDOS5 16 Flle Orgonization 269

Seedling files

A seedling fe is a standard fle that containg no more than 512 daa
bytes (30 <= EOF <= $200). This file is stored a5 one block on the
volume, and this data block is the file's key block.

The organization of such a seedling file appears in Figure A-f.

key_pointa—®= ¢

512 Entes b‘*u*]

Flgure A-&
Ferrmat and orgontzation of a seedling file

The file is called a seedling file because it is the smallest possible
Pro[¥05 16 standard file; if mere than 512 data bytes are writen (o
it, it grows into a sapling file, and thence into a tree file.

The stocrage_type fleld of a directory entry that points o a
seadling file has the value §1

sapling files

A sapling file 1s a standard file that contains more than 512 and no
more than 128K bytes ($200 < EOF <= $20000). A sapling file
comprises an index block and 1 10 256 data blocks. The index block
contains the block addresses of the data blocks. Figure A-7 shows
the organization.

wey_polnter —

h‘\\‘ Dofg
- Block
4]
U to 258 index .
Z-bvie poindan 1o " "
data blocks Black .
Defa
= Biock
OEOF<sa u:\‘ bata
Biock
SFF
Figure A-7

Formot ond organizaficn of a sapling file

The key block of a sapling file is its index block. ProDOS 16 retrieves
data blocks in the file by first retrieving their addresses in the index
block,

The storage_type field of a directory entry that points 1o 4
sapling file has the value 52

Tree files

A tree file contains more than 128K bytes, and less than 16Mb
($20000 = EOF = $1000000). A tree file consists of a master index
block, 1 to 128 index blocks, and 1 1o 32,768 data blocks. The
master index block contains the addresses of the index blocks, and
each index block contains the addresses of up 1o 255 data blocks.
The organization of a tree file is shown in Figure A-8.

270 Appendixes Appendix A: ProDOS5 14 Fle Organlzation n

Indax

Block
ey _poirti g ——_e o
Up o 138 SAostar =
S-byte poirans o 4 Index .
inclaa Dlocks Block -
l=1-1]
L Block
£

Figure A-8
Format aond organizaticon of a free flle

The key block of a tree file is the master index block, By looking at
the master index block, ProDOS 16 can find the addresses of all the
index blocks, by looking at those blocks, it can find the addresses of
all the data blocks,

The storage_type field of a direciory entry that points to a tree
file has the value $3

Using standard files

An application program operates the same on all three types of
standard fles, although the storage type in the file's entry can
be used to distinguish between the three. A program rarely reads
index blocks or allocates blocks on a volume: ProDOS 16 does
that, The program need only be concerned with the data stored in
the file, not with how they are stored,

All types of standard files are read as a sequence of bytes, numbered
fram 0O to (EOF-1), as explained in Chapter 2

Sparse files

A sparse file is a sapling or tree file in which the number of data
bytes that can be read from the file exceeds the number of bytes
physically stored in the data blocks allocated to the file. ProDOS 16
implements sparse files by allocating only those data blocks that
have had data written 1o them, as well as the index blocks needed to
point to them

For example, you can define a file whose EOF is 16K, that uses only
three blocks on the volume, and that has only four bytes of data
wrillen o it. Refer to figure A-9 during the following explanation

1. If you create a file with an EOF of $0, ProDOS 16 allocates only
the key block (a data block) for a seedling file, and fills it with mull
characters (ASCIT $00),

. IF you then set the EOF and Mark to position $0565, and write four
bytes, ProDO5 16 caloulates that position 30565 is bytle $0165
(3056450200 * 20 of the third block (block $2) of the file It
then allocates an index block, stores the address of the current
data block in position 0 of the index block, allocates another data
block, stores the address of that data block in position 2 of the
index block, and stores the data in bytes 30165 through $0168 of
that data block. The EOF is now $0569.

3 1If you now set the EOF to $4000 and close the file, vou have
a 16K sapling file that takes up three blocks of space on the
volume: two data blocks and an index block (shaded in Figure
A-G), You can read 16384 bytes of data from the file, but all
the: bytes before 0565 and afier 30568 are nulls,

[

Append A: ProDOS 14 Flle Orgonizofion 273

Duba Blocks

— / ~ 0 Rt &
kay_poinfer) Viaiue
1 — D
Fl \ Appiies fo,
Indan = M
Block =
-— ryie 545548
5400
51
S&FF
Blochs octualy
it b ik =
51
Yl S3FFF

Figure A-9 .
An exarmple of sparsa file organization

Thus PraDOS 16 allocates volume space only for those blocks in a
file that actually contain data. For tree files, the situation is

similar: i none of the 256 data blocks assigned to an index block in
a tree file have been allocated, the index block itself is not
allocated.

& Note: ‘The frst data block of a standard file, be it a seedling,
sapling, or tree file, is always allocated. Thus there s always 2
data block to be read in when the file is opened

Locating a byte in a file
This is how to find a specific byte within a standard file:

The File Mark is a three-byte value that indicates an absolute byis
pasition within a file. If the file is a tree file, then the high-order
seven bits of the Mark determine the number (0 10 127) of the index
block that points to the byte, That number is alse the location of the
low byte of the index block address within the master index block
The location of the high byte of the index block address is that
number plus 256

Byie 2 Byte 1 Byla 0
7la[sfalaf2l1To7]a]sTalaT2] 1 Tof 7Tl sTalaT2]1To
Index Block Mo. Data Block Mumber Byte of Block
L - i . 2 e ol -
Tree File only Tree and Sapling All Threa

Figure A-10
Filer Mark format

IF the file is a tree file or a sapling file, then the next eight bits of the
Mark determine the number (0-255) of the data block pointed to by
the indicated index block, That number is also the location of the
low byte of the data block address within the index block. The high
byte of the index block address is found at that value plus 256,

For tree, sapling, and seedling files, the value of the low nine bits of
the Mark is the location of the byte within the selected data block,

Header and entry fields

The storage type attribute

The value in the atorage_type field, the high-order four bits of
the: first byte of an entry, defines the type of header (if the entry is a

header) or the type of file described by the entry, Table A-1 lists the
currently defined storage type values.

Appendix A: ProDOS 16 File Organization

275

Toble A-1
Storoge type values

Storoge type

% indicates an inactive file entry

51 indicates a ssedling file entry (EOF <= 256 byes)

§2 indicates a sapling file entry (256 < EOF <~ 128K bytes)

53 indicates a tree file entry (128K < BOF < 16M bytes)

$4 indicates a Pascal operating system area on & partitioned disk
$D indicates a subdirectory file entry

$E indicates a subdirectory header

4F indicates a volume directory header

ProDO5 16 automatically changes a seedling file to a sapling file
and a sapling fle to a tree file when the file's EOF grows into the
range for a larger type. If a file's EOF shrinks into the range for a
smaller type, ProD0O5 16 changes a tree file 10 a sapling file and a
sapling file 10 a seedling file.

The creation and last-modification fields

The date and time of the creation and last modification of each
file and directony is stored as two four-byte values, as shown in
Figure A-11.

Byte 1 Byt D
ar: 15|-.4._1:1|12;'|1im|9;a|:[.:.|5 ajalz]1]o
Volue: Yeor | Manth Day
Byt 1 Byte O
s [1E[apaiz[o[e[a[7[6[5]a]a[2]1]0
vaive: [0(0]0 Howr olo Mirite

Figure A-11
Date and time format

S R R lanay, sy Tk .
hinary integers, and may be unpacked for conversion to normal
integer values.

by ¥ t

The access attribute

The access attribute field, or acoess byte (Figure A-12), determines
whather the file can be read from, written 1o, deleted, or renamed.
It also contains a bit that can be used wo indicate whether a backup
copy af the file has been made since the file's last modification.

=

B [7]a]5]afa]2
Vaive: | D |AN| B |reserved (W | R

where

D = destroy-enable bit
EN = rename-enable bit
B = backup-needed bit
W = wrile-=nable bit

R = read-enable bit

Flgure A-12
Access byte format

A bit s#1 to 1 indicates that the operation is enabled; a bit cleared 10
0 indicates that the operation is disabled. The reserved bits ane

always 0, The most typical setting for the access byte is $C3
(110000113

ProDOS 16 sets bit 5, the backup bit, 1o 1 whenever the file is
changed (that is, after a2 CREATE, RENAME, CLOSE after
WRITE, or 3ET_FILE INFO operation). This bit should be resat
1 O whenever the file is duplicated by a backup program,

4+ Note: Only ProDOS 16 may change bits 2-4; only backup
programs should clear bit 5 (using CLEAR_BACKUP_BIT).

Appendhe A ProDOS 16 Flle Organization 277

278

Appandlkes

The file type atiribute

The file_type field in a directory entry identifies the type of file
described by that entry. This field should be used by applications
1o guaraniee file compatibility from one application o the next
The currently defined hexadecimal values of this byte are listed in
Table A-2.

Table A-2 also lists the 3-character mnemonic file-type codes that
should appear on catalog listings. For any file type without a
specified mnemonic code, the catalog program should substitute
the hexadecimal file type number.

& Note SO file types are included in Table A-2 because 505 and
ProDO5 have identical file systems.

Toble A-2
ProDOs file types

Flie type Mnemonic Code Dascription

300 Uncategorized file (505 and ProDOS)
$01 BAD Bad block file

$02 ¢ PCD Pascal code file

303 1 PTX Pascal text file

$04 TXT ASCII text file (508 and ProDOS)
$05 1 PDA Pascal data file

06 BIN General binary file (505 and ProDOS 8)
507 FNT Font file

$08 FOT Graphics screen file

509 ¢ BA3 Business BASIC program file
$0A 1 DA3 Business BASIC data file

0B+ WPF Word Processor file

30C ¢ 5085 505 system file

S0D-$0F (505 reserved)

$OF DIR Directory file (505 and ProDOS)
510 1 RFD RPS data file

511 ¢ RF1 RPS index file

12 ¢ AppleFile discard file

$13 1 AppleFile model file

514 1 AppleFile report format file
$151¢ Screen Library file

$16-518 1 (505 reserved)

Table A-2 (continued)
PraDOS flle types

Fie ypa Mnemonic Code Description

519 ADB AppleWorks Data Base file

S1A AWP AppleWorks Word Proc, file

$1B ASP AppleWorks Spreadshest file
$1C-5AF (reserved)

580 SRC APW source file

iB1 ORBJ APW object file

in2 LIB APW library file

$B3 516 Prol¥25 16 application program file
504 RTL APW run-time library file

$B5 EXE Prol05 16 shell application file
5$B6 ProDOS 16 permanent initialization file
SBY Prol¥O5 16 temporary inftialization file
5Be New desk accessory

5B9 Classic desk acoessory

SDA Tool set file

SBB-$BE (reserved for ProDOS 16 load files)
$BF Peold05 16 document fle

$CO-$EE (reserved)

$EF PAS Pascal area on a partitioned disk
$F0 CMD PraDOS 8 CI added command file
§F1-5F8 ProDO5 8 user defined files 1-8

$F9 (ProDOS B reserved)

$FA INT Integer BASIC program file

$FR IVR Integer BASIC variable file

$FC BAS Applesoft program [ile

SFD VAR Applesoft variahles file

SFE REL Relocatable code file (EDASM)

SFF 5YS Prol}O5 8 system program file

Tapply to SOS (Apple D only

Some applications use an another field in a file's directory entry,
the auxiliary type field (aux_typa), to store additional
information not specified by the file type, Catalog listings may
display the contents of this feld under the heading "Subtype.”

Appandk A: ProDOS 14 Flle Crganization 279

e e T

280

For example, APW source files (f1le type $BO0) include a
language-type designation in the aux_type feld. The starting
address for ProDO5 8 executable binary files (file type 506)
may be in the aux_type field. The record size for random-access
text files (File type 5042 may be specified in the auxiliary ype
Field.

Pral¥05 16 and ProDOS 8 impose no restrictions (other than size)
on the contents or format of the auxiliary type field. Individual
applications may use those 2 bytes 1o store any useful information.

—d

Appendix B

Apple Il Operating Systems

This, appendix explains the relationships between ProDOS 16 and
three other operating systems developed for the Apple 11 Family of
computers (D05, Prol0S 8, and Apple [Pascal), as well as two
developed for the Apple 111 (505 and Apple [Pascal,

If you have written programs for one of the other systems or are
planning 1o write programs concurrently for ProDOS 16 and
another system, this appendix may help you see what changes will
be necessary 10 transfer your program from one system to another.
If you are converting files from one system to another, this
appendix may help you understand why some conversions may be
more successful than cthers,

Thi first section gives a beiefl history, The next two sections give
genenal comparisons of the other operating systems (@ ProDOS 16,
in terms of file compatibility and operational similarity.

History

DOs

05 stands for Disk Operating System. 1L is Apple's [irst operating
system, before DOS, the firmware Monltor program controlled
program execution and input/output

281

282

Appendxes

DS was developed for the Apple [I compater. It provided the first
capability for storage and retrieval of various types of files on disk
(the Disk 1Dy, the System Monitor had allowed input/output (of
binary data) to cassette tape only,

The latest version of DOS is DOS 3.3, It uses a 16-sector disk [ormat,
like PraDOS 8 and ProD05 16. Earier versions use a 13-sector
format that cannot be read by ProDOS 8 or ProDOS 16,

505

505 is the operating system developed or the Apple 11 computer
Its name is an acronym for Sophisticated Operating System,
reflecting its increased capabilites over DOS. On the other hand,
505 requires far more memaory space than either DOS or ProDOs 8
(below), which makes il impractical on computers with less than
256K of RAM.

ProDOS 8

Prol0O5 8 (for Professional Disk Operating Systend) was developed
for the newer members of the Apple 11 family of computers, It
requires at least 64K of RAM memory, and can run on the Apple T,
Apple Ilc, and 64K Apple 11 Plus,

ProDX5 B brings some of the advanced features of 505 (o the Apple
1T Family, without requiring as much memaory as 3085 does. Its
commands are essentially a subset of the 505 commancds.

The latest version of ProDOS 8 developed specifically for the Apple
Ile and IIc is ProDOS B (1.1.1), An even mone recent version,
developed for the Apple IG5 but compatible with the Ile and llc, s
ProDOS5 8 (1.2).

& Note: Prior to development of ProDOS 16, ProDOS 8 was
called simply Prof0S

ProDOS 16

ProDOS5 16 is an extensive revision of ProD0S 8, developed
specifically for the Apple 11G5 (it will not run on other Apple IT's).
The 16 refers o the 16-bit internal registecs in the Apple 11GS
A5CAT6 microprocessor,

Pro[¥25 16 permits access (o the entine 16 Mb addressable memory
space of the Apple 1IGS (ProDOS 8 is restricted 1o addressing 64K)
and i1 has more “S05-like” features than ProDOS 8 has, It also has
some new features, not present in 505, that ease program
development

There are two versions of ProDOS 16, Version 1.0 is a first-release
system, consisting of a Prol>05 B core surrounded by a "ProDd05
16-like™ user interface. Version 2.0 is the complete implementation
of the PralX05 16 design

Pascal

The Pascal operating system for the Apple [T is modified and
extended from UCSD Pascal, developed at the University of
California at San Diego. The latest version, written for the Apple
lle/11e and 64K Apple 11 Plus, is Pascal 1.3, It also runs on an Apple
[IGs,

Pascal for the Apple 111 is 3 modified version of Apple 11 Pascal, It
uses $05 for most of its operating system functions

File compatibility

Pral05 16, ProDOS 8, and 505 all use 2 hierarchical file system
with the same formal and organization, Every file on one sysiem's
disk can be read by either of the other systems. OS5 and Pascal use
significantly different formats

The other systems compare (0 FroDOS 16 as follows:

ProDOS 8: ProDOS 16 and ProDOS 8 have identical fil= system
organizations—therefore, ProDOS 16 can read all ProDOS5 8 files.
However, the System Loader under ProDOS 16 will not execuse
Prol0s 8 executable binary files {ype $06), Likewise, ProDOS B
can read but will not execule file types $B3-3BE; those file types are
specific 1o ProDOS 16,

Appendx B! Appla Il Operating Systems 283

Takle B-1

$05: PraDOS 16 and 05 have identical file system organizations
—therefore, ProDd05 16 can read (but not execute) all 505 files,

DOS: DOS does not have a hierarchical file system. ProDOS 16
cannot directly read DOS files (but see *Reading DOS 3.3 and
Apple T Pascal Diisks,” in the following section),

Pascal: Apple I Pascal does not have a hierarchical file sysiem.
Prol0% 16 cannot directly read Apple 11 Pascal files (but see
“Reading D05 3.3 and Apple 1 Pascal Disks," below).

Apple 11 Pascal uses the 505 file system. Therefore ProDOS 16 can
read (but not execute) all Apple 111 Pascal files.

Reading DOS 3.3 and Apple Il Pascal disks

Bath OS5 3.3 and ProDOS B 140K Nexible disks are formatied using
the same 16-sector layout. As a consequence, the ProDOS 16
READ BLOCK and WRITE BLOCK calls are able o access DOS
3.3 disks too. These calls know nothing about the organization of
files on either type of disk.

