Apple II Apple Ias” ProDOS' 16 & Appltf; IT Applc IIgs ProDOS. 16
Reference =—=== Reference

Includes System Loader

Includes System Loader

85
§
§
§
§
§
§
§ls

-
Ay ey ey dey by ke ey b

=1

v

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrd Bogod Santiago San Juan

__

o APPLE COMPUTER, IN(

Copyright © 1987 by Apple
Computer, Inc

All pights reserved. No par of
this publication may be
reproduced, stored in 4 retrneval
a¥stem, or transmimed, in any
form ar by any means,
mechanical, elecironic
photocapying, recording, or
otherwise, without pricor writen
permission of Apple Computer,
Inc. Printed in the United States
of America

Apple, the Apple logo
AppleTalk, Disk 11, LaserWriter,
Lisa, ProDOS, and Unilhsk are
registered trademarks of Apple
Computer, Inc

Apple 1G5, Apple DeskTop Bus,
AppleWorks, and Macintosh are
trademarks of Apple Computer,
Inc

ITC Avant Garde Gothic, 1TC
Garamond, and [TC Zapf
[Hnghats are registered
trademarks of International
Typeface Corporauon

Microsofl is a registered
trademark of Microsoft
Corparation

POSTSCRIPT is 2 trademark of
Adobe Svstems Incorporated
Simultaneously published in the
United States and Canada

ISBN 0-201-17754-4
ABCDEFGHI)-DO-80877

First printing, May 1987

LICENSING REQUIREMENTS
vpple has a licensing {MOgram
wane developers

I leveloped
hesir

» and external
: distributing

Part |

Chapler 1

Contents

Figures and tables xi

Rodio and television Intederence x

Preface xv

Road map 1o the Apple [1GS technical manuals xvi

How o use this manual xviii

Other materials you'll need xwiii
Hardware and software xviil
Publications xix

Motations and conventions xx
Terminology xx

Typographic conventions xxi

Watch for these xxi

How PraDOS 146 Works 1

About ProDOS 14 3

Background 4
What is ProD<0S 162 5

Programming levels in the Apple IIGS 5

Disks, volumes, and files 7
Memory use 8
External devices 9

ProDH25 16 and ProDOS 8 9
Upward compatibility 10
Downward compatibility 11

Eliminated Prol0S B system calls 11
New ProDOS 16 system calls 12

Crher features 12

Summary of ProDXO8 16 features 13

ahi
Ap
inh
fro
ao
por
W
the
indi
e
the
The
Caox
th

Apy
Tid
itk

Chopter 2 ProDOS 16 Fles 17

Chapler 3

Chapler 4

Using files 18
Filcnames 18
Pathnames 1%
Creating files 21
Opening files 21
The BEOF and Mark 22
Reading and writing files 24
Closing and fushing files 24
File levels 25

File format and organization 26
Directory files and standard files 26
File organization 27

" Spamse files 30

ProDOS 14 and Apple lics Memory 31

Apple 1G5 memory configurations 32
Special memory and shadowing 34
ProDOS 16 and System Loader memory map 34
Entry points and fixed locations 35
Memory management 36
The Memory Manager 37
Pointers and handles 38
How an application obtiins memory 39

PraDOS 16 and Extemnal Devices 41

Block devices 42
Character devices 43
Accessing devices 43
Mamed devices 44
Last device accessed 44
Block read and block wrile 44
Formatting a disk 45
Mumber of online devices 45
Device search at startup 45
Volume contral blocks 47
Interrupt handling 47
Uncliimed intermpis 45

Chopler 5 ProDOS 16 and the Operoting Envirenment 51

Apple 1G5 sysiem disks 52
Complete system disk 52
The SYSTEM.SETUP/ subdirectory 53
Application system disks 54
System starup 55
Boot initialization 56
Startup program selection 58
Starting and quitting applications 59
POUIT &0
Standard ProDO6 8 QUIT call 60
Enhanced ProDOS 8 QUIT call 60
ProDO5 16 QUIT call 61
QUIT procedure 62
Machine configuration at application launch 64
Pathname prefixes 65
Initial ProDOS 16 prefix values 67
Prold05 & prefix and pathname convention 68
Tools, firmware, and system software 70
The Memory Manager 70
The System Loader 70
The Scheduler 71
The User ID Manager 71
The System Failure Manager 72