When using READ BLOCK and WRITE BLOCK, you specify a 512-
byte block on the disk. When using RWTS (the DOS 3.3 counterpart
to READ BLOCK and WRITE_BLOCK), you specify the track and
sector of a 256-wie chunk of data, as explained in the DOS
Programmer's Manual To use READ BLOCK and

WEITE BLOCK (0 access DOS 3.3 disks, you must know what 512-
byte block coresponds to the track and seclor you want

Table B-1 shows how (o determine a hlock number from a given
track and sector, First multiply the track number by 8, then add the
sector offset that corresponds to the sector number. The half of the
block in which the sector resides is determined by the half-ol-block
line (1 is the first half; 2 is the second).

Trocks and sactors fo blocks (140K disks)

Block number = (8"frock numbaer) + sechar offiel

Operating system similarity

‘This section compares the functlonal similarities among the
operating systems. Functional similarity betwesn two systems
implies that they perform closely related operations, but it does not
mean that thay have identical procedures or commands.

Input/Qutput

ProD05 16 can perform 'O operations on files in disk drives (block
devices) only. Under ProDOS 16, therefore, the current
application is responsible for knowing the protocol necessary o
communicate with character devices (such as the console, printers,
and communication ports),

The other systems compare to ProDO5 16 as follows:

ProDO5 8: Like Prold05 16, ProDOS 8 performs 1/0 on block
devices only.

505: 505 communicates with all devices, both character devices
and block devices, by making appropriate file access calls (such as
open, read write, close). Under 508, writing to one device is
essentially the same as writing to another.

DOS: DOS allows communication with one type of device
only—the Disk 11 drive, DOS 3.3 uses a 16-sector disk formar; earlier
versions of DOS use a 13-sector format. 13-sector Disk 1T disks
caﬁn.n-nt be read directly by DOS 3.3, 505, ProDOS B, or ProDd5

1

Pascal: Apple Il and Apple 111 Pascal provide access to both block
devices and character devices, through File 'O, Biock IO, and
Derice 1O calls 1o the volumes on the devices.

Sector: a 1 2 3 4 5 6 7 B 9 A B C D E F
Sector offser: 0 7 6 5 5 4 4 3 3 2 2 1 1 o 7
Half of block: 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Refer to the DOS Programmer's Manual for a description of the fike
organization of DOS 3.3 disks.

Appendix B: Apple || Operafing Systems 285

| 284 Appeandixes

284

Appendixes

Filing calls

508, ProDOS 8, and ProDOS 16 filing calls are all closely related
Most of the calls are shared by all three systems; furthermare, their
numbers are identical in ProDOS B and 505 (ProDOS 16 calls have
a completely different numbering system from either ProDOS 8 o
805,

The other systems compare to FroDOS 16 as follows:

ProDOS 8: The ProDO5 8 0¥ _LINE call corresponds o the
ProDOS 16 VOLUME call, When given a device name, VOLUME
remurns the valume name for that device. When given a unit numbes
(derived from the slot and drive numbers), O _LINE retuns the
volume name,

The ProDOS & RENAME call corresponds to the ProDOS 16
CHANGE_PATH call, except that RENAME can change only the Lt
name in 3 pathname.

$05: The 505 GET_FILE INFO call returns the size of the file
(the value of BOF), With ProDOS 16 you must ficst open the file and
then use the GET_EOF call

The $O5 VOLUME call corresponds to the ProDO5 16 VOLUME
call. When given a device name, VOLUME refurns the volume
name for that device.

The 05 calls SET_MARK and SET_EOF can use a displacement
from the current position in the file. ProDOS 16 accepts only
ahsolute positions in the file for these calls.

DOS: DOS calls distinguish berween sequential-access and
random-access text files. PraDOS 16 makes no such distinction,
although the ProDOS 16 BEAD call in NEWLINE mode functions s
a spquential-acoess read.

DOS uses APPEND and POSITION commands, roughly similas
1o ProDO5 16's SET_MARK, 1o set the current position in the file
and to automatically extend the size of the file.

The CLOSE command in DOS can be given in immediate (from
the keyboard) or deferred (in 2 program) mode. No ProDOS 16
commands can be given in immediate mode

Paseal: Apple I Pascal distinguishes among fext files, data files,
and code files, each with different header formats; all ProDOS 16
files have identical header formats. The Pascal procedures
FEWRITE and RESET comespond to ProDOS 16's CREATE and
OPEN calls. Pascal has more procedures for reading from and
wriling to files and devices than does ProDd05 16.

Because Apple 111 Pascal uses the 505 file sysem, its filing calls
correspond directly to $085 calls,

Memory management

Under ProDOS 16, neither the operating system nor the application
program perform memory management; allocation of memory is
the responsibility of the Memory Manager, an Apple [1G5 ROM-
based 1ool set. When an application needs space for its own use, it
makes a direct request (o the Memory Manager, When it makes a
ProDOS 16 call that requires the allocation of memory space,
ProDOS 16 makes the appropriate request to the Memaory Manager.
The Apple 1IGS Memory Manager is similar to the 505 memory
manager, excepl that it is more sophisticated and is not considered
part of the operating system,

The other systems compare to ProDOS 16 as follows:

ProDOS 8: A ProDOS5 B application is responsible for its own
memory management. It must fnd free memory, and then allocate
it by marking it off in the Pro[X05 8 global page’s memory bit map
Pro[¥05 B protects allocated areas by refusing to write to any pages
that are marked on the bit map, Thus it prevents the user from
destroying protected memory areas (as long as all allocated
memory is properly marked off, and all dara is brought into
memory using ProDOS 8 calls).

508: 508 has a fairly sophisticated Memory Manager that is part of
the operating system {isell. An application requests memory from
505, either by location or by the amount needed. IF the request can
be satisfied, S0S grants it That portion of memory is then the sole
responsibility of the requestor until it is released,

DOS: DOS performs ne memory management, Each application
under NS is completely responsible for its own memory
allocation and use.

Appendix B: Apple | Operating Systemns 287

e

288

Appeandldes

Poscal: Apple 11 Pascal uses a simple memory management sysiem
that controls the loading and unloading of code and da segments
and tracks the size of the stack and heap,

Apple 11 Pascal uses 506 for memory management.

Interrupts

PraD{% 16 does not have any built-in interrupt-generating device
drivers, Internupt handling routines are therefore installed into
ProDOS 16 separately, using the ALLOC_INTERRUPT call. When
an Interrupt ooours, ProDOS 16 polls the handling routines in
succession until one of them claims the interrupt

The other systems compare to ProDOS 16 as follows:

ProDOS 8: ProDdO5 8 handles interrupts identically 1o ProDOS 16,
except that it allows lewer installed handlers (4 vs, 16).

$0%: In SO5, any device capable of generating an inlerropl must
have a device driver capable of handling the interrupt; the device
driver and its interrupt handler are inseparable and are considered
to be part of S05. In addition, SO8 assigns a distinct interrupt
priorty to each device in the system.

DOS: DOS does nol support interrupls.

Poscal: Apple 11 Pascal versions 1.2 and 1.3 support internspis;
earlier versions of Apple 11 Pascal do not

Apple 11 Pascal uses the 505 intermupt system.

Appendix C

The ProDOS 16 Exerciser

Ihe Frof}s 16 Exerciser is a program that lets you practice making
operating system calls without writing an application. All PralOs
16 functions execute just as they would when called from a program;
therefore you can test how the calls work and, if NEeCessary, corect
any programming errors before coding your routines,

Starting the Exerciser
Firsl, make a copy of the Exerciser disk and put the original away in a

safe place. Consult your owner's manual if you need instructions on
howr to copy a disk.

The Exerciser may be the starup program on the diskeus provided
with this manual. If so, it should execute automatically when you
turn on the machine and insert the diskette. Otherwise, selec it
from the desktop or program launcher that comes up when you star
up the system. The program's filename [EXERCISER.

The first display is the menu screen. It shows all ProDOS 16 calls by
number and name, as well as a few other commands you may enter
The menu screen always returns between execution of calls or
commands

289

Making system calls

You make system calls from the exerciser by entering their call
numbers. The number you enter is displayed at the bottom of the
menu screen. You may clear the number at any time by pressing
pero twioe in sucoession.

Aler emtering the number, press the Return key. The parametes
block for the call you selected is displayed. Enter a value Cor select
the default provided by pressing the Retum key) for each
parameter; each time you press Return, the cursor moves downward
one position in the parameter block. The cursor does not stop at
any parameter that is a result ondy (that has no input value),

& Note: I, while you are eniering paramefers, you wish o
correct a value, press the Escape key—it positions the cursor
back at the wp of the parameter block., At any other time,
however, the Escape key returns you to the main menu.

Pathnames and other text strings are passed 1o and from ProDOS 15
in buffers referenced by pointers in the parameter blocles,
Therefore, to enter or read 2 pathname you must provide a buffer
for ProDOS 16 to read from or write (o, In most cases, the Exerciser
sets up a default buffer, pointed o by a defaull poiner parameies
(see, for example, the CREATE call). The contents of the location
referenced by that pointer are displayed on the screen, below the
parameter block. For convenience, you can directly edit the
displayed string on the screen; you neednt access the memory
locaton ltself,

After you have entered all the required parameters, press the Reum
key once more 10 execule the call, I everything has gone right, the
parameter list now contains results refumed by Prol}05 16, and the
message "500 call successful® appears at the bottom of the screen,
If a ProDOS 16 error ocowers, the proper error number and message
are displayed instead. In addition, if an error ocourrs a small *c”
should appear at the lower right comer of the screen, o indicate
that the microprocessor's carry bit has been set.

Thie Exerclser does not protect you from safous mistakas. With
0 WRITE_BLOCE call you con easly overwrite a crifical block on
one of your disks, daestroving valuable e dota or even the
disk’s directory. With o careless roruar call, you can dasiray
all information on your disk. Be careful how you wse this
programi

a{er commands

In addition to practicing system calls, you may issue commands
that allow you Lo list the contents of a directory, modify any part of
the Apple IG5 RAM memory, enter the Monitor program, or quit
the Exerciser.

List Directory (L)
Press L and you are prompted for the pathname of the volume or
subdirectory whose contents you wish 1o list. For each file in the
directory, the listing shows file name, file type (see tahle A-2),
nummber of blocks used, date and time of last modification, date and
time of creation, BOF (logical size in bytes), and subtype (value of

the auxiliary type Reld). Press the Escape key to return to the main
menu.

Modify Memory (M)

You use the Modify Memory command to place data in memory for
PreDOS 16 to read, or o inspect the contents of a buffer that
ProDO8 16 has written 1o,

Press M and you are prompied for a pointer to the part of memory
you wish 1o aecess. Enter the proper address and press the Retumn

key. A 256-byle (one-page) portion of memory is displayed, as 16
rows of 16 byies each, beginning on 2 page boundary. Each row is

preceded by the address of the first byte in that row, to the right of
r.'}m'h row are the ASCIT representations of the values of the bytes in
Lhe row,

Lise the arrow keys to move the cursor around on the screen. To
change the value of a byte, type the new value right aver the old
one, You can enter data in hexadecimal format anly; the results of
your entry are displayed on the screen in both hexadecimal and
ASCIL For reference, Table C-1 lists ASCI characters angd their
decimal, hexadecimal, and binary equivalents.

You may undo up to the last 16 changes you mads by yping [
successively, To display the preceding or succeeding page in
MEmMOry, Press < of >

Appandlx C: The ProDOs 14 Exerciser Fadl

Table C-1 Table C-1 {confinued)
ASCH character saf

ASCI charocter set

| Char Dec Hoex Binary Char Dec Hex Binary

C_m:r_r Dec Hox Blnary Char Dac Hax Binary
il i 0 DOCO0000 (40 28 00101000 8] 75 4F 01001111
| sioh 1 1 00000001) a = %:gﬁé] 8 50 01010000 ; 13;‘ gg 01101001
=3 gme £ & o P8 3 o @ ouoww
: i . ; 32 2 1 107 B
eol F i 0000100 . 44 2 00101100 5 83 53 01010011 | 108 gc g} ig:%&
eng 5 5 0000101 : 45 an 00101101 T B4 54 01010100 m 1 60
- B . A ;& p omme @m0 @ oo
y , i 11011 o 111 &GF
ht 9 g 00001001 0 48 30 00110000 w a7 57 01010111 P 112 70 gi!?éééé
If 10 A 00001010 1 49 31 00110001 X 88 58 01011000 q 13 7 01110001
vl 11 B 0O001011 2 .‘sﬂ ;g gﬁgﬂﬁ Y a9 58 01011001] 114 72 01110010
{—rr ai g &J{ﬁnm ;:. 512 3% 00110100 Iz 3\:11 gg 01011010 5 115 73 01110011
; - (1011011 1
so 14 E 00001110 5 53 35 00110101 § 92 5C 0011100 u Hg ;; 3:11313?
¥ i3 8 it 6 4 36 00110110 I o3 sD 01011101 v 118 76 01110110
dle 16 10 00010000 v gg _3,; %H'ﬂg A o4 SE 01011110 w 1s 77 01110111
333 18 12 333%5 9 57 39 00111001 - g glﬂ' 01011111 x 120 7 01111000
I dc3 19 13 00010011 : 58 3A 00111010 97 &1 gHimm 4 i%; ?.r.li gHHg?Elﬂl
ded 20 14 004010100 : g iE %H]l?é-; b o8 62 01100010 [122 7B 01111011
nak 21 15 00010101 < - c 99 &3 01100011 I
o B oo > & 3 ooni d 0 66 01100100 1 i3 1 o
c b ! e 101 5 011001 -
can 24 18 (0011000 ? 63 3F 00111111 f w0z 68 mm:?& del i%g 35 giiilii?
em 25 19 00011001 @ fid 40 01000000 & 03 67 01100111
| sub 26 1A 00011010 A g-g :‘:i g}%‘;
27 18 00011011 B
F:‘ 28 1c 0011100 C a7 43 01000011 Warming Modity Memory does not prevent you from changing volues in
| g5 o 1D 00011101 D] 44 01000100 Dﬁﬂl:;rmmw that are aleady in use. You can concebably
] alter Exerciser [tself of other critical code, causing o system
s 30 1E 000111140 E 69 45 01000101 ctash. Be careful what mod
us 3] 1F 00011111 F 70 4i 01000110 i o
sp 32 20 00100000 G 71 47 01000111
1 33 21 00100001 H 72 48 01001000
' 34 22 00100010 I 73 49 01001001 o
= a5 23 00100011 1 74 44 01001010 Exit to Monitor ()
LooF o4 mae x5 o8 Go T Mok . T o o e s
E— 3; = 0106110 X0 T.-' D 01001101 Reference) that allows you 1o inspect and modify the contents of
: e 37 BO100111 N 28 4E 01001110 memory, assemble and disagssemble code in a limited manner, and
execule code in memory. You may enter the Monitor from the
ProD0O5 16 Exerciser,
202 Appendlxes Appendx C: The ProDOS 16 Exerclser %3

To call the Monitor, press M, When the Moniter prompt (% :
appears, you may issue any Monilor command. To leave the Append|x D
Monitor and: return to the Exerciser, you must reboot the computer _
{press Controd=C=Reset) and, if necessary, re-execute the Exerciser
from the desktop or program launcher.

System Loader Technical Data
Quit ()

To quit the ProDOS 16 exerciser, simply press Q. OF course, you
may also quit by selecting the ProDOS 16 QUIT call ($27), filling
out the parameter block, and executing the call.

This appendix assembles some specific technical details on the
System Loader. For more information, see the referenced
publications

Object module format o

The Sysiem Loader can load only code and data segments that
conform to Apple 11G5 object module format. Object module
| formart is described in detail in Apple fGs Programmer's

| Workshop Reference.

;[Ia types

File types for load files and other OMF-related files are listed below
For a complete list of ProD05 file types, see Table A-2 in
Appendix A

294 Appeandixes

Flle fype Description

B0 Source fite (awx_fype defines language)

$B1 Ohbjeat file

$B2 Library file

$B3 Application file

§B4 Run-time library file

585 Shell application file

$86 - JBE Reserved for system use. Crrrently defined types
fncivde:

$B6 Permanent inilitialization file

$BY Temporary injtialization file

B8 New desk accessory

$B9 Classic desk accessory

Segment kinds

Whereas files are dassified by type, segments are classified by _
kind, Each segment has a kind designation in the KIND field EIFIJI:‘I
header. The five high-order bits in the KIND field describe specific
attributes of the segment; the value in the low-order five-bit field
describes the overall type of segment Different combinations of
attributes and type values yield dilferent results for the segment
kind.

The KIND field is two bytes long. Figure D-1 shows its formal.

Byta 1 Byte D
a [s[alaznaielel7]a[s[4]3]2]1]0]
vaive: [S0]Pr] P [5M #Biﬂ] (raserved) | Type

Figure D-1
sagment kind format

where the artribute bits (11-15) mean the following:

SD (bit 15) = static/dynamic {0 = static; :

1 = dynamic)
Pr (bit 14) = private (0= no; 1= yes)
PI(hit 13) = pnsjllnn-indepcnd:nl. 0 = no; 1 = yes)

SM (bit 12) = may be in special memory (0 =yes; 1 = na}

AB (bit 113 = absolute-bank (0= no; 1 = yes)
Ribit 1) = Reload 0 =no, 1= yes)

and the fype fleld (bits (-4 describes one of the following
classifications of the segment:

Value of Type Description

500 code segment

501 dafz segment

502 Jump Table segment

504 Pathname scgment

508 library dictionary segment
310 initializalion segment

512 direct-page/stack segment

Segment altributes can be combined with particular types to yield
different resultant values for KIND. For example, a dynamic
Initialization Segment has EIND = $B010,

& Note: A Reload segment is always loaded from the file when a
program starts up, even if the program is restarted from
memory, 11 is used to initialize data for programs that would not
otherwise be restanable,

Record codes

Load segments, like all OMF segments, are made up of records.
Each type of record has a code number and a name. For a complete
list of record types, see Apple TGS Programmer’s Workshop

Referenice The only record types recognized by the System Loader
are these:

Record Name Descrption

Code

SE2 RELOC intrasegment relocation record (in
relocation dictionary)

SE3 INTERSEG intersegment relocation record (in
relocation dicticnary)

5F1 Ds zero-fill record

$F2 LOONAT long-constant record (the actual code

and data for each segment)

5Fs5 cRELOC compressed intrasegment relocation
record {in relocation dictionary)

Appendix D: Systermn Loader Technlcal Data 97

208

Appendlides

Becard Horme Dascriplion

Code

LF6 cINTERSEG compressed intersegment relocation
record (in relocation dictionary)

SE7 SUPER super-compressed relocation record
(the equivalent of many cRELOC ar
cINTERSEG records)

£00 END the end of the segment

If the loader encounters any other type of record in a load segment
it retums error $110A

Load-file numbers

Load files processed by the Apple 1G5 Programmer's Workshop
Linker at any one time are numbered consecutively from 1. Load file
1 is called the initial load file. All other files are considered 10 be
run-time libraries

A load-file number of 0 in a Jump Table segment or 2 Pathiname
segment indicates the end of the segment

i.oud-mgmeni numbers

In each load fle created by the linker, segments are numbered
consecutively by their position in the load file, starting at 1, The
loader determines a segment’s number by counting its position
from the beginning of the lgad file. As a check, the loader also ooks
at the segment number in the segment's header

The first static segment in 4 load file, which need not be segment
number 1, is called the main segment—it is loaded first {except foe
any preceding initialization segments) and never leaves memary
while the program |s executing, Because a run-time library need
have no static segments at all, it typically has no main segment.

Segment headers
The first part of every object module format segment is a segmens

header; it contains 17 fields that give the name, size, and other
important information about the segment

Restrictions on segment header values

Because OMF suppors capabilities that are more general than the
System Loader's needs, the System Loader permits load files to have
orly a subset of all possible OMF characteristics. The loader does
this by restricting the values of several segment header fields:

KUMSEX: st be O
NUMLEN : must be 4
BANKSIZE: must be less than or equal to $10 000
ALIGN: must be less than or equal to $10 000

If the System Loader finds any other values in any of the above
fields, it returns error $110B (“Segment is Foreign™. The
restrictions on BANKSTZE and ALTGN are enforced by the APW
Linker also,

Page-aligned and bank-aligned segments

In OMF, the values of BANKSI12E and ALIGN may be any multiple
of 2. But because the Memory Manager and System Loader SUppOT
only lwo types of alignment (page- and bank-alignment) and one
bank size (64K}, the System Loader uses both BANESTZE and ALTGH
values 1o control segment alignment, as follows

1. If BAMKSIZE is 0 ar $10 000, its value has no effect on segment
alignment

&, If BANKSTZE is any other value, the greater of BANKSTZE and
ALIGH is called the alipnment facior. Alignment in memory is
controlled by the alignment factor in this way;

a. If the alignment factor &5 0, the segment is nat aligned 1o any
memory boundary,

b. If the alignment factor is greater than 0 and Jess than or equal
1o 5100, the segment is page-aligned

c. If the alignment factor is greater than $100, the segment is
bank-aligned,

Appendix [: System Looder Technical Data sl

300

Appandbias

& Note: The Memory Manager iself does not directly support
bank-alignment. ‘The System Loader forces bank alignment
where needed by requesting blocks in successive banks until it
fincls one that starts on a bank boundary,

There is only one entry point needed for all System Loader calls
(actually, all tool calls). It is to the Apple 11GS (ool dispatcher, at the
botom of bank $E1 (address $E1 0000). Although the System
Loader maintains memory space and a table of loader functions in
other parts of memory, locations in those areas are not suppored
Please make all System Loader calls with a J5L to $E1 0000, as
explained in Chapter 17 (or with macro calls or other higher-kevel
interface, il appropriate for your language).

The following variables are of global significance. They are defined
at the system level, so any application that needs 1o know their
values may access them. However, only USERID is imponant 1o
most applications, and it should be accessed only through proper
calls to the System Loader. The other variables are needed by
controlling programs only, and should not be used by
applicatons,

5EGTBL Absolute address of the Memory Segment Table
JMPFTBL Absolute address of the Jump Table Directory
BATHTBL Absolute address of the Pathname Table
USERID User 1D of the current application

User ID format

The User 1D Manager is discussed in Chapter 5, and fully explained
in Apple lfGs Toolbox Reference. Only the format of the User 1D
number, needed as a parameter for System Loader calls, is showmn
here.

There is a 2-byle User ID associated with every allocated memory
block. It is divided into three fields: MalnID, AuxID, and
TypelD. The HainID field contains the unique number assigned 1o
the owner of the block by the User D Manager; every allocated
bock has a noneero value in its MainiD field, The AuxID feld holds
a user-assignable identification; it is ignored by the System Loader,
ProDO5 16, and the User D Manager, The TypeID field gives the
general dass of softevare to which the block belongs.

Byte | Byte D
ae [1shahalielnpnjefe]7]als]4]a[2]1]0
Value Type ID Aux 1D WMain 1D

Figure D-2
User ID fomat

MainID can have any value from 501 o $FF (0 is reserved).
BuxID can have any value from 300 1o $0E.!
TypelD values are defined as follows:

500 Memory Manager

501 application

502 controlling program
503 ProDOS 8 and ProDOS 16
504 ool ser’

505 desk accessory

506 run-tme lbrary

307 System Loader

308 flrmware/system function
$09 Tool Locator

$0A-F (undefined)

HP type 1D = $04, these values of AuxiD are ressrved:

301 Miscellaneous Toolset file
$02 Scrap Manager file
50A ool setup file

Appendix D: Systern Loader Technical Data 301

g2

Appandines

Error Codes

This appendix lists and describes all error codes returned by
ProlIOS 16 and the System Loader. Bach emor code s followed by
the error's suggested name or screen message, and a brief
description of s significance.

When an error occurs during a call, Prol05 16 or the System
Loader places the error number in the accumulator (A-register),
sets the status register carry bit, and retumns control to the calling
routine,

If after a call, the carry bit is clear and the acoumulator contains 0,
that signifies a successful completion (no ermor).

ProD__DS 16 &rrEs

Hunl‘u’!‘uﬁrrm

A nonfatal error signifies that 4 requested call could not be
\--'-JJ:JP’L'!F:U *Ill,]!ll..llr. | WITLS [RILET CE LI L N e AL R

e — e e

Humbar

500
501

507

528

52R

5ID

S2ZE

Meszoge ond Dascripfion
General Errors:
(nio erroe)

Invalid call number: A nonexistent command has
been issued

ProDOS is busy: The call cannot be made because
PraDOS 16 is busy with another call

Detdce call errors:

Device not found: There is no device on line with the
given name (GET_DEWV_NUM call).

Invalid device request: The given device name o
reference number is not in ProlDOS 16's list of active
devices (VOLUME, READ BLOCH and WRITE BLOCK
calls)

Interrupt vector tahle full: The maximum number of
user-defined interrupt handlers (16) has already been
installed; there is no room for another

(ALLOC THTERRUPT cally

/O error: A hardware failure has provented propar
data transfer to or from a disk device. This is a general
code covering many possible error conditions,

No device connected: There is no device in the slot
and drive specified by the given device number
(READ BLOCK, WRITE BLOCK, and VOLUME calls)

Write-protected: The specified volume is write-
protected (the “wrile-protect” tab or notch on the
diskjacket has been enabled), No operation that
reduires wriling 1o the disk can be performed.

Invalid block address: An attemnpt was made (o read
data from a RAM disk, at an address beyond its limits.
Disk switched: The requested operation cannol be
performed because a disk containing an open [file has
been removed from its drive.

Appendx E: Emor Codes 303

D4

Appendises

Warning

Apple Il drives have no hardware method for detecting disk
switchas, This eror Is therefore refumed only when ProDOS 18
checks a valume rame during the nomal course of a call. Since
most disk occess calls do not Involve a check of the valume
name, a disk-switched emor con easly go undetectad.

$2F

$30 - S3F

$40

542

543

Sad

545

546

547

Device not on line: A device specified in a call is not
connected to the system, or has no volume mounted
on iL This error may be returned by device drivers that
can sense whether or not a specific device is on ling

Device-specific errors: (error codes in this range ane
o be defined and used by individual device drivers.)

File call errors

Invalld pathname or device name syntax: The
specified pathname or device name contains lllegal
characters (other than A-Z, 0-9, . /")

FCH table full: The 1able of file control Blocks s full;
the maximum permitted number of open files (8) has
already been reached, You may not open another [ile
(oPEN call).

Invalid file reference number: The specified file
reference number does not match that of any currently
apen file

Path not found: A subdirectory name in the specified
pathname does not exist (the pathname's synlax is
otherwise valid),

Yolume not found: The volume name in the specified
pathname does not exist (the pathname’s syntax is
otherwise valid).

File not found: The last file name in the specified
pathname does not exist (the pathname's syntax is
otherwise valid)

Duplicate pathname: An attempt has been made ©
create of rename a file, using an already existing
pathname (CREATE, CHANGE PATH calls),

548

549

544

Yolume full An anempt (o allocate blocks on a disk
device has failed, due to lack of space on the volume in
the device (CREATE, WRITE calls). If this ermor occurs
during a write, ProDOS 16 writes data is until the disk is
full, and still permits you 1o close the file,

Yolume directory full: No more space for entries is
left on the volume directory (CREATE call), In ProDOS
16, 2 volume directory can hold no more than 51
entries. No more files can be added to this directory
until others are destroyed (deleted).

Version error (incompatible file format) The
version number in the specified file's directory entry
does not match the present ProDOS 8-ProDOS 16 file
formal version number. This error can only occur in
future versions of Prolx05 16, since for all present
versions of ProlOS B and ProDO5 16 the file format
version number is zero,

@ Notee The version number referred to by this error code
concerns the file format only, not the version number of the
Operaling system as a whole, In particular, it is unrelated to the
ProDOS 16 version number returned by the GET_VERSION

call

548

§4.C

$4D

$4E

Unsupported (or Incorrect) storage type: The
organization of the specified file is unknown 1o ProDOs
16, See Appendix A for a list of valid storage types.

This error may alse be returned if a2 directory has been
tampered with, or if a prefix has been 261 10 2
nondirectory file,

End-of-file encountered {out of data): A read has
been attempied, but the current file position (Mark) is
equal to end-of-file (BOF), and no further data can be
read.

Position out of range: The specified file position
parameter (Mark) is greater than the size of the file
(EOQF).

Access not allowed: One of the attributes in the
specified file's access byte forbids the attempled
operation (renaming, destroying, reading, or writing)

Appandlx E: Emor Codes 305

§50

551

§52

§53

$54

$55

457

458

559

554

306 Appendxes

-

Elle Is open: An atempt has been made to perform a
disallowed operation on an open file (OPEN,
CHANGE_PATH, DESTROY calls).

Directory structure damaged: The number of
entries indicated in the directory header does nat
match the number of entries the directory actually
contains

Unsupporied volume type: The specified volume Is
not a ProDOS 16, ProDOS B, or 508 disk. Its directory
format is incompatible with ProDOS 16,

Parameter oul of range: The value of one or mors
parameters in the parameter block Is out of ils range of
permissible values.

Out of Memory: A ProDOS 8 program specified by
the QUIT call is oo large to fit into the memory space
available for ProDOS 8 applications.

VB table full: The table of volume control blocks is
full; the maximum permitted number of online
volumes,/devices (8) has already been reached. You
may not add another device 10 the system. The errar
pccurs when 8 devices are on line and a VOLUME call
is made for another device that has no open files.

Duplicate volume: Two or more online volumes have
identical volume directory names, This message is 4
warning: it does not prevent access 1o either volume
However, ProlXO5 16 has no way of knowing which
volume i8 Intended if the volume name is specified in 4
call; it will access the first one it finds.

Mot a block devices An altempt has been made 1o
access a device that is not a block device, Current
versions of ProDOS 16 suppon acoess (o block devices
only

Invalid level: The value specified for the system file
level is out of range (SET_LEVEL call)

Block number out of range: The volume bit map
indicates that the volume contains blocks beyond the
block count for the volume, This error may indicate a
damaged disk stroctune

558

S50

55D

55F

560

Illegal pathname change: The pathnames on a
CHANGE_PATH call spedify two different volumes.
CHANGE_PATH can move files among directories only
on the same volume

Not an executable file: The file specified in a QUIT
call is not a launchable type. All applications launched
by the QUIT call must be type $83 (PraDOS 16
application), 385 (shell application), or §FF (PraDOs
B system file).

Operating system/flle system not available: (1)
The QUIT call has specified a ProDOS 8 application o
be launched, but the ProDOS 8 operating system is not
on the system disk. (2) The FORMAT call Is unable 1o
format a disk for the specified file system.

Cannot deallocate /RAM: In quitting from a PraDOs
8-based program and launching a ProDOS 16-based

program, PQUIT is not able to remove the ProDOS 8

RAM disk in bank 301 (QUIT call).

Return stack overflow: An allempl was made to add
another User 1D to the return stack maintained by
PQULT, but the stack already has 16 entries, its
maximum permitted number (QUIT call)

Data unavailable: The system has invalid information
on which device was last accessed (GET_LAST DEV
call).

Fatal errors

A fatal error signifies the occurrence of a malfunction so serous thal
processing must halt, To resume execution following a fatal emror,
yvou must reboot the system.

Appendix E: Emor Codes 3a7

Humibar

Message ond Descripton

501

S0A

S0B

S0C

$0D

§11

308 Appandxes

Can*t

Unclaimed interrupt: An interrupt signal has
occurred and none of the installed handlers
claimsresponsibility for it This error may oocur if
interrupt-producing hardware is installed before is
associated interrupt handler is allocated.

VB unusable: The volume control block table has
been damaged. The values of certain check bytes are
not what they should be, so ProDOS 16 cannat use the
VCB table.

FCB unusable: The file control block table has been
damaged. The values of cerain check bytes are nol
what they should be, so ProDd05 16 cannod use the FCB
table.

Block zero allocated illegally: Writc-access to block
zero on a disk volume has been attempted. Block 2em
an all volumes is reserved for boot code.

Interrupt occurred while 1/'0 shadowing off: The
Apple 1165 has saft switches that control shadowing
from banks $E0 and $E1 1o banks $00 and 501 If an
inlernapt oocurrs while those switches are off, the
firmware interrupt-handling code will not be enabled
See Apple [GS Firmware Reference.

Wrong 05 version: The version number of the fle
P16 or PB s different from the version number of he
file PRODOS. PRODOS, which loads ProDOS 16 (P16}
and ProD05 8 (B8}, requires compatible versions of
both.

If 2 QUIT call results in the loading of a ProD<OS 16-based
application that is too large o fit in the available memory of that foe
some other reason cannot be loaded, execution halts and the
following message is displayed on the screen:

run next application. Error=$KXEN

where 5XXXX s an emor code—typically a Tool Locator, Memary
Manager, or System Loader error code

Boolstrap ermrors

Hm-ﬂrnp_cnnm can nccur when the Apple 1GS anempts to start up
a ProDdOE 16 system disk. Errors can oecur at several points in this
process;

1. If there is no disk in the startup drive, a *sliding apple”™ symbel

(% Jappears on the screen along with the messige:
Check atartup devical

Place a system disk in the drive and press Contral-Ch-Reset to
restart the boot procedure

28]

frf thete is a disk in the drive, but it i not a ProDOS 8 or ProDOS
16 system disk {that is, there is no type $FF file named PRODOS on
0, the following message appears

UNABLE TO LOAD PRODOS

Ht‘l‘l‘lﬂ\'f.‘_ihl-" disk and replace it with another containing the
proper files, then press Control-0-Reset to restart the boot
procedure

]

||'_H1i; file named PRODOS is found, but another essental fle is
missing, a message such as

TEMSPIE Flle found

M EYSTEM nar BYELE £
0 ®.EYSTEM or x.5¥5ls le Ffound

may appear. Remove the disk and replace it with another

containing the proper files, then press Control-C-Reset 1o
restan the boot procedure.

:".r:ul{u::‘ type of ProDOS 16 boastap error ocours on other Apple
1T systems. If you try to boot 2 ProDOS 16 system disk on & standard
Apple 1T computer (one that is nof an Apple 11GS), the following
errorf message is displayed:

YRODOS 16 REQUIRES APPLE IICS HARDWARE

When IJ1.L"i ooours the disk will not boot. You can boot an Apple 11GS
System Disk only on an Apple [IGS computer

Appendix E: Emor Codes 09

System Loader errors

Nonfatal errors

Hurmibser

Maasoge and Descriplion

50000
$1101

51102

51104

41105

51107

(no error)

mot found: The specificd segment (in the load file) or
entry {in the Pathname Table or Memory Scgment
Tahle) does not exist. If the specified load file itself is
not found, a ProDOs 16 emor $46 (file not found) is
returned.