Chapler 4 Programming With ProDOS 18 73

Application requirements 74
Stack and direct page 75
Automatic allocation of stack and direct page 75
Definition during program development 76
Allocation al run time 77
ProDOS 16 default stack and direct page 78
Manual allocation of stack and direct page 78
Managing systcm resources 79
Global variables 79
Prefixes B0
Mative mode and emulation mode 81
Setting initial machine configuration &1
Allocating memory 82
Loading another program 852
Using inmerrupts B3
Accessing devices B4
File creation/modification date and time 84

o I

==

4 Programming With PraDO5 14 {cantinued)
Revising a ProDOS 8 applicadion for ProlOS 16 BS

Memory management 26
Hardware configuration 87
Converling system calls 58
Modilfying intermupt handlers 88
Converting stack and zero page B2
{_‘,I'|m|_:|1l|2lI.I'.I'!'I.-"B.b'JEE[!-]JL'!.".I B9 -
Apple NG5S 1’r<‘.gr.1n1111|:r':.s \'l.-mlkahl:-r.-
Human Tnieface Guidelines S

Chapter

Chapler 7 Adding Reulines to proDOs 16 3
interrupt handlers 94 -
Interrupt handler conventlons :»1

(nstalling intermopt handlees ¢ 5]

i i ' L2
Making Dperating system calls during intermpts 90

partll ProDOS 14 System call Reference #7

Chapter 8 Making Pre0s 16 Calls 9

The call block 100
The parameler block 101
Types of paramelers 102
parameter block format Il:IE. B
Seming up 4 paramcies block in memony LU
Register values 104 y s
Lil‘lgrnp:lnsfln with the Pmnm_ﬁ call method 105
The ProDOS 16 Exerciscr 106 »
Farmat for system call descriplions 106

Chaopter @ File Housekeeping Calis 109
CREATE (301) 111
DESTROY (§02) 115
CHANGE_PATH (§04) 117
SET_FILE_INFO (505) 1 19
GET_FILE_INFC (s06y 123
VOLUME (308 128
SET _PREFIX (5090 131
CET PREFIX (S0A) 133
CLEAR_DACKUP_BIT (30B) 134

EEE————]

Chopter 10 FAle Access Calls 135
OPEN ($10) 137
NEWLINE ($11) 139
READ (512 141
WRITE ($13) 143
CLOSE (514) 145
FLUSH ($15) 144
SET_MARK (516) 147
GET_MARK (517) 148
SET_EOF ($18) 149
GET_EOF ($19) 150
SET_LEVEL ($14) 151
GET_LEVEL ($1B) 152

Chapler 11 Device Calls 153

GET_DEV_NUM (5200 155
GET_LAST DEV (321> 156
READ_BLOCK (§22) 157

WRITE_BLOCK ($23) 159

FORMAT (§24) 160

Chaopter 12 Environment Calls 143
GET_NAME (§27) 165
GET_BOOT_VOL (528) 166
QUIT (329 167
GET_VERSION ($24) 171

Chapter 13 Interrup! Control Calls 173

ALLOC_INTEREUPT (3313 175
DEALLOC_INTERRUPT (3328 177

Part Il The Systemn Loader 179

Chapter 14 Introduction fo the System Looder 181

Whal is the System Loader? 182
Loader terminology 183
Interface with the Memory Manager 184
Loading a relocatable segment 187
Load-file structure 187
Relocation 188

wil

Now A
have ¢

Apple
infim
fromid
acom
pomer
Whet
the ne
infoen

the o
Thesd
Caxnp
those
pples
Titles
itkes

L]

I

wili

Chapter 15

Chaopler 16

Chopler 17

System Looder Dofo Tables 191

Memory Segment Table 192

Jump Table 193

Creation of a Jump Table entry 195
Modification at load time 196
Use during execution 196
Jump Table diagram 197
Pathname Table 199
Mark List 201

Pragramming With the System Looder 203

Static programs 204

«Programming with dynamic segments 204

Programming with run-time libraries 205
User control of segment loading 206
Designing a controlling program 207
Shutting down and restarting applications 200
Summary: loader calls categorized 210

System Loader Calls 211

Introduction 212
How calls are made 213
Parameter types 213
Format for System Loader call descriptions 214
Loader Imitialization (3013 215
Loader Starmup (5023 216
Loader Shutdown {303) 217
Loader Version ($04) 218
Loader Reset (305 220
Loader Status ($06) 221
Initial Load ($090 222
Restart ($0A) 225
Load Segment by Mumber (508) 228
Unload Segment by Number (800 232
Load Segment by Mame (3000 234
Unload Segment (S0E} 236
Get Load Segment Info ($0F) 2
Get User 1D (3100 240
Get Pathname (5113 242
User Shutdown (812) 244
Jump Table Load 247
Cleanup 249

Appendites 251

Appendix A ProDOS 16 File Organizalion 253
tion of information on a volume 254

Cirganiza
iy [directory files 253

Pormat and ofganization o
Pointer fields 256 .
valume directory headers 250
Subdirectory headers 259
File entries 261
Reading a directory file 205

Formal and organization of stan
Growing a tee file 267
seedling files 270
Sapling files 270
Tree files 271
Using standard files
Sparse files 273

Locating & byte in a file 274
Header and entry fields 2753
The storage type atibute 275
The creation and last-modification fields
The access aftribute 277
The file type attribute 278
The auxiliary type anribute 2

dard files 267

772

278
Vil

Appendix B Apple Il Operating Systems 281

History 281
DOs 281
S05 282
ProDOS 8 282
Prol¥0s 16 283
Pascal 283
File compatibility 283 :
Reading DOS 3.3 and Apple 11 Pascal disks
Oyperating system similarity 2B5
[nput/Output 285
Filing calls 2B
Memory management 287
[nterrupts 288

284

l

Appendix C

Appendix D

Appendix E

The ProDOS 16 Exerclser 289

Starting the Exerciser 289
Making sysiem calls 290
Other commands 291
List Directory (L) 291
Maodify Memory (M) 291
Exil 1o Monitor (5 293
Quidt () 294

System Looder Technical Data 295

Object module formar 205
File types 295
Segment kinds 296
Record codes 297
Lead-file numbers 298
Load-segment numbers 208
Segment headers 290
Restrictions on segment header values 299
Page-aligned and bank-aligned segments 299
Entry point and global variables 300
User ID format 300

Error Codes 302

Praol¥5s 16 errors 302
Nonfatal errors 302
Fatal errors 307
Bootstrap errors 309

System Loader errors 310
Nonfatal errors 310
Fatal errors 311

Glossary 313
Indax 327

Chapler 1

Chapter 2

Chaopler 3

Chapter 4

Figures and tables

Proafoce xiv

Figure P-1

Table -1

Roadmap to the technical manuals xvii

The Apple IGS technical manuals xvi

About ProDOS 146 3

Figure 1-1
Figure 1-2

Peogramming levels in the Apple 1IGS 6
Example of a hierarchical file structure 8

ProDOS 14 Fles 17

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-3

Example of a FroDOS 16 file strocture 20
Automatic movement of EOF and Mark 23
Directory file format 27

Block organization of a directory file 28
Block organization of a standard file 29

ProDOS 14 and Apple llss Memaory 31

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Table 3-1
Tahle 3-2

Table 3:3

Apple IIGS memory map 32

PraDO5 16 and System Loader memory map 35

Pointers and handles 39

Memory allocatable through the Memory
Manager 40

Apple TGS memory units 33
ProD)O5 16 fixed locations 36

Memeary block amibules 37

ProDOS 14 and External Devices 41

Figure 4-1

Table 4-1

Irterrupt handling through ProDOS 16 48

Smartport number, slot number, and devies
number assignments 46

xl

Chapler 5

Chapler &

Chopher 14

Chapter 15

Chapter 16

ProDOS5 16 and the Operaling Environment 51

Figure 5-1 Boot initialization sequence 57
Figure 5-2 Startup program selection 53
Figure 5-3 Rur-time program selection (QUIT call) 63

Table 5-1 Contents of a complete Apple 1IGS system disk 53

Table 5-2 Required contents of an Apple 1G5 application
systern disk 55

Table 5-3 Examples of prefix use 66

Tahle 5-4 Initial ProDOS 16 prefix values 67

Table 5-5 Initial ProDOS & prefix and pathname values 63

Programming With ProDOS 16 73
Pigure 6-1 Automatic direct-page/stack allocation 76

Table 6-1 Apple 11GS equivalents to ProDOS 8 global page
information 80

introduction lo the System Loader 181

Figure 141 Loading a relocatable segment 188
Table 14-1 Load-segment/memory-block relationships (at load
time) 186

Systemn Looder Dota Tables 191

Figure 15-1 Memory Segment Table entry 192
Figure 15-2 Jump Table Directory entry 194

Figure 15-3 Jump Table entry {unloaded state) 195
Figure 1544 Jump Table entry (oaded state) 197
Figure 15-5A How the Jump Table works 108