Incompatible OMF verslon: The object module
format version of a load segment (as specified in its
header) is incompatible with the current version aof the
System Loader. The loader will not load such a
scgment,

Flle is not a load file: The specified load file is not ype
$B3-$BE. See Appendix A or D for descriptions of
these file types.

Loader is busy: The call cannot be made because the
System Loader is busy with another call.

File version error: The specified file cannot be
loaded because its creation date and time do not maich
those on {5 entry in the Pathname Table

% Note: This error applies to run-time library files only

51108

51109

5110A

310 Appendxes

User ID error: The specified User ID either doesnT
exist {Application Shutdown), or doesn't match the
User ID of the specified segment (Unload Segment By
Number).

SegNum out of sequence: The value of the SEGHUM
field in the segment’s header doesn't match the
number by which the segment was specified (Load
Segment By MNumber, Initial Load)

legal load record found: A record in the segment s
of a type nol accepted by the loader,

51108 Load segment is forelgn: The values in the NUMSEX
and NUMLEN fields in the specified segment's header

are not 0 and 4, respectively (Load Segment By
Number).

$001-505F (ProDOS 16 /0 errors—see “ProDOS 16 Errors” in
this appendix.)

$201-$20A (Memory Manager errors—see Afple Has Toolbox
Reference.)

ifﬂh:la«nara

If a BroDOS 16 error or Memory Manager error occurs while the
System Loader is making an internal call, it is a fatal error, The most
common case is when a fJump Table Load is attempred for a
dynamic load segment or run-lime library segment whose volume is
not on line, Contrel is transferred to the System Failure Manager,
and the following message appears on the screen:

Error loading Dynanic SegRant-XEXX

where XXXX is the error code of the ProDOS 16 or Memory manager
error thal oocourmed

Appendi E: Emor Codas n

Glossary

absolute: Characteristic of 2 load segment or
ather program code that must be loaded at a
specific address in memory, and pever moved.
Compare relocatable,

access byte: An attribute of 2 ProDO8S 16 file that
det¢rmines what types of operations, such as
reading or writing, may be performed on the file

accumulator: The register in the microprocessar
wheore most computations are performed,

address: A number thal specifies the location of a
single byte of memory. Addresses can be given as
decimil or hexadecirmal integers. The Apple 1G5
has addresses ranging from O o 16,777,215 (n
decimal) or from $00 00 (0 1o $FF FF FF (in
hexadecimal), A complete address consists of

2 4-bil bank number ($00 1o $FF) followed by a
16-bit address within that bank (500 00 1o $F7F FF).

Apple IIGS Programmer's Workshop: The
development environment for the Apple 11GS
computer. It consists of a set of programs thai
facilitate the wriling, compiling, and debugging of
Apple 11GS applications,

application program (or applicationk (1) A
program that performs a specific task useful to the
computer user, such as word processing, data base
management, or graphics, Compare controlling
program, shell application, system program
{2} On the Apple 11GS, a program that accesses
Prals 16 and the Toolbox directly, and that can
be called or exited via the QUIT call. ProDOS 16
applications are fle type $83

APW: See Apple [IGS Programmer's

Workshop.
APW Linker: The linker supplied with APW,

ASCIN: Acronym for American Standard Code
Jor Information Interchange. A code in which the
numbsers from 0 to 127 stand lor lext characters
ASCI code is used for representing text inside a
computer and for transmitling text between
computers or berween a computer and a

peripheril device

assemhbler: A program that produces object
files (programs that conliin machine-language
code) from source files written [n assembly
language. Compare compiler.

AuxI¥: One of three fields in the User ID, a
number that identifies each application,

backup bit: A bit in a file's acoess byte thar 1=lls

backup programs whether the file has been aliered
since the last time i was backed up.

bank: A 64K (65,536-byte) portion of the Apple
IG5 internal memory, An individual bank is

specified by the value of one of the 65CB16
microprocessor's bank registers

lossary 313

bank-switched memory: On Apple [1
computers, that pant of the language card
memory in which two 4K-pordons of memory
share the same address range (SDOO0-$DFFF)

binary fle: (1) A file whose data is o be
interpreted in binary form. Machine-language
programs and pictures are stored in binary files
Compare text file. (2) A file in binary fle
format.

binary file format: The ProDOS 8 loadable file
format, consisting of one absolute memory image
along with i destination address. A file in binary
file format has ProDOS file type $06 and is
referred to a5 a BIN file. The System Loader cannot
load BIN files.

bit: A contraction of Birmary digit, The smallest
unit of information that a computer can hold. The
value of 2 hit {1 or () represents a simple two-way
choice, such as yes or no or on or off

bit map: A set of bits that represents the posilions
and states of 4 coresponding set of ilems. See, for
example, global page bit map or volume bit
g,

block: {13 A unit of data storage or transfer,
typically 512 bytes. (2) A conliguous, page-aligned
region of computer memory of arbitrary size,
allocated by the Memory Manager, Also called a
memory block,

block device: A device that transfers data to or
from 3 computer in multiples of one block (512
bytes) of characters at a time. Disk drives are biock
devices,

boot: Another way to say Stdrf 10, A computes
boots by loading a program into memory from an
external storage medium such as a disk. Boof is
short for bootsirap load: Starting up is oflen
accomplished by first loading 2 small program,
which then reads a larger program inie memory
The program iz said o “pull isell up by its own
bootstraps.”

314 Elossary

buffer: A region of memory where information
can be stored by one program or device and then
read at a different rate by anothers; for example, 3
Pral0s 16 L0 buffer.

Busy word: A firmware fag, consulted by the
Scheduler, that protects system softeane that is
not reentrant from being called while processing
another call

byte: A unit of information consisting of a
sequence of 8 bits. A byte can ke any value
berween 0 and 255 (50 and $FF hexadecimal). The
value can represent an Instruction, mumber,
character, of logical stale

eall: (v.) To request the execution of & sulrouting,
function, or procedure. {n) As n operaling
system calls, & request from the keyboard or from
a program to execule a named fundlion

call block: The sequence of assembly-language
instructions used to call ProDOS 16 or System
Loader funclions.

carry flag: A status bit in the microprocessor,
used as an additional high-order bit with the
accumulator bits in addition, subtracton,
rotation, and shift operations

character: Any symbol that has a widely
understood meaning and thus can convey
information. Most characters are represented in
the compuler as one-byte values.

character device: A device that transfers data 10
ar from a compuler a5 a stream of individual
characters. Keyboards and printers are character
devices

close: To werminate access to an open file, Whena
file {s closed, its updated version is written 1o disk
and all resources it needed when open (such as its
/0 buffer) are released. The file must be opened
before it can be accessed again

compact: To rearrange zllocated memory blocks
in order to increase the amount of L'LII'I.IJ'gLi.I'.IIJS
unallocated (free) memory, The Memory
Manager compacts memory when needed

compiler: A program that produces object files
(contalning machine-language code) from
source files wrinten in a high-lovel language such
a3 C. Compare assembler,

controlling program: A program that loads and
runs other programs, without {zself relinquishing
control. A controlling program Is responsible for
shutting down its subprograms and freeing their
memory space when they are finished. A shell, far
eximple, is a contralling program,

F'r:at{ﬂ_ﬂ date: An anribute of a PraDOS 16 file;
it speciiies the date on which the file was first
created,

crnn_li-:ln tme: An attribute of 2 ProDOS 16 file: it
specifies the time at which the fle was first created,

current applicaton: The application program
currently loaded and running. Every application
program is identified by a User [D numbers: the
current application is defined as that application
whose User ID s the present value of the USERID
global variahle

data block: A 512-byie portion of 2 PmDOS 16
standard file thar consists of whatover kind of
information the file may contain

default prefix: The pathname prefix attached
by ProDOS 16 10 a partial pathname when

ng prefix number is supplied by the application.
The default prefix s equivalent (o prefix

mumber 0/

dereference: To substinute a pointer for a
memory handle. When you dereference a
memary block's handle, you access the block
dircetly (through its master polnter) rather than
indirectly (through its handle)

desk accessories: Small, spedial-purpose
programs that are available to the user regardless
of which application Is running—such as the
Contral Panel, Caloulator, Note Pad, and Alarm
Clock

desktop: The visual interface between the
computer and the user, In computers that SUPPIT
the desktop concept, the desktop consists of g
menu bar at the top of the sereen, and a Eray anca
in which applications are opened as windows, The
deskiop interface was first developed faor the
Macintosh computer,

dh'_icc: A piece of equipment (hardware) used in
conunction with 2 computer and under the
computer’s control. Also called a peripheral
device because such equipment is often physically
separate from, but atached 10, the computer,

device driver: A program that manages the
transfer of information between 2 computer and a
peripheral device

direct page: A page (256 bytes) of bank 500 of
Apple IGS memory, any part of which can be
addressed with a short (one byte) address because
its high address byte Is always 500 and its middle
ddress byte is the value of the 650816 direct
reglster. Co-resident programs or routines can
have their own direct pages at different locations,
The direct page corresponds to the 6502
processor's zero page. The term direct page is
ofen used informally to refer to any part of the
lower portion of the direct-page/stack space.

direct-page/stack space: A portion of bank $00
of Apple IIGS memory reserved for a program's
direct page and stack. Initially, the 650816
processor's direct register contains the hase
address of the space, and its stack register
containg the highest address. In use, the stack
prows downward from the op of the direct-
page/stick space, and the lower part of the space
contains direct-page data

Glossary 315

direct register: A hardware register in the 65C816
processor that specifies the stan of the direct page.

directory file: One of the two principal categories
of ProDOS 16 files, Directory files contain
specifically formaned entries that contain the
names and disk locations of other files. Compare
standard file. Directory files are either volume
diréctories or subdirectories.

disk device: See block device,

disk operating system: An operating system
whose principal function is to manage files and
communication with one or more disk drives,
DOS and ProDOS are two families of Apple T disk
operating sysiems

dispose: To permanently deallocate a memory
block. The Memory Manager disposes of a
memary block by removing its master pointer.
Any handle o that pointer will then be invalid
Compare purge.

dormant: Said of a program rthat is not being
executed, but whose essential parts are all in the
computer’s memory. A dormant program may be
quickly restarted because it need not be reloaded
from disk.

DOS: An Apple I disk operating system, 208 is an
acronym for Disk Operating System
dynamic segment: A segment that can be

loaded and unloaded during execution as needed
Compare static segment.

e flag: A flag bit in the 63C816 that determines
whether the processor is in native mode or
emulation mode.

B-hit Apple TI: See standard Apple 1L

emulation mode: The 8-bil configuration of the
650816 processor, in which it functions like a 6502
processor in all respects excepl clock speed.

A Glossary

EOF (end-of-fle) The logical size of a ProDOS 16
file; it is the number of bytes that may be read
from or written to the file.

error (or error conditdon): The state of a
computer after it has detected a fault in one or
more commards sent 1o i

error code: A number or other symbaol
representing a type of emmor.

event: A notification 1o an application of some
occurrence (such as an interrupt generated by

a keypress) that the application may want 1o
respond 1o

event-driven: A kind of program that responds 1o
user inputs in real time by repeatedly esting for
events posted by interrupt routines. An event-
driven program does nothing untl it detects an
event such as a keypress.

external device: See device.

fatal error: An error serious enough that the
computer must halt execution,

flle: A named, ordesed collection of informaticn
stored on a disk.

file control block (FCBY A data structure set up
in memory by ProDOS 16 1o keep track of all open
files.

file entry or file directory entry: The part of 2
ProDdOS 16 directory or subdirectory that
describes and points 1o another file. The file so
dezcribed is considered 1o be *in® or "under® that
directory.

file level: See system file level

filename: The string of characters that identifies a
particular file within its directory. ProDOS 16
filenames may be up o 15 characters long
Compare pathname,

file system ID: A number describing the general
category of operating system o which a file or
volume belongs. The file system 1D is an input o
the ProD}OS 16 FORMAT call, and a result from
the VOLUME call

file type: An anribute in a ProDOS 16 file's
directory entry that characterizes the contents of
the fle and indicates how the file may be used. On
disk, file types are stored as numbers; in a

directory lsting, they are ofien displayed as three-

character mnemonic codes.

filing calls: Operating system calls that
manipulate files, In Prol¥0S 146, filing calls are
subdivided into file housekeeping calls and file

accers calls.

finder: A program that performs file and disk
utilities (formartting, copying, renaming, and so
an) and also starts applications at the request of
the user

flrmware: Programs stored permanently in the
computer's read-only memory (ROM). They can
be executed at any tme but cannot be modified or
crasod.

fixed: Not movable in memory once allocated.
Also called wunmopable, Program segments that
must nod be moved are placed in fixed memory
blecks. Opposite of movable.

flush: To update an open file Cwrite any updated
information 1o disk) without closing it

global page: Under ProDOS B 25 bytes of data at
4 fixed l5eatioh (A memary, conlaining usehil
system information {such as a list of active
devices) available to any application

global page bit map: A portion of the ProlX05 8
global page that keeps track of memony use in the
computer, Applications under ProDOS 8 are
responsible for marking and clearing pars of the
bit map that correspond 10 memory they have
allocated or freed,

guest file system: A file system, other
than ProlXO5 16, whose files can be read by
ProDOS 16,

handle: Se¢ memory handle.

hexadecimal: The base-16 system of numbers,
using the ten digits 0 through 9 and the six lefters A
through F. Hexadecimal numbers can be
converted easily and directly to binary form,
because each hexadecimal digit corresponds to a
sequence of four bits, In Apple manuals
hexadecimal numbers are usually preceded by a
dollar sign ($).

hierarchical file system: A method of
organization in which disk files are grouped
together within directories and subdirectories.
In a hierarchical fle system, a file is specified by
its pathname, rather than by a single filename.

high-order: The most significant part of a
numerical quantity. In normal representation, the
high-order bit of a binary value is in the leftmost
position; likewise, the high-order byte of a binary
word or long word quantity consists of the
lefimost eight bits,

Human Interface Guidelines: A set of software
development guidelines developed by Apple
Computer o support the desktop concept and to
promote uniform user interfaces in Apple 1T and
Macintosh applications.

image: A representation of the contents of
memory. A code image consists of machine-
language instructions or data that may be loaded
unchanged into memory,

index block: A 512-byte pant of a Prold05s 16
standard file that consists entirely of pointers to
other parts (data blocks) of the file.

initial load file: The first file of a program w be
loaded into memory. II contains the program's
main segment and the load file tables (Jump Table
segment and Pathname segment) needed (o load
dynamic segments and run-time libraries,

Glossary 3z

inidalization segment: A segment in an inidal
load file that is loaded and executed
independently of the rest of the program. It is
commonly executed first, to perform any
initialization that the program may require.

input/output: The ransfer of information
between a computer’s memory and peripheral
devices.

Interrupt: A lemporary suspension in the
execution of a program that allows the computer to
perform some other task, typically in response 1o 2
signal from a device or source external (o the
computer,

interrupt handler; A program, associated with a
partlcular external device, that executes whenever
that device sends an interrupt signal o the
computer. The interrupt handler performs its lasks
during the interrupt, then retums control to the
compuier 50 it may resume program execution.
interrupt vector table: A mble maintained in
memory by PraD0S 16 that contains the addresses
of all currently active (allocated) internapt
handlers.

INTERSEG record: A part of a relocation
dictionary, It contains relocation information for
external (intersegment) references.

L0z See input/output.

JML: Unconditional Long Jump; a 65CA16
assembly-language op code, It takes a 3-boie
address operand. A JML can reach any address in
the Apple [1GS memory space.

JMP: Unconditional Jump; a 6502 and 65C816
assembly-language op code. It takes a 2-byte
address operand. A JMP can reach addresses only
within a single 64K bank of the Apple 1G5 memory
space.

kAT] Glossary

JSL: Long Jump to Subroutine; a 65C816
assembly-language op code. 1t takes a 3-byle
address operand. A JSL can access any address in
the Apple [IGS memory space.

JSR: Jump to Subroutine; a 6502 and 650816
assembly-language op code. Tt takes a 2-byte
address operand. A JSR can access addresses only
within a single 64K bank of the Apple TGS memory
space.

Jump Table: A table constructed in memory by
the System Loader from all Jump Table segments
encountered during a load. The Jump Table
contains all references to dynamic segments that
may be called during execution of the program

Jump Table directory: A masler list in memory,
containing pointers to all segments that maks up
the Jump Table.

Jump Table segment: A segment in a load fie
that contains all references (o dynamic segments
that may be called during execution of that load
file. The Jump Table segment is created by the
linker, In memory, the loader combines all Jump
Table segments it encounters into the Jump
Table.

E: Kilobyie. 1024 (217 byies.
kernel: The central part of an operating sysiem.

Pro[¥)5 16 is the kernel of the Apple 1IGS
operating system.

key block: The first block in any ProDROs 16 file,
kind: See segment kind.

language card: Memory with addresses between
$D000 and $FFFF on any Apple O-family
computer. It includes two RAM banks in the
$D:cxx space, called bank-switched memaory.
The language card was originally a peripheral
card for the 48K Apple 1T or Apple 1T Plus that
expanded ils memory capacity to 64K and
provided space for an additional dialect of BASIC,

level: See system file level

library file: An object file containing program
segments, each of which can be used in any
number of programs. The linker can search
through the library file for segments that have
been referenced in the program source file,

Hnker: A program that combines files generated
by compilers and assemblers, resolves all
symbolic references, and generates a fle that can
be loaded into memory and executed

load file: The output of the linker. Load fGbes
contain memory images that the system loader
can load into memory, ogether with relocation
dictionaries that the loader uses to relocale
references

load segment: A segment in a load file.

lock: To prevent a2 memory block from being
moved or purged. A block may be locked or
unlocked by the Memory Manager, or by an
application through a call to the System Loader

long word: A double-length word. For the Apple
oS, a long word is 32 bits (4 bytes) long.

low-order: The least significant pant of a
numerical quantity. In normal representation, the
low-grder bit of a binary number is in the
rightmost positon; likewise, the low-order byte of
a binary word or long word quantity consists of
the rightmost eight bits

m flag: A flag in the G5CA16 processor that
determines whether the accumulator is 8 bits wide
ar 16 hits wide

macroe: A single predefined assembly-language
pseudo-instruction that an assembler replaces with
several actual instructions. Macros are almaost like
higher-level instroctions that can be used inside
assembly-language programs, making them easier
o wrile.

MainID: One of three Gelds in the User ID, a
number that identifies each application.

main segment: The first static segment {other
than initializaton segments) in the initial load file
of a program. Tt is loaded at startup and never
removed from memory until the program
lerminales.

Mark: The current position in an open file. 1t is the
point in the file at which the next read or write
operation will coour.

Mark List: A table maintained in memory by the
System Leader 1o help it perform relocation
rapidly.

master index block: The key block in a ProDO5
16 tree file, the largest organization of a
standard fle that ProDOS 16 can support. The
master index block consists solely of pointers 1o
one or more index blocks.

master polnter: A pointer to a memory block, it
is kept by the Memory Manager, Each allocated
memory block has @ master pointer, but the block
is normally accessed through its memaory handle
{which points to the master pointer), rather than
through the master pointer itself

Mb: Megabyte, 1,048,576 (220) bytes.
memory block: See block (2.

memory handle: The identifying number of a
particular block of memory. It & a pointer to the
master pointer to the memary block. A handle
rather than a simple pointer is needed o reference
a movable memory block; that way the handle will
always be the same though the value of the pointer
may change as the block is moved around,

Memory Manager: A program in the Apple 11GS
Toolbox that manages memory use. The Memory
Manager keeps track of how much memory s
available, and allocates memory blocks 1o hold

program segments o datd,

Glossary 39

Memory Segment Table: A linked list in
memory, credted by the loader, that allows the
Ioader to keep track of the segments thar have been
loaded into memory.

MLE Machine Language Imerface—ithe part of
ProDOS B that processes operaling system calls.

modification date: An atsibute of a ProDOS 16
file; it specifies the date on which the content of
the file was last changed.

modification time: An attribute of a ProDOS 16
files; it specifies the time at which the content of the
file was last changed

monitor: See video monltor,

Monitor program: A program built into the
firmware of Apple I computers, used for directly
inspecting or changing the contents of main
memory and for operating the computer at the
machine-language level

move: To change the location of 2 memory block
The Memory Manager may move blocks 1o
consolidate memaory space.

movable: A memory block auribute, indicating
that the Memory Manager is free (o move the
block. Opposite of fixed. Only position-
independent program segments may be in
movable memory blocks. A block is made
movable or fixed through Memory Manager calls

native mode: The 16-bit operating configuration
of the 65C816 processor,

newline mode: A file-reading mode in which
each character read from the file is compared toa
specified chamcter (called the newline
character); if there is a match, the read is
terminated. Newline mode is typically used to read
individual lines of text, with the newline character
deflined as a carniage returmn.

320 Glossary

nibble: A unit of information consisting of one-
half of a byte, or 4 bits. A nibble can wke on any
value between 0 and 15 (50 and §F hexadecimal),

NIL: Pointing to a value of 0. A memaory handle is
NIL If the address it points to is filled with zeros.
Handles 1o purged memory blocks are NIL.

null: Zaro

null prefix: A prefix of zero length Gand therefore
nonexistent,

object file: The cutput from an assembler or
compiler, and the input 1o a linker. It contains
machine-language instructions. Also called offec
program or ofyfect code. Compare source file.

object module format: The gencral format used
in Apple 1IGS object files, library files, and load
files.

OMF file: Any file in object module format
op code: See operation code.

operating system call: A request to execute a
named operating system lunction; also, the name
of the function itself. OFEN, GET_FILE INFO,
and QUIT are ProDOS 16 operating system calls

open: To allow access (o a file, A file may not be
read from or writen o until it i open.

operand: The part of an assembly language
instruction that follows the operatdon code. The
operand is used as a value or an address, or to
caloulate a value or an address.

operating environment: The overall hardware
and software setting within which a program runs,
Also called execution environment.

operating system: A program that organizes the
actions of the various parts of the computer and its
peripheral devices. See also disk operating
system

operation code: The part of 2 machine-language
instruction that specifies the operation to be
performed. Often called ap code.

page: (1) A portion of memary 256 bytes long and
beginning at an address that is an even multiple of
256, Memory blocks whose starting addresses are
an even muliple of 256 are said to be page-
aligned. (2} An area of main memory containing
text or graphical information being displayed on
the screen.

parameter: A value passed to or from a functicn
ar other routine.

parameter block: A set of contiguous memory
locations, set up by a calling program 10 pass
parameters to and receive results from an
operating system function that it calls. Every call
to ProD05 16 must include a pointer to a properly
constructed parameter block.

partial pathname: & portion of 2 pathname
including the fillename of the desired file but
excluding the volume directory name {and
possibly one or more of the subdireciories in the
pathname), It is the part of a pathname following a
prefix—a prefix and a panial pathrame together
constinuie a full pathname. A parial pathname
does not begin with a slash because it has no
volume directory name,

patch: To replace one or more bytes in memory
or in a file with other values, The address 1o which
the program must jump 1o execute a subroutine ks
petiched into memory at load dme when a file is
relocated.

pathname: The complete name by which a file is
specified. It is a sequence of flenames separated
by slashes, staning with the filename of the volume
directory and following the path through any
subdirectories that a program must follow 1o locate
the file. A complete pathname always begins with a
slash /), because volume directory names always
begin with a slash.

Pathname segment: segment in a lnad file that
contains the cross-references between load files
referenced by number (in the Jump Table
segment) and their pathnames (listed in the file
directory). The Pathname segment is created by
the linker.

Pathmame Table: A uble construcied in memory
from all individual Pathname segments
encountered during loads. It contains the cross-
references between load files referenced by
number (in the Jump Table} and their pathnames
(listed in the file directory).

pointer: An item of information consisting of the
memory address of some other item. For
example, the 65C816 stack register contains a
pointer o the top of the stack,

position-independent: Code that is written
specifically so that its execution is unaffected by its
position in memory, It can be moved without
needing 10 be relocated,

prefix: A portion of a pathname starting with a
volume name and ending with a subdirectory
mame, It is the pan of a pathname before the
partial pathname—a prefix and 4 parial
pathname together constitute a full pathname. A
prefix abways stars with a slash {7 because a
volume directory name always starts with a slash,

prefix number: A code used 1o represent a
particular prefix. Under ProDd5 16, there ane
nine prefix numbers, each consisting of 2 number
(or asterisk) followed by a stash- 0/, 1/...8/,
and */,

ProDO&: A family of disk operating sysiems
developed for the Apple [1 family of computers,
ProD05 stands for Professional Disk Operating
System, and includes both ProDO5 B and
ProlO5 16

Glossary 321

ProDOS B: A disk operating system developed
for standard Apple [T computers, It ns on
G502-series microprocessors. 1t alsa runs on the
Apple 1G5 when the 65C816 processor is in 6502
emulation mode.

ProDOS 16: A disk operating system
developed for 65CA16 native mode operation on
the Apple 11GS, It is functionally similar 1o
ProDOS B but more powerful,

pull: To remove the top entry from a stack,
moving the stack pointer 1o the entry below iL
Synonymous with pof. Compare push,

purge: To wemporarily deallocate a memory
block, The Memory Manager purges a hlock by
seiting its master pointer to NIL (00, All handles 1o
the pointer are stll valid, so the block can be
reconstructed guickly. Compare dispose.

purge level: An attribute of 3 memory block that
sels its priodty for purging, A purge level of 0
means that the block is unpurgeable,

purgeable: A memory block atribute, indicating
that the Memory Manager may purge the block if it
needs additional memory space. Purgeable blocks
have different purge levels, or priorities for
purging; these levels are set by Memory Manager
calls.

push: To add an item to the top of 1 stack,
moving the stack pointer to the next entry above
the top. Compare push.

quene: A list in which entries are added at one end
and removed at the other, causing entries 1o be
removed in frst-in, first-oul (FIFO) order.
Compare stack.

quit return stack: A stack maintained in memory
by ProDOS 16, It contains a list of programs that
have terminated but are scheduled 1o setum when
the presently executing program is finished

322 Glossary

random-access device: See block device.

record: A component of an load segment. All
OMF file segments are composed of records,
some of which are program code and some of
which contain cross-reference or relocation
information.

reentrant: Said of 2 routine that is able to acoept
a call while one or more previous calls to it are
pending, without invalidating the previous calls,
Under cenain conditions, the Scheduler
manages execulion of programs that are not
reentrant

reference: (n) The name of a segment or entry
point to a segment; same 15 Symbolic reference.
(¥ To refer 1o a symbolic reference or 1o use one
in an expression or a5 an address,

Reload segment: a load-file segment that is
always loaded from the file at program startup,
regardless of whether the rest of the program is
loaded [rom file or restarted from memory.
Reload segments contain Indtialization
information, without which cenain types of
programs would not be restarable

RELOC record: A pant of a relocation dictionary
that contains relocation informaton for local
{within-segment) references,

relocate: To modify a file or segment at load time
50 that it will execute correctly at its current
memory location, Relocation consists of
patching the proper values onto address
operands, The loader relocates load segments
when it loads them into memory. See also
relocatable.

relocatable: Characteristic of a load segment or
other program code that includes no absolute
addresses, and so can be relocated at load time. A
relocatable segment can be static, dynamic, or
pasition independent. It consists of a code image
foliowed by a relocation dictionary. Compare
absolute.

e ———

relocation dictionary: A portion of a load
segment that containg relocation information
necessary o modify the memory image portion of
the segment. See relocate.

restart: To reactivale a dormant program in the
computer's meémory. The System Loader can
restart dormant programs if all their static
segments are still in memory. If any critical part of
a dormant program has been purged by the
Memory Manager, the program must be reloaded
from disk instead of restarted.

restartable: Said of a program that reinitializes its
variables and makes no assumptions about
machine state each time it gains contrel. Only
restartable programs can be executed from a
dormant state in memory,

result: An item of information reurned to a
calling program from a function. Compare value,

RTL: RBeturmn from subroutine Long; a 65CB16
assembly-language instruction. It is used in
conjunction with a JSL instruction

RTS: Return from Subroutine; a 6502 and 65CB16
assembly-language instruction, It is used in
conjunction with 2 J5R instmction

run-tlme Hbrary flle: A load fle containing
program segments—each of which can be used in
any number of programs—that the System Loader
loads dynamically when they are needed.

sapling file: An crganizational form of a PralOs
16 standard fle. A sapling file consists of a single
index block and up 1o 256 data hlocks.

Scheduler: A firmware program that manages
requests 1o execuls interrupted software that is
not reentrant. If, for example, an interrupt
handler needs to make ProDOS 16 calls, it must do
so through the Scheduler because ProDOS 16 is
not reentrant, Applications need not use the
Scheduler because Prol¥OS 16 is not in an
interrupled state when it processes applications’
system calls,

sector: A division of a track on a disk. When a
disk is formatted, its surface is divided into tracks
and sectors.

seedling file: An organizational form of a
ProDO5 16 standard fle. A seedling file consists
of a single data block.

segment: A component of an OMF file,
consisting of a header and a body. In load files,
each segment incorporales ane of mofe
subroutines,

segment kind: A numerical designation used o
classify a segment in object module formar It is
the valoe of the KIND feld in the segment’s
header

sequential-access device: $ee character
device.

shadowing: The process whereby any changes
made to one part of the Apple [1GS memaory are
automatically and simultaneously copied into
another part. When shadowing is on, information
witten 1o bank $00 or $01 is automatically copled
into equivalent locations in bank $E0 or $E1.
Likewise, any changes to bank $ED or 3E1 are
immediately reflected in bank $00 or $01.

shell application: A type of program that is
launched from a controlling program and
runs under its control. Shell applications are
ProDOs 16 file type SB5.

soft switch: A location in memory that produces
some specific effect whenever its contents are read
or wrillerl,

source file: An ASCH file consisting of
instructions writlen in a particular language, such
as Paseal or assembly language. An assembler or
compiler convens source files into object fles.

Glossary 323

S —

sparse file: A variation of the organizational
forms of ProDOS 16 standard files. A sparse file
may be cither a sapling file or a tree fle; whal
makes il sparse is the fact that its logical size
{defined by its EOF) is greater than its actual size
on disk, This occurs when one or more data
blocks contain nothing but zeros, Those data
biocks are consldered to be pan of the file, but
they are not actually allocated on disk until
nonzero data is weitten 1o them,

special memory: On an Apple 11GS, all of banks
500 and $01, and all display memory in banks $E0
and 5EL. 5o called because it is the memory
directly accessed by standard Apple I programs
running on the Apple IG5 y

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top of
the stack), causing them to be removed in last-in,
first-out (LIFC) order, The term the stack usually
refers 1o the particular stack pointed to by the
65CE16's stack register, Compare queue,

stack register: A hardware register in the 65C816
processor that contains the address of the wop of
the processar's stack.

standard Apple I: Any computer in the Apple 11
family except the Apple 1G5, That includes the
Apple 11, the Apple T Plus, the Apple e, and the
Apple Nc,

standard file: One of the two principal categories
of ProDOS 16 files. Standard files contain
whatever data they were created to hold; they have
no predefined internal format Compare
directory file.

start up: To get the system running. It involves
loading system software from disk, and then

loading and running an application. Also called
boot,

static segment: A segment that is loaded only at
program boot time, and is not unloaded during
execution. Compare dynamic segment.

324 Glossary

storage type: An attribute of a ProDOS 16 file that
describes the file’s organizational form (such as
directory file, seedling file, or sapling fle).

subdirectory: A ProD0O5 16 directory file that is
not the volume directory,

switcher: A controlling program that rapidly
transfers execution among several applications,

system: A coordinated collection of inerrelated
and inleracting parts organized to perform scme
function or achieve some purpose—For example,
i compuler sysiem COmPprising a processor,
keyboard, monitor, disk drive, and software

system call: See operating system call.

system disk: A disk that contains the operating
system and other system software neaded o ren
applications.

System Fallure Managern A firmware program
that processes [atal errors by displaying a message
on the screen and halting execution.

system file: See system progrim.

system file level: A number between $00 and 3FF
associated with each open ProDOS 16 fle. Every
tme a file is opened, the current value of the
system file level is assigned to it If the system file
level is changed (by 2 SET_ LEVEL call), all
subsequently opened files will have the new level
assigned to them. By manipulating the system file
level, a controlling program can easily dose or
Nush fles opened by its subprograms.

System Loader: The program that manages the
Ioading and relocation of load segments
(programs} into the Apple 1G5 memory. The
System Loader works dosely with ProlX08 16 and
the Memory Manager.

system program: (1) A software component of a
computer system that supports application
programs by managing system resources such as
memory and 1O devices, Also called system
soffware. (23 Under ProDOS 8, a stand-alone and
potentially self-booting application. A ProDOS 8
system program is of file ype 3FF; if it is seli-
booting, its filename has the extension . SYSTEM

system software: The components of a
computer system that suppon application
programs by managing system resources such as
memory and L0 devices.

took: See tool set.

tool set: A group of related routines (Gsually in
firmware), available 1o applications and system
software, that perform necessary functions or
provide programming convenience. The Memory
Manager, the Sysiem Loader, and QuickDraw 11 are
toal sets.

toolbox: A collection of built-in routines on the
Apple 11GS that programs can call to perform
many commonly-needed functions. Functlons
within the toolbox are grouped into tool sets,

track: One of a series of concentric drcdes on a
disk. When a disk is formatied, 1ts surface is
divided into tracks and sectors.

tree file: An crganizational form of 2 ProDOS 16
standard RAle. A tree file consists of a single
master index block, up 1o 127 index hlocks,
and up 1o 32,512 data blocks,

TypelD: One of theee fields in the User ID, a
number that identifies each application.

unload: To remove a load segment from memory.
To unload a segment, the System Loader does not
actually *unload” anything; it calls the Memory
Manager 1o either purge or dispose of the
memory block in which the code segment resides,
The loader then modifies the Memory Segment
Table 1o reflect the fact that the segment is no
longer in memory.

undmovible: §6s fxed.

unpurgeable: Having a purge level of zero. the
Memory Manager is not permitted to purge
memaory blocks whose purge level is zero.