Figure 15-5B How the Jump Table works 199

Figure 156 Pathname Table entry 200

Figure 157 Mark List format 202

Programming With the System Looder 203
Table 16-1 System Loader functions categorized by caller 210

Appendiz A ProDOS 14 Fle Orgonization 253

Figure A-1 Block organization of a volume 254

Figure A-2 Dhirectory file format and organization 255
Figure A-3 The volume directory header 257

Figure A-4 The subdirectory header 259

Figure A-5 The file entry 262

Figure A-6 Format and organization of a seedling file 270
Figurne A-7 Format and organization of a sapling file 271
Figure A-B Format and organization of a wee fle 272
Figure A-9 An example of sparse file organization 274
Figure A-10 File Mark format 275

Figure A-11 Date and time format 276

Figure A-12 Access byte formar 277

Table A-1 Storage type values 276
Table A-2 ProDOS file types 278

Appendix B Apple Il Operating Systems 281
Table B-1 Tracks and sectors 1o blocks (140K disks) 284

Appendix T Tha ProDOS 16 Exercisar 289
Table C-1 ASCII characier set 292

Appendix D System Loader Technical Data 295

Figure D-1 Segment kind format 296
Figure [-2 User ID format 301

Preface

The Appde IFGS Prol08 16 Reference is a manual for software

developers, advanced progmmmers, and athers who wish o

understand the technical aspects of the Apple 1IGS™ operating

system. In particular, this manual will be useful to you if you want o

write

O a stand-alone program that automatically runs when the
computer 15 staned up

a routing that catalogs disks, manipulates sparse files, or
olherwise interacts with the Apple 11GS file system at 3 basic level

an interrupt handler
a program that loads and runs other programs

any program wsing segmented, dynamic code

‘The functions and calls In this manual are in assembly lnguags
format. If you are programming in assembly language, you may use
the same format 10 access operating system features. I you are
programming in 4 higher-level language Cor if your assembler
includes a ProD05® 16 macro library), you will use library Interface
routines specific 10 your langueage. Those library routines are not
described here; consult your langudge manual

Y

Road map to the Apple IIGs technical
manuals

The Apple 1G5 personal computer has many advanced features,
making it more complex than earlier models of the Apple® I1. To
describe it fully, Apple has produced a suite of technical manuals,
Depending on the way you intend 1o use the Apple IGS, vou may
need to refer to a select few of the manuals, or vou may need o refer

1o most of them.,

The technical manuals are listed in Table P-1. Figure P-1is a
diagram showing the relationships among the different manuals

Table P-1
The Apple llss technlcal manuals

TiHe

Subject

Technical Imtraduction to the Apple HGs

Apple I1GS Hardware Reference

Apple [IGS Firmware Reference

FProgrammer'’s Infroduction to the Apple G
Apple HGS Toolbox Reference: Volumes 1 and 2
Apple IIGS Programmer's Worlshaop Reference
Apple I1GS Programmer's Workshoh Assemblor Reference
Apple TGS Programmers Workshop C Reference
Prolx08 & Technical Reference Manual

Anple [IGE Pro0S 16 Reference

Human Imferface Guidelines

Apgle Numerics Manual

wvl Frafoce

What the Apple 0GS is

Machine internals—hardwaire
Machine internals—{irmware
Concepts and 2 sample program
How to use the Apple [IGS tools
The development environment
using the APW assembler

Using C on the Apple 1IGS

Standard Apple Il operating system
Apple IIGS operating system and Ioader
Guidelines for the desktop merface

Numerics for all Apple computers

Ta stort finding ot
about the Apple IG5

Ter beam how
the Appla IG5 works

To #hart learming
o program the Apole IG5

To use The toolkioy

To use the developrran
anvironomes

To eparote on filee —

Towse C

To usa
cssernibly language

Figure P-1
Roodmap fo the fechnical monuals

Road mop to the Apple lies technical manuois

xvll

xvlil

Prafoce

How to use this manual

The Apple ITes ProDX 16 Refererce is both 2 reference manual
and a learning toal, It is divided into several pans, to help you
quickly find what you need.

0 Part 1 describes ProDOS 16, the central pan of the Apple 1IGS
Dperating syslem

O Pan IT lists and explains the ProDOS 16 operating system calls

o1 Part 11 describes the System Loader and Hsis all loader calls

O The final part consists of appendixes, a glossary, and an index

The first chapter in each part is introductory; read it fiest if you are
not already familiar with the subject. The remaining chaplers are
primarily for reference, and need not be read in any particular
order, The PmlDOS 16 Exerciser, on a disketle included with the
manual, provides a way (o practice making ProDOS 16 calls befose
actually coding them

This manual does nol explain 65C816 assembly language. Refer 1o
Appie G5 Programmer’s Workshop Assembler Seference for
information on Apple 1IGS assembly language programming.