User ID: An identification number that specifies
the owner of every memory block allocated by the
Memory Manager. User TD¥s are assigned by the
User 1D Manager,

User ID Manager: A tool set that is responsible
for assigning User [I's to every block of memory
allocated by the Memory Manager,

vilue: An item of information passed from a
calling routine to a function. Compare result.

video monitor: A display device that receives
video signals by direct connection only.

version: A number indicating the release edition
of 4 particular piece of software, Version numbers
for most system software (such as PraDOS 16 and
the System Loader) are available through function
calls.

volume: An object that stores data; the source or
destinatlon of information. A volume has 4 name
and a volume directory with the same name;
information on a volume is stored in files.
Volumes typically reside in devices; a device such
as a floppy disk drive may contain one of any
mumber of volumes (disks),

volume bit map: A portion of every PraDO5 16-
formatted disk that keeps track of free disk space,

volume control block (VCBk A data structure set
up in memory by ProDOS 16 to keep tack of all
volumes/devices conneciled (o the computer.

volume directory: A ProD05 16 directory file
that is the principal directory of a velume, It has
the same name as the volume, The pathname of
every file on the volume stars with the volume
directory name.

volume name: The name by which a particular
volume is identified. It is the same as the filename
of the volume directory file.

Glossary 325

word: A group of bits that is treated as a wnit, For
the Apple 11GS, a word is 15 bits (2 bytes) long.

zero page: The frst page (256 bytes) of memory
in a standard Apple I computer {or in the

Apple IG5 computer when running a standard
Apple 11 program). Because the high-order byte
of any address in this part of memory is zem,
only a single byte is needed o specify a sero-page
address. Compare direct page.

A28 Glossary

A

absalule code 183

absolute segment. See segment(s)

access atiribute 14, 21, 258, 260,
264, 177

backup bit 134, 277
write-enahle bit 137

accessing. See deviee(s); disks

accumulator 77-78, 104, 209, 213

addresses, See memory; direct
page and stack

alignmemt factor 99, Ses alro
segmeni{s)

ALIGN segment header Geld 186,
299, See alio headers;
segment{s)

ALLOC_INTERRUPT call 48, 80,
o, 284

description of 175-176

Apple computers xx, 4. S alio
spwrcific comnaier

Apple Desktop Interface 90-91

AppleTalk Personal Metwork 65

.i.pp'lz N Sew akao .ﬁ.pplr 1L,
standard

definition of xx
opcratlng systems 281-284
Ero page 75, B8

Apple 11, standard 182

definition af xx
software for 34

Apple Te 34

Apple 1le 34

Apple Iags. Seée alve ProlDd05 8,
ProliOs 16, manuals or specific
Ty

Index

default upemlng syslem 13
description of 4
logical diagram af 6
memory 9, 3240 See alio
programming levels in 57
spstem disks 52-55. See alio
system disks
Apple llcs Programmer's Workshop
xx, xvili, 70, 89-00. Sor albo
programming
File Type utllity &%
Linker TO, B9
Shell B2, 89 208
Apple llas Toolbox xix, 6, @
Apple 11 operating systems
2H1-18H. See alio operating
systemis) or specific operating
System
application{s) 58, 74-75
Apple 11G$ Programmer's
Workshop and 89
as controlling programs 184,
208, Sew abo controlling
programs
definiion of 74
dormant 185, 235, 233, 246,
S alyo System Loades
evenl-driven and su:g'mznh:d. xix
loading 5. 71, B2-83, B9, See
alio System Loader
memory and 33, 3040 Ses
alvo memory
prefixes, See pathname prefixes
programming requirements for
T4-75

quitting 59-65. See alio
PQOIT; QDIT call
reloading 71, 168
restarting 62, 71, 77, 168,
209-210, 233, 240, 245
Sep also Restant call; System
Loader
revising ProDOS 8 for ProlO8 16
H-HY
shell 208
shutting down 205-210
starting &2, &4, 58-65, 167, 122
machine configuration at launch
B4, 81
Application Shudown call (System
Loadery T7
application system disks. See
system disks
APW. Sew Apple [lcs
Programmer's Workshop
A register, See acourmulalor
ASCI character set 292-293
Assembler (APW) B9
assemblers, macro libraries and xv
assembling &9
assembly languape xv, xvill
labels, typographic convention [or
XKi
Auxll. See User [
auxiliary wype 279-2B0

backup bit 134, 277
banks, memory, See memory
banks

BANESIZE segment header field
186, 299, See alio headers;
segment(s)

bank-switched memory. See
memory

BASIC imterpreter (BASIC.
SYSTEM) 25, 34

binary file (PraDOS B 12, 224,
283

bit map, volume. See volume bit
m

block devices 9, 14, 4243, B4
See alto device(s)

blocks. Seecall blocks; Me blocks;
file control Block; memony
blocks; pammeter biocks;
volume control blocks

beot ingialization, See system
Stanep

boot prefix 65, 67, 167

bootstrap errors. See efroes

buifers
display 33
Yo 14, 21-22, -25, 137.
Sew alio inpur/output

busy errar. See errors

busy flag 36, 96

Busy word (Scheduler) 71, 56

byte(s)

locating in MHes I74-275
size of 33

C

call blacks &%, 100101, 213

calling program (ealler) 100, 213

calls, Se¢ Exerciser; Memory
Manager;, parameter(s); Prold0s
B; registers; system calls; ool
calls or specific call

capitalization 18

cards. See 80column card;
language card

cataloging disks xv, 26, 278-279

C Compiler (AP 89

CHANGE PATH eall 11-12, 21,
257, 260, 262, 286

description of 117-118

character devices 9, 43, Soe alo

device(s)

3z8 Inclex

character /O 6 Ser albo
input/output
cINTERSEG recorda 187, 296
Cleanup call (System Loaderd 227,
231, 245
description of 249-250
CLEAR_BACEUP_BIT call 12, 260,

204, 2T
description of 134
cLoSE call 21, 24-25, 151-152,

2, 27T
deseription of 145
closing files. Sew file(s)
cofTumUlnication ports o, 43
communications programs §3
compaction 38
compatibility, softaare 4, 10-11,
Seq alio ProDO5 B and PraDOS
16
compiler. See C Compiler
ﬁumpillng BO
configuration
hardware, ProDOS B and Prold05
16 87
setting initlal &4, Bl Ses alio
programming
controd blocks, See file contral
blacks: valume contral blocks
cantrolling progams 71, B2,184,
204, 207-210, 213, 222,
224-225, 240, 244, 249, Sen
aln application(sl; System
Losader
destgning 207-209
Control Panel sellings 46
Control-Reser 25
cumnerl.ing Programs
8 and ProDOS 16
copying
liles B4-85
sparsa files 30, B&
CPUs, See 6502; 650816
CREATE call 21, BS, 103, Z77, 267
description of 111-114
creating files. See file(s)
creatlon date and ime 14, 21,
B4-86, 119, 258, 260, 263,
76 See alio modification
date and time; Programming
creatlon field 276

See ProDOs

cHELOC records 187, 297

D

dars bank regisier 104
data blocks. Seefile blocks
dates. See creation date and tme;
modification date and Lime
DB regimer. Ser dats bank regiser
DEALLOC _INTERRUPT cmll 48, 95,
177
d.i"_ﬂ::rl'rﬂ.lﬂl'l of 175
debuggers 61, B9
deleting fMes. See lilefs)
dereferencing. See memory
handies
desk acocssorics 52-%4, 170
liles 53=54
User ID and T1
DESTROY call 211, 115-116
development environment, See
Apple llGs Programmer's
Workshop
device(s} B, 42-46, See alo
intermupe(s); system calls o
accessing 43-45, Bl See alo
programming
block B, 14, 42-43, B4
block read and Block write 44-4%
charscier 9, 43
definition of 42
farmatting disks. See disks
Inpast 4243
inputfoutpur 42
interrupt-handling and 4742
Sea aleo intermopt handlors
last-accessed 44
mamed 7,10, 45-46, 44, 128
numbers 45, 155
anline, murmber suppored 15
ouput 42-43
sequential-access 43
walume comndral blocks and 47
Lo alio volumes)
device calls, See sysiem calls
device drivers 43, 254
l_ll.-.-.-'ine-irvdl.-.p-cnd.cnrr a1

device search at system stanup
4548, See alio system
startup
dictionaries. See relocation
dictienaries
directories. Sew directory files; file
directory entry; subdireciories;
volume(s)
directory files 26-27, 255-266
format and organlzation of
25-27, 155-266
file entries 261-264
poiniter fields 256
subdirectory headers 259261
volume directory headers 256
reading 265-266
diredory headers, volume
256-259. See alio volume(s)
direct page, definition of 75. See
alia zero page
direct page and stack &4, 75-79,
200-201. See alo stack(s)
addresses 75, 77, 200-201
allocation at run lime T7-T8
automalic allocation of T5-T5
default allocation T8
definition during program
development 76
direct-page/stack segments 76,
T8, 186, T34, See abo
segment(s)
dlreet regisier 70, 77=79, 104
hardware stack 75
imroduction w 75-T%
manual allocation of 78-79
PraDOS 16 default 78
direct register 70, 77-79, 194
See alio registers
disk drives 43, 45, %6, See alo
device(s)
recommended number of xvii
type and location of 7
disk pon xix, 45
disks 7-8, 52-55. Se¢ alio
system disks
accessing 5
cataloging xv, 26, ZTR-279
DS 3.3, reading 284
formatting 14, 45. See alo
FORMAT call

imlegrity, damaging 25
pamitloned 111
EAM 43
disk-switched errors. Sew errors
Disk 11 43, 46
dispatcher. Sew Interrupt dispatcher
display, high-resolution. See high-
resolution display
display bulfers 33, Soe alio
buffers
DispeseiHandle call (Memory
Manager) 79
disposing. See memory blocks
danmant state. See applicationds),
Systedn Loacer
DO, See alio operating systemds}
file system 284
filing calls 235
history of Z81-282
/o 285
interrupt suppon 238
memory management 287
OS5 3.3 disks, reading 284
D register. Sew direct register
drivers, device. See device drivers
DS records 187, 267
dynamic segments. See
segment(s)

Ediiar (APW) 89
e-flag 64
B-bit mode, See emulation mode
Bl-column card 54
emulation mode 4, 9, 47, 100,
See alte programming
end of file. See EOF
END recard 298
enhanced guiT call (ProDdOS &)
G061
emiry, file. Seefile directory entry
enlry points axd, 35, 100, 213,
300
environment calls. Ser system calls
EQF (end of filed 21-24, 24, 30,
143, 147-150, 263, 269,
A72-IT3. See alio filels)
maximum value 269
sparse files 273

emors 302-311
hootstrap (ProD0S 16} 309
disk-switched 304
fatal 307-308; 311
nonfatal 302-307; 310
“PraD05 is busy” 83, 96
eveni-driven programming Xix
events, handling 7
Exerciser, ProDOs 16 xviil, 54,
106, 2B9-254
calls and 106
commands 201-294, See alio
spacific command
ﬂll.ing 2E5
system calls and 290
Exit o Manitor command
(Exerciser) 293-29%4
expansion card ROM. See ROM
EXpansion memory. See momoey

expansion slots 45-46
extended Bl-column card. See BO-

column card

external devices. See device(s)

F

fatal erroes, See errors

FCH. See file controd block
feedback 90

felds. See alio specific ffeld name

directory header 275-280

file entry 275=380

pointer {directory files) 256

segment header 186, F75-280,
=9

size in parameter blocks 105

file(s} 7-8, 22, 18-30, 253-280

access and manipulation of 14

altering contents of BS

binary (PraD0S 8) 12, 224, 283

blocks. Seefile blocks; file
control blocks

characieristics of 22

closing 24-35, 85, 167

compalibility 283-284

contred block. See file contral
blexcks

copying B4-8%

creating 21, BS

creation date and time 14, 21,
B4-86, 119, 258, 260, 263

definition of 7

deleting 21, 85

desk accessory 5354

directory. See directory files

directory entry, See file directory
entry

end of (EOF) 21-24, 26, 30,
143, 147-150, 263, 269,
If2=173
Introduction o 22-23

NMushing 24-25, 146

format of 21, 26-30, 253

hierarchical relationships among
26

O buffer 21-22, 24, 137, 145
Sew alvo inputfoutput

migtlalization 53-54

introdoction o 18-30

levels. See sysiem file level

load. Seeload Nles

locating bytes in Z74-275

Mark 21-24, 20, 30, 143,
201-202, 273-274
Introduction to X2-23

maodification date and time
84-86, 24

narnes. See (llenames

object 29

open, maximum number of 22,
137

opening 21-22, 133-138

organizaton 26-30, 253280
Sew also lields, headers

pathnames. Sew pathname{s)

FRODDS 53, 55, 56-58

reading 21-22, 24, 272
directory liles I56-266

reflerence numbers 21, 24-25,
137, 26%
al e 145, 152

relsticnship amang Chierarchical)
-]

renaming 21, 85

run-time library 193, 199, 200,
230

sspling 29, 262, 288, 270-271

seedling 29, 262, 268, IT0

size of 14, 24, 269

330 Incen

source 75, 89
sparse xv, 14, 30, 85, 253,
273-774
standard 25-27, 254, 267, ITD
formas and organization of 267
locating & byte in a Mle
174275
reading 141-142, 2372
S5TART 58, 61-62
structure of 20, 26
subdirectory. See subdireciories
systemn 10, 12, 14, 18
TOOL.SETOF 53, 56
transferring dats 1o and [rom 21
tree 29, 262, 2T1-272
growing 267-269
types. S file types
using 18-25
volume directory, See volume{s)
writing 24, 143-144
lile access ealls 136152, Ser alio
specific call
file blocks 26-29
hlock read and block write 44
data 28, 267, Z70-271, 274
index 28, 267, 270, 271
key 254-255, 270, IT2
master index 2B, 260, 271
organization of directory liles 28
stze of 33
sparse [iles and 30
fle control block 22, 24, 145
file direciary eotry 7, 25-26, B4,
201-264, 206
file entry field, See felds
file hmzkﬂplng calls. 110=134.
Sew alio specific call
File Mark, See Mark
filenames
extensions 58, T4
number of characters in 14
requirements of 18
wpographic convention for o
file sysiemis), See alio spacific
operaling iyilem
guest 102
10 45
version number 263, 305
lile type attribute field 263, 278-
]

file types 263, 278-279
$05 12, 224
§B3 58, 64, T4, B), B9
$B3-5HE 12, 83, I, 329
$B4 230
§85 64, 209
$B5 54, 56
87 54, 56
$BE 54, 56
§HO 54, 56
§FF 12, 56, 38, 83, 134
listing of 278-279
File Type utily (APW) B9
fling calls
Apple Il operating systems
286-287
PeoDOS 16, See sypstem calls or
apectfic caill
finder 207-208
FindHandle eall (Memory Manager)
T
firmware &, 70-72
5.25-inch disk drives 46
fag word 168, 245
Nags
busy 36, 96
-, m-, and x-fMlags &4
Jump-Table-Loaded 201, 233
quic 245
return &1, B2, 168
FLOSH call 24-25, 146
Mushing files 24-25, 146
fomts 52
FORMAT call 12, 14, 42, 44-45,
155, 290
description of 160-161
lformaning. See disks; FORMAT call;
volume(s)
function names, typographic
convention for xxl

(<]

games B3

GET_BOOT_VOL eull 12, 67, 133
description of 166

GET _DEV_NUM call 12, 43, 44-45
descripgion of 155

GET_koF call 23, 286
description of 150

GE:‘I;;LE_IHL-'-:I call 21, B5-86, hierarchical flie system 7, 283 uslng B3, See alio programming L M addresses 34, 36-37, B2, i:::ﬁ
-127 ik . - 3 Cog Soe alko addresses; pointe
GET_LAST DEV call 12, 42, 44 high-resolution display, memary interrupt contrel calls. Ses system language-card area in memary M, machine configuration. = 3

banks for 33
Hurman Interface Guidelines
P91 See alio programming

allocation of B See alio

Fﬂ‘l:lﬂ'll'ﬂlﬂll'lﬂ
banks. Ses memory banks

calls or spcific call 64
interrupe dispatcher 95 Janching, See application(s)
interrupt handlers xv, 5-6, 9, 15, LCONST records 187, 297

configuratian
Macintosh compater 90
macros XV, &

description af 156
CET_LEVEL call 12, 25, 80, 145
description of 152

o b i : et bank-switched 33-34
Get Load Segment Info call 175 E:';.-,r i hh:;ﬁm 193, 195200 M:m 10, See User 1D blocks: S memory blocks
{';;s:;; Loaderd 206, IIIJ conventions 4 5206 : manuals av-xvil, xix-xx compaction ‘38

GET_MARX call 23, 148
GET_NAME call 12, 23, 67, 148
description of 165
Get Pathiname call (System Loader)
242243
SET_PREFIX call 20, 65, 165
description of 133
Get User ID call (System Loader)
240-241
GET_VERSION call 12, 80, 258,
B0, 264, 158
description of 171
global page (Prol>OS 8) 10, 356
Apple llos equivalents 1o 80
plobal vasiables 79, 300, See alo
programming; System Loader
graphic design 21

H
halting eurrent program (Gontrol-
Reset) 25
handlers, interrupt. See interrupt
handlers
handles. See memory handles
hardware
configuration &7
Intesrupts. See interrugpi(s)
registers £
requirements for Pralios 16
xvili-xix
stack 75
header fields. See fields, headers:
segmentis)
headers
directory 356-259, See abo
volume(s)
segment 1B5, 299, Sew alo
segment(s)
subdirectory 259-261, Se¢ abo
subdirectorjes

file system. See file systemi(s)
User, Sew User D
index blocks. See file blocks
Initialization. See system startup;
reglster(s)
Inintalization files 53-54. Soe ako
“filea}
initialization segments 224, 184
Initializing. See disks; registers.
valume(s)
Initial Load call (System Loader)
d22-24, 227, M0
Inpast devices, delinition of 42
Sew abio device(s)
input/eutput
buffers 14, 21-22, 24-25, 34,
137, See also buffers; fleds)
character &
memory 33, 64, See alio
metnory
similarity among operating
systems IES
space in HAM 31
standard 64, 2oe
subwoutines xix, 70
input/output devices, definition of
42, See alio device(s)
Interface, human 90-9]
interpreter. See BASIC Inter preter
nterrupt{s}
allocating and deallocating %5
disabling &1, 100
handling. Seeinterrupt handlers
number of imMerrupting devices
handled 9
priority rankings 48
support of, similiarky among
operating syslems 288
systermn calls during 96
lable, Ses interrupt vector table
unclaimed 49, B3, 95

converting PraDOS5 8 to

ProlOS 16 88
deallocating 167
imstalling 25
introduction o $4-946
modifying 88
I!L:Ebﬂ' supponed (user-installed)

Scheduler and 71
systemn calls during 96
Internspt Request Line 49
inlermupt routines. See (nterrupt
handlers
Interrupt vector table 99, 175, 177
TNTERSES records 187, 189,
195-1%6, 297
O, See Inpuloutpot
[RQ). See Interrupt Request Line

J

Joysticks 42

Jump Table, See System Loader
data whles

Jump Table Load call (System
Loader) 195-1%94, 213

description of 247-248
Jump-Table-Loaded flag 201, 235

K

kernel 5

key block. See file blocks

keyboard 4243

key combinations, Sas Contral-
Reset

KIND segment header field 188,
193, 224, 296, Ser abio
headers; segment(s)

Index a31

subroutine TO, 80

library prefixes. See pathname
prefixes

Linker (APW) 89

linkers 76, 89,189

List Directory command {Exerciser)
291

listings, catalog, Seecutaloging
dishs

load, initial 183-1%4, 20%,
222-224, 240. See abo

Systern Loader

Loader Initialization call (System
Loader) 213

Loader Resat call (System Loader)
20

Loader Shutdown call (System
Loader) 217

Loader Starup call (System Loader)
216

Loader Saatus call (System Loader)
221

cader Version call (Sysiem Loader)
21B-21%

load [fes 183, 193, 205, 329, 208,
Sow alro filels)

load Segment By Name call
(System Loader) 206,
2342364

Load Segment By Mumber call
(System Loader) 206, 224,
35

description of 2Z8-229

load segments. See segment(s);
System Loader

loading. See application(s), System
Loader

locked blocks, See memory biocks

long word, size of 33, 102

lerwercase leters 18

33z Index

Apple Numerics Manwal xvi-xvii
Apple le Technical Refernce
Meanual 34
Apple lics Firmuare Reference
wvl-xvil, xix, 9, 43, 47, 95
Apple lles Hardware Reference
avi-xvil, 33-3
‘Apply Iles Prol2OS 16 Reference
xvi-xvil
Apple Tas Programmaer's
Workshap Awembler Reference
xvi-xwiil, oo, 90
Apple lics Programmar's
Workshop © Refererice
xvi-xvii, 2or, 90
Apple IG5 Programmer’s
Workshop Referemce xvi-xvil,
xx, 9, 70
Apple ffas Toolbox Reference
xvioxvii, xix, B-9, 3, 36, 40,
43, 49, T0-72, 7A, EI-B3, 96,
300
Human Inlesface Cuidelines
xvi-avil, H0-21
Proli05 8 Technical Reference
Manual xvi-xvili, xx, 5, 60
Programmer's Iniroduction o
the Apple lles xvi-xvil, xix,
40, 81
Technical Infroduction 1o the
Apple Igs xvli-xvii, xix, 4,
33, 100
Mark 21-24, 26, 30, 143,
201-202, 273-274, See alio
Filels)
master index blocks. See file
bilocks
masier pointers. See pointer(s)
memory 6, B, 32-40. Se¢ abo
RAM; ROM
addressable, total 9, 32

configurations 32-36
conserving space 22
entry points and fived locations
35-36
expansion 33
handies. See memory handles
140, See input/output
language—card areas 34, 641
manzgement. S memory
management; Memory Manages
map 3%, 35
movable 82 See alic memody
blocks
non-special 54
obaining (applicaticns) 3540
requesting 3940
requirements of ProlHO8 16 xvild
reserved 64
shadowing 34, &4
special 34, 37, 62, 78, 224
units, size of 33
video 33-34
memory banks 33-36
500 33-34, 47, 56, 61, 64, 68,
75, 81, B8, 100, 105, 24
$01 3334, 64, TM
$01-5E1 64
SE0 34
SEI 3436, 65, 105
memory blocks 26-20, 185, See
alio block devices; Memory
Manager
absolute 40
addresses of 38
applications and 3%
attributes of 57
disposing 38, 245
fixed (unmovabled 37, 40,
78-79, 82, 1B5-186
handles to. See memory handles
load-segment relationships (load
time) 185

print spoolers 83 stack and rero page, converting

processor status register G4, 105 BB

ProDOs xxi, 3L See alio upward compatibility 10-11
operating system(s); PraDOS 8, *ProDOS is busy® ermor. See errors
PraDO5 16 ProDO5 16 xxi, 4-1% Sew alo

ProDOS busy flag. See busy Mag manuals; operating system(s) or

apecific fopic

prefixes, See pathname prefixes
requirements of 19

gment 184, 199, 200, 298
ok and e 28 St‘%" also segment{s)
definition of 253 pathname prefices 5, 14, 19-20,
N ORC segmeont header field 185, 5569, 131
Sor aio headers; segment(s)

locked 37-38, 77-79, 184, 227

manipulation of 37-33

mavable 185, 231

pointers o 38-39, &2

purgeable 37.38, TE-79,
185-186, 277, 233

Madify Memory command
{Exerciser) 291
Monilor program xix, 281, 203

similarity of 285-288
arganization {files)

e s . application. 66-67, 165, 201 eRopos file 53, 95, 56-58
unpurgeable 185-186, 277 e ﬁiﬁlﬂi’“‘*’ outpul devices, definition ef 42 boot &5, 67, 166 ProD0S 8 xwill, 5, 9-13, 52, adding WAMmEd o MegY
ot oy Sigeriy O ittt Hm;m; Seer also devices) code numbsers af 20 BO-6H1, 170, See abo manuals, bypassing 6

194, 200, 214
definition of 214

dereferencing 39, 82, 104, 207

intreduction 1o 38-39

length of (parameter fields) 106

NIL 187, 192193, 277
memary management 10, 15,
32-40, 38-39. See abo
Memory Manager
how applications obezin memary
35

revising Prol0s 8 applications for

ProlD(5 16 &5
similarity amang opetating
systems 207-2BB
Memory Manager xix, 8, 32,
36-37, 64, 7, 79, #2, 182,
187, 20§, 227, 231, 245, 247
Seet also memary mangement
calls 207
description of 36-37, 70
interface with Systern Loader
184-187
memary blocks and 104, 185
suppon for bank-alignment 300
Memary Segment Table 184,
1R7-18%, 192-193, 206, 227,
231, 238
Messapes, See errar messagos
m-flag 04
microprocessors, See 6502,
S5CE16
Miscellaneous Tool Set. See
System Failure Manager; User
[Manapes
modes, emulation and native 4, 9
47, 100 N
modification date and time Bi-86,
20d, 276, Sew alio creation
date and time; programming
medilication field 276

volume{s)
malive mode 4, 9, 47, 100, Ses
alo programming
MewHandle call (Memory Manager)
™
NEWLINE call (§11) 137-140
nibble, size of 33

NIL handles, See memory handles

nuimbers
deviee. See device(s)

pathname peefix. See pathname
prefixes

e
objedt files. See filegs)
ohject module format 70, 74, 89,
187, 230, 29%
objoct segments. S segment(s);
direct page and stack
OMF. See object module formart
ON_LINE call (Prol305 8) B4
ofiline devices. Sow device(s)
CFEN call 21, 80, 151-152, 287
description of 137-138
Operating environment %, 52-72,
1. See alio specific topic
operating system{s), Apple 11,
comparison of 281-28R. See
also specific operating sysiem
or spacific fopdc
calls, o system calls
default al stanup 13
file compatibility 283-284
reading DOS 3.3 and Apple 1
Pascal disks 284
filing calls 286287
history of 281-282
mputfoutput 285
interrupt support 288
memory management 287

overflow, stack. Sew stack(z)
averlays 205

P
page, size of 33, 291, See ako
metmory
parameter(s) 102-104
blocks. See parameter blocks
ficlds 105
format 102-103
lcng of poimers and handles
|

order of bytes in a fietd 103
order on stack 214
permissible range of values 103
107
pointers and 102-103, 106
selling up i memory 103-104
System Loader 213
tvpes of 102, 213
parameter blocks 10, 81-82, 83,
100-104
Pascal operating system
file system 284
filing calls 287
histary of 283
interrupl suppon 288
LD 28%
memory management 287
reading Pascal disks 284
Pascal strings 201
patches. Soe HAM, Apple llos
paiching 188, 194
pathname(s} 7, 19-21, 65-69,
117, 199
assigning 21
full 192, 69, 201
length of 20
aumber of characters in 14
partial 19, 45, 69, 168, 01, 241
pointers 61, §2

Index 323

default 65, 131
initial ProfO5 16 values 66
Introdusction o 6562
library 6567, 201
multiple 20
null 20
number al characters o 14
numbers 66-67, 81, 131, 168
partial pathnames 19
predefined 65
PraDOs B prefix and pathname
conventions 68-69
samples of 66
storage of 66
systemn (ProDO5 B) 66, 69
values of G7=68
Pathname Table 189, 196,
200=201, 206, 227, M5
peripheral devices, See device{s)
pointer(s) 26, 38-39. Ser alro
EOF;, Mark; memory handles
definition al 102, 214
fields. Sew ficlds
length of (parameter fields) 106
master 38
arder of byes 256
parameter block 38-39, 82
pathname &1, &3
part numbers 7

ports
communication 9, 43
disk =ix, 45
serial xixn
FQUIT S6, 59-62. See alio QUIT
wll

ProD05 8 guiT calls, standard
and enhanced 60
ProDOS 16 QUIT call &1
;:lr\e-.!j,xr_':, p:.l.'hmmz Sew pnlhnu.ml:
prefixes
printers 3, 43

334 Inclex

operating system(s)
applications, memory banks for
33
binary files 12, 224, 283
description of xxi, 4
enhanced QUIT call &0-61

« file systerm 283

filing calls 286

global page 10, 36, 79-B0

history of 282

interrupt supporl 288

170 285

loading 156

memory and 3, B6-ET

on an Apple 11GS va. other
Apple I computers 5

pathname of current application

prefix 6862

quit type &0

standard QUIT call 60-61

syatem calls 9-11,10%

system disk 56

system flie 12, 58, 182, 224

system prefin 66, 68

system program 12, 58, 182,
224

unit (device) number 84

ProDOS 8 and ProlX0816 9-10,

B6-89, 105-106

call methods compared 105-106

calls, converting B8

compilation/assembly B9

downward compatibility 11

eliminated ProDOS B system calls
11

hardware confligumtion 87

interrupt handlers, modilying BB

mamory management 80

new ProDOs 16 system calls 11

revising applications B6-BY

doscription of xxi, 4=15

errars 302-309. Sew alo ermors

external devices and 42-49

fined Iocatians 65

history of 283

nterface o 8D

introduction @ 4=15

memeory and xviil, 32-40

memory map 35

new sysem calls 12

ProDOS 8 and. See Prol>O5 B

and PraDos 16

summary of features 13-15

system calls. See systemn calls

version number 171
ProDO5 16 Exerciser. Soe

Exerciser

program bank register. See
registers

PIOEIam counier register, See
TEgisLers

Programmer's Workshop, See
Apple llGs Programmer's
Workshop

programming xix, 74-91. See alro
specific topic

application requirements 74
direci page and stack, See direct
page and stack
eveni-driven Xix
levels in Apple llos 3-7
segmented xix
suggestions for T4-91
System Loader 203-210
system resource mandgemont
To-B4

programs. See applicaticn(s);
controlling programs; static
programs

publications, See manuals

purge levels 37, 77-78, 185-186,

231
purgeable segments. See
segment{s)

™
CUIT call (ProD05), standard and

enhancod G0-61

purT eall (ProDOS 16) 15, 59-61,
62, 74, 77, 82, 207, 210,

245. Ser also PQUIT
description of 167-170
return flag parameter 61, 852

Quiz command (Exerciser) 204
quit flag 245
QULT procedure 02, See abo

QUIT call

quit return stack 167, Ser also
stackis)

quitting applications, See
applicaticris)

quit type (ProDOS B 60

B
RAM {Apple llc or [le} 34
RAM CApple las) 32, See alio
MEmioey
fixed entry points in 35
170 space in 33
patches o ROM-based tool sets
52-53
specialized areas in 33
loo] sets 33, 52
RAM disks 43
READ BLOCK call 42, 44, 284
description of 157-158
READ eall 24, 42, 44, 85, 139
description of 141-142
reading
directory files 265-266
disks, DOS 3.3 and Pascal 284
files 24, 272
ReadTime call (Miscellaneous Tool
Sel) BO
records 187, 231, 297
cINTERSEG 187, 298
cRELOC 187, 297
nDs 187, 297

END 298
INTERSEG 187, 189, 195-196,
297
LCONST 187, 297
RELOC 1&7-188, 297
SOFER 187, 298
reference number (raf_nurd, See
file reference awmber
reglsters 64, 224
accumulator TT=TH, 104, 209,
213
data bank 104
direct 70, 7779, 104
hardware &4
mizalizing 81, 209
processar status 64, 105
program bank 104
program counter 104
stack pointer 75, 77-79, 104
values an entry and exit fram call
104, 213
X reglster 64, 104, 204
Y register &4, 104, 208
reloading applications. See
application(s)
Heload sepments. See segment(a)
relocatable segments. See
segment(s)
relocation dictivnaries 187-188,
195, 201
RELDE recards 187-188, 297
HENAME call 277
renaming files. See file(s)
requests. See calls; systemn calls
Restart call (System Loader) 201,
08
description of 225-237
restant-from-memory Nag 168
restarting. Seeapplicatian(s)
result, definition of 102, 213
return flag (Q01T call) &1, 82, 168
revising ProDOS 8 applications for
PraDOS 16 B6-89. Sew also
application(s); ProDOS 8 and
PraDOs 16, programming
ROM (Apple Ilc or 1) 34
BOM (Apple Mcs) 32, 4546, See
alie memary
expansion card 4546
routines In xix, 6

tool sels 33, 52-53
routines. Saw alio interrupt
handiers; libraries
adding to Prol:05 16 5397
Apple llas Toolbax @
filecopying 84
interrupt, See interrupt handlers
library xv, 70, 80
names of, typographic
convention for xxi
program selection (PQUITY 59
ROM xix, &
run-time libraries. Sewlibraries

5
sapling files 29, 252, 268,
270=2T71
Scheduler 71, 95
soctors 43, 254, 282, 284
scedling flles 29, 268, 270
segmentis)
absolute 182-183, 186
allgnment factor 299
bank-aligned 299
direct-page/stack 76, 78, 166,
224
dynamic 1B2-1E3, 185-186,
193, 196, 204-208, 224, 224,
245
header ficlds 185, 299
initialization 184, 224, 237
Jump Table. Sae System Loader
EIND field 186, 193, 224, 296
libraries 70, 79
lead 71, 76, 183, 185-186, 195,
230
load numbers 298
locking 207
main 295
Memaory Segment Table. See
System Loader data tabjes
ohiect 76
pape-aligned 200
pathname 184, 199, 200, 298
position-independent 183, 185,
186
puigeable 77-78, 183, 185%-186,
207, 231
Reload 225, 277, 297

Imetex 3as

relocatable 182-183, 1B5-18%
run-time libraries 206
statie 15, 77, 183, 193, 204,
224, 58
unloading 207
wnlocked 207
segmented programming Xix
sequential-access devices, See
device(s)
serial ports, routines for xix
sE7_EOF call 23, BS
description of 149
SET_FILE_InrFocall 21, B6,124,
260, 264, 277
description of 119-122
SET_LEVEL call 12, 25, 145
description of 151
SET_MARY call 23, 286
description of 147
SET_PREFIX call 20, 64, 68,165
description of 131-133
shadowing 34, 64, See alio
memory
shadow reglster 64
Shell (APW) B2, B9, 208
shell applications 208
shells 207, 222, 22%. Sev ako
controlling programs
shutting down. Seeapplication(s)
GSCA16 assembly language. See
assembly language
5502 microprocessor 4, 9, T3
16-bit mode. Sea native mode
slashes, profives and 19
slot numbsers 7, 46, Ses alo
expansion slots
slots, See expansion slots
SmartPort 4545
sall switches, Initializing &4, 81
saftware. Sed also operating
systemn{s); BAM disks; sysem
disks; system software

compatibility 4, 10-11. See alio

ProDOE 8 and ProDOS 16
requirements xvlik-xix
sandard Apple [I 34

505 operating system
file system 27H, 284, 67
filing calls 286
history af 282

334 Inclex

interrupt support 288
/0 285
memory management 287
source files 79, See alio file(s)
sparse [iles. See file(s)
special memory. Ser memory
5 reglster {stack polmer). See
registers
stack(s). Soe ale direct page and
stack
dingram format (System Loader
calls) 214
hardware 75

locations, converting ProDiO3 8w

Prol0s 16 B8
overflow 77
pointer 7%, TT-79, 104
quit return stack 167
stanvdard Apple 1. See Apple 11,

standard
standard files 26=27, 270, See
celser file(s)
format and organization of 267
reading 272

standard [/0. See inpaa/output
standard QUIT call (Prolx05 8)
G061
START file 58, 61-52
startup, Serapplication(s); system
startup
stalic programs 77, 204, Saw also
System Loader
static segments. See segment(s)
status register 105 storage
devices, See device(s)
sarage wype fleld 275
subdirectories 7, 26, §3-5%4, 56
Sew alio directories
file entry and 84
files 254
headers 259-261
library B0
subroutines, See routines
SOPER records 187, 298
swichers 207, 222, 215
system. calls xix, f=13, W4,
QR-177, See alocalls or

specific call
call block 100

converting Prol05 8 to
PralOS 16 88
definition al 100
description format 106-107
device calls 154-162
environment calls 1864-171
Exerciser disk and 250
file acoess calls 136-13%2
file housekeeping calls 110-134
filing calls. Sew file access calls;
file housekeeping calls
interrupt control calls T4-1TT
interrupt handlers and 26
parameter blocks 100-102, See
alse parameter(s}
practicing with Exerciser 290
ProDO5S A 11, 105
PmMO5 16 (new) 12
register values on entry and oxit
from 104
systemn call reference 58-177
s_.lg[-em disks xix, 52-5% Sew alo
disks; system sartup
application 52, 54-53%
complete 52-53
sundard Apple 1 55-50, 69
System Failure Manager 4%, 72, 83
systemn file (ProDOS B 12, 58,
182, 224
sysem file bevel 25, BO, 145,
151-152, 167
Spstem Loader 33-35, 37, 52, 55
63, 77-78, 181-301, Sev ale
recofds
calls. See System Loader calls or
specific call
contralling program design and
207-209. See alo controlling
prngral:u
data tables. See Syslem Loader
daia tables
description of 70, 182-183
dormant state 62, 168, 183,
225, 233, 246
dynamic segments and 204-20%
"5ee also segrhemis)
entry point 35, 300
errars A10-311
functions (categorized by caller)
210

global variables 300

interface with Memory Manager
184-187

Introduction o 70, 182-189

load-file structure 187

loading relocutable segments
187189

memory map of 34-35

memory requirements of xviii

parameiers 213-214

programming with 203-210

reference for xix

relocation 18H-189

restarting and shutting down
applications 205-210

mun-time libraries and 205206

segment loading, weser comtrol of
200-207. See also segments)

static programs and 204

lechnical data 295-301

lerminology 153184

version aumber 218-219

System Loader calls 210-2%0, See

alo specific cull

call block 213

categaries of 210

descriplion formal 214

how calls are made 213

parameter types 213-214, Sag
alio memory blocks;
paametens)

System Loader data tables

192-203

Jump Table 159, 193-198, 233
Jump Table Direciory

193104, 196
diagram of 198
directory entry 154
1 modiication a1 load time 196

Jurnp Table Load call

195196, 213, 247-248

Jump-Table-Loaded fag 201,

235

I segmenl entry 194-197, 237
segments 201, 298, 193-195
Ser alio segment(s)
(FETE] duri:nE executhon 196=157

Mark Liz 201-202

Bl DERIEN] TatHe
192-193. See alio segment(s)

Pathname Table 199-201
system prefix (ProDOS B} 66,
6860
system program {ProlOS 23 12
o8, 182, 224
system resources, managing
R4
system sofiware TO-72. See alio
system disks, soltware
memory banks and 33
User [0 and 71
sysiem startup 55-39, 210
bool initialization 52, 56-57
default operating system 13
device search 4546
*introduction o 55-59
Loader imitialization 215
program selection 58-59
rebeating 49

T
tables, See interrupt vector table;
System Loader data tables
time. S creation date and time;
modilication date and time
toalbox, See Apple [los Toolbox
toal calls 6-7. Sew abo specific
toal
tools xix, 70=72, 182 Sa¢ abko
HAM-based tools; ROM-based
loals or specific tool
L.SETOF file %3, %6
racks 43, 254, 282, 284
transfierring
dala o and from files 21
sparse files 30
tree flles 28, 29, 262, I71-272
growing 267-260
TypelDd. See User D

w

unclaimed interrupts, Soe
interrupt{s}

Unilisk 55 43

Unload Segrment By Mumber call
(System Loader) 207, 237

Hmeeription of 2303 333
uppercase letters 18

User ID 37, 61, T, 77, 167-168,
186, 192, 19%4-195, 100, 206,
0B, 200, I3, 126127, 230,
233, 240, 245. See alo
Memory Manager; User 1D
Manager

AuxID 30

format 300-301
MainlD 208, 223, 31
TypelD T1, 223, 30

User 1D Manager 71, 184, 300-301

LUser Shutdown call (System Loader)
185, 209, 225

description of 244-246

v
value, definition of 102, 213
variables, global, See global
varlables
VCH, See volume controd blocks
veclors. S interrupl vector table
vertor space values G4
version mumbers
Me system 58, 260, 263, 305
object module format 230
Pralx05 16 171
System Loader Z18-219
video memary. See memory
valume{s) 7-8 ., Sew abo file(s)
boot 81
directories 7, 18, 254
direciory headers 256-250
formaring 254
names 7, 14, 18 43, 117
organization of information on
254-255
sipes of 14
volume bit map 254, 258
VvOLUME call 11, 44, 80
description of 128-130
volume control blocks 47

w

word, size of 33, 102, See alo
Inn.E waord

WRITE_BLOCK call 43, 44, 284,
ama

description of 159

Index a7

WRITE call 24, 42, 44, 85,264, I7

description of 143-144
write-enable bit 137
writing

applications B9

files 24

x-r=-1

% flag 64

X register &4, 104, 208

Y register &4, 104, 208

rero page 75, A, See alvo direct

page

338 Inclex

ProDOS 16 Calls ke: PRODOS entry point 209 S0A $0B
I5L PRODOS = §F1 O0AS | SET_PREFIX GET_PREFIX CLEAR_BACKLP _RIT
I2 "CALLNUM'

14 "PARMBLOICK" g o e o of

'r.'IE{T-:If}}-:H“ SRR Each minor division in a 1 prefi_num - voiue 1 prEfls_num 7 e 1[Sl B R

ERb parameter bock dicgram 2] 2 [] 2 ll: pathnome : poanie

i S) refresenits one bpte -' refix d saini ; L — I E—
s | s
501 502 S04
CREATE DESTROY CHANGE _PATH
o[] o 1 [510 511 $12
A " Jd poirier) pathinam | poriter -~ VL e i i OPEN NEWLINE READ
] 3 1 3 o ol]
al HEEER] F - rat_Rium = JEsult 1 I rif_nfwm — fEiull I ret_riwem = woiug
5 . i il M
-: i g iz] i ;“ SRR S ‘ r T’: pnoble_moik = wolug .': B -
7] 71 = pothinam - portar p = data_buffer - pairiar
B[1 . . : P newline_cho < valug sk
Al S e] vore af o BB o .
- .;. = = el al reqiseEs _count o
mF storoge_typs 7L] ° [7]
rF creole_date I o F -
| ~ trofwler_count = tesud

F create time o voiue ¥ B

505 §06 408 $13 §14 §15
SET_FILE_INFO GET_FILE_INFO VOLUME WRITE CLOSE FLUSH

: - —_— r a o
ol 8 . L 4 | rel_mim — vl : red_num value y el pusm -I value
- pathihame E 1 pairtr - F dew_namse = poiniter 7
3l 3 b 3 = y I n
pu _— S ! EE—— = datoe_butter - painter
1 ®_ :
4 — L isiicia 4 ” et 4] pi]
5 =351 * b ELTET - o e I - "
= 5 5L vol_name
ok file_typd Jvoue o] Hle_typi o repun ol 3) .
E 7 { g lF I:"'|'||||"I e irit -1 voke
| il B
g T 2 aux_type 7 o 9 g E
Al au_type - volue s o tr - rmsuft M = total_blocks = rep .
B[5 g [‘fotelbiock g B 1 Bl P
i - = = rarafar courd ~ st
I:-' - Cridll iy o walu el storoge_type - gLt alF - i [
£ —_— | L* - . fred DIoCks = rosud
£F create_dole WHLE ': - craate_date =| rasuft Flr
||'_ e bar e~ o wnl i)
te_time W a B cmata Hime - mmsuft - file svs Id - ragut
11 I oiue BsUl ; v B
e | i TL et — 516 $1K
e mod_date o wolue o mod_daote - rasul SET_MARK SET_EOF
14 |
4 . A - m
mod_fime - woius | mred_fim o rosa o , f
15 - o 15 i ol i 3 F el _num - vola I'-; - walum - el _num = e
" 5 -
- i i 21 £
! blocks_uaed - et 3 . 3
¥ i postion = Ok a = (e a1l Laly] =] neEsull . eaf = VOl
5 -1 e = il =1

519 51A 518 Fiel
P_RIT GET_EOF SET_LEVEI GET_LEVEL e

“F rat_num e |‘ s ‘I vealuie | el | RS Access Byte Scgment KIND
tar 1 1 ————————— i TS] =

qi] | 5 25 5 O

D = destrov-enable bit 8D = 1. segment is dynamic
BN = rename-enab

Pr 1: segment i prvaie
P1 = 1. segment is position
independent

B = backug

GET_DEV_NUM GET_LAST_DEV READ_BLOCK B
S = R = read-enabic bit M | ment may not be in specia

&20 421 S22

== al dav_nama . . P | AB = 1: segment is absolue-bank
= - pointar 5 o B data hulte Gl ——— | R = 1: segment s a Reload segmen
- s ia T - ab |
—_— o ! Creation/Modification Date Type Description
=L - K00 cocdde sepmenl
int 1 value sl ack AU - volus i AL $01 data segment
o - L !

473 '_'| 502 Jurmp Table segment
Day | $04 Pathname

ull ~| nedull 308 library dictionary segmenl
= 523 &7 & £10 initialization segment

FORMAT GET_NAME §12 direct-page/stack segment

SEEmenl

i R - 5 Creation/Modification Time User ID Word
dota_tatte 4 ooint
- —| T Haigf e X J
L -
: Tile_sys_id 1 i Typelld Description
ol 1 L0 Memory Manager
3
31 application
52 contrelling progra

Version Word 53 *05 B and ProDOS 16

529 S2A % i 84 toad set!

l!T_]"l GET_VERSION ICEFR R P 55 desk dccessory
Q : - 1
[P —] | QT — 14 run-Lime f
| { f j sl Syistem Losider
a pathhama - paoint - firmware/system function
1 B - B = 0 for final releases Tool |
-. s _'_ ; B =1 for prototype releases fundef i
if 04, these values of AuxID are
i
Miscellaneouws oolset file
:I_ valug §31 532
= 1 ALLOC INTERRUPT DEALLOC INTERRUPT
1 File Mark
7| volue L = FEp— 2
ﬁ II = Ir i I a : :
. = |
= o .

P o] : i [3 rol | Ypes (continued)

]

I'vpe Code Descriptlon Type Code Description

A

es0lt vari:

AS

& $1102 5 $F1 am lile
81 \, :
L 51 '] 5
- I 31 ile wersion error 4
& 31108 r [0 erroe i
5 >l
i 51 Seg 4
L1104 q
5 B 1 ¢
521 | .
I i
§5} 3)& :
' .
vl L] i A | i
£42 : i
543 m] &
Fad
$44
%4 E
548 ' A i
g4 ~
{s
[1 I
tA I it It alse L 1 28
formal ; .
L4H Unsupported (or incors slorage o - i
3 1% 2 1
il of-file e I I data) A 11 al I
0% 1 AP obiject fike 1
34D o MR = ay
: i1 AP library file i
3 brary i]
s I ol A pathrame is @ sequence of | AMCs E application prog i) clary
\
ITE i i d separated by slashes) I i L
Ut 1 |] BTl : AP CF
1 | Tl RN] i
& L » 0 y 1 I =L
353 [rang i with a slash Cand a 1
1 i
; [LR i k

ime Beging with a filename o

Description

System Loader Calls

1. Push mesult space (as shown
on Sack Before Call) onto
the stack

L

Push inpul parmamelers (in
order shown on Stack
Before Call) onto the stack

Execute call block:
LIxX #§11+Funchum | 8
J5l Drispatcher
PuncMum = number of
function being called
Dispatcher = Tool dispatcher
(address = SE1 00000
I On completion, results will

be in order shown on Stack
After Call

Each minor division in a stack
diagram represeris T word
(2 bytes)

509
Initial Load
Stack Before Call:

provvou canterts
(regult soocal
frewdt saoca)l

L (resut spoce) -

fresal sooco)
Lsri
odavas of
iood-fig nomeg
Fpeciol -mamory fag

Stack After Call

previous contents [

[ov pogefiock sve |
gv. poge/fack godr

] = starting oddes o

Lsenll

S04
Loader Version
Stack Before Call

Stack Afler Coall:

| proveoul conterts |

Varsan |
I e
S0A
Restart

Stack Before Caill

pravious conhernts
(Rt spoce)
(rasLdT FDOCE)

- (gt spoce) =

{revunt spoca)
Lisal}

- 5P

Stack After Call

EH:“-'U_'!. conhims
or_pogefock sire
o, poge fEfack ookar,

= sofing oddnes o

LiarD)

la-5p

506
Loader Status
Stack Before Call

previous confanis

Stack After Cail

orevious confents
11

S0B

Load Segment By No.

Stack Before Call

prendows contents

= fresult space)

LiserD

inog-hw numbar

BDad-sagmeanl N

Stack After Call:

previous contants

aokanast af
sopmant

i

-—sp

oo

:i-lvsr

S0C
Unload Seg. By No.

Stack Before Call

lppd-segrneenl ne

-, 5P

Stack Affer Call

peevious contenls

$0F

Get Load Segment Info

Stack Hefore Call:

Stack After Call

1 previous conterts |
| it 1

§12
User Shutdown

Stack fefore Call

50D
Load Seg. By Name

Stack Before Call

o [|
Inad-sEgment nomea

5P
Stack After Caill
|#-sp
510
Get User ID
Stack Before Call
il CONIBtE |
Lr e
1Ry of _
B DaingEmss
= Y
' 5P

Stack Afler Cail

S0E
Unload Segmeni
Stack Before Call

Stack After Call

piEvdous corntenty

lpod sogmard_no

| lood-file na
U=

| g p

511
Get Pathname
Stack Before Call

1 SO

comlerniy |

.l— {resull sSpocel

——doumcdtia. ma e el
Ch fva numbeay |
ta-zp
Stack After Call
| orians
I_ povess of H
i pathnamea
[- 5P

© Apple Computer, Inc., 1987

-

The Official Publication from Apple Computer, Inc.

Written by the people at Apple Computer, Inc., this is the sethoritative gusde o the

new Apple llos™ operating sysiem. ProDOS™ 16 is an advanced ProDOS with

extended fle-mansgement. device-maragement, mnd intermept-handling capabilities,

It can launch both standard Apple® 11 programs and new Apple lcs programs.

This manual gives an overview of the operating system and o detailed

documentation of its programming features. Specialized wpics inchude

* Lsing the QUTT call 10 pass execution from one application program o ancther.

+ Switching rapidly among applications by making them dormant and reszrming them.

* Writing controlling programs such as shells and swirchers

* Writing interrupt hundlers.

* Working with multiphe pathname prefiues

* Conwerting applications based on Pral305 8 o woek with ProDOS 16

The Appile fs ProfX0S 16 Reference 5 omganized into four parts:

» Part | shows how FroDiOS 16 waodks and explains how it diffises from its
predecessor, FroDOS &

* Part I describes all Prol08 16 commands {system calls) in detal

» Part Il documents the System Loadera flesible programming ool that loads,
unloacls, and manipulates program segments in memory

= Part IV consists of appendixes, a glossary, and an index. The appendixes describe
the ProD08 16 file structure, outine the history of Apple I operating sysems,
explain the ProDOS 16 Exgreiser disk, st all ProDOS 16 and Svstem Loader error
codes, and provide additional System Loader technical information.

Aquickreference cand bound o the mamel tabulites ProDOS 16 and System

Loader calls, ermors, and daca structures. The Exerciser disk in the back pocket allows

vou 1o prractice making ProDOS 16 calls before acnully writing an application program

Wrien for assembly-linguage programmens and advanced wsers, the Afple fls

ProDOS 16Refevence is indispensahbe for understanding and designing

Apple Ths application programs,
 Inc.
-y
inws, Caloemia #5014
mml. wnia
TIX 7576 Frintesd in 1154

Addison Wesley Publishing Company, Inc. ISBN O0-201-17754-4