This manual does not give a detailed description of ProDOS B, the
Apple [operating system from which ProDOS 16 was derived, Fora
synopsis of the differences between ProDOS 8 and ProDOS 16, see
Chapter 1 of this manual. For more detalled information on
ProD0S 8, sec ProDOS 8 Technical Reference Manual

Other materials you'll need

Hardware and software

To use the products described in this manual, vou will need an
Apple TIGs with at least one extermal disk drive (Apple recommends
two drives). Prold0S 16 and the System Loader require only the
minimum memory configuration (256K RAMD, although Apple 1G5
Programmer's Workshop and many application programs may
fequire more mMEmory.

You will also need an Apple 11GS system disk, A system disk contalns
Prol}05 16, ProDOS 8, the System Loader, and other system
software necessary for proper functioning of the computer. A
system disk may also comtain application programs,

If you wish 1o practice making ProDOS 16 operating system calls you
will need the Prol»05 16 Exerciser, a program on the diskene
included with this manual

Publications

This manual is the only reference for ProDOS 16 and the System
Loader, You may find useful related information in any of the
publicatons listed under “*Hoadmap to Apple 11GS Technical
Manuals® in this preface; in particular, you may wish to refer 1o the
following:

m The technical introduction: The Technical miroduction fo
the Apfile TGS is the first book in the suite of wechnical manuals
about the Apple 1IGS, It describes all aspects of the Apple 11GS,
including its features and’'general design, the program
environments, the wolbox, and the development environment

® The programmer's introduction: When you start writing
programs for the Apple 1G5 |, the Programmer's Introduction fo
the Apple IS provides the concepts and guidelines you need, It
is a starting point for programmers wriling event-driven and
segmented applications that use routines in the Apple 1165
Toolbox.

B The firmware reference manual: The Afple TGS Firmuare
Reference describes the routines that are stored in the machine's
read-only memory (ROMY, it includes information about
internapt routines and low-level 140 subroutines for the serial
ports and disk port. The Firmware Reference also describes the
Monitor, a low-level programming and debugging aid for
assembly-language programs,

® The woolbox manuals: Like the Macintosh™, the Apple 1G5 has
a built-in toolbox. The two volumes of the Apde TGS Toolbox
Heference inroduce concepts and terminology, show how to use
the tocls, and tell how to write and install your own ool set They
also describe the workings of some of the system-ievel 1ool sets,
such as the Memory manager, that interact closely with proD3OS
16 and the System Loader.

COther materials you'll need ®ix

K

Praloce

s The Programmer's Workshop manuals: The development
environment on the Apple TGS is the Apple IG5 Programmer's
Workshop (AFW), APW is a set of programs that enable you o
create and debug application programs on the Apple N1GS. The
Apple [IGS Programmer’s Workshop Reference includes
information about the parts of the workshop that are ;
independent of programming language: the shell, the m.‘n'rnr, the
linker, the debugger, and the utilities. In addition, there is a
separate reference manual for each programming language. The
manuals for the languages Apple provides are the Apple IG5
Programmer's Workshop Assembler Reference and the Apple
HiGs Programmer's Workshopy © Reference.

8 The ProD0S § manual: ProDOS5 B (previously called just
P08 is compatible with all Apple 1l computers, including the
Apple TGS, As a developer of Apple [IGS programs, you may
need to refer o the ProDOS & Techaical Reference Manual it
you are developing programs to run on standard Apple I's as
well as on the Apple 1IGS, or il you ae converting a Prolx5 8-
based program to nen under ProDOS 16.

Notui__i;ns and ;::nnvenfians

To help make the manual more understandable, the following
conventions and definivons apply throughout.

Terminology

This manual may define certain terms, such as Apple [1 and
Pral0s, slightly differently than what you are used 1o Please note:

m Apple Il: A general reference 1o the Apple [T family of
computers, especially those that may use ProlX25 8 or ProlXO5
16 as an operating system, It includes the 64k Apple 11 Plus, the
Apple Tic, the Apple Ilc, and the Apple [1GS.

s standard Apple I: Any Apple I computer that is mot an Apple
1G5, Since previous members of the Apple 11 family share many
characteristics, il is uscful to distinguish them as a group from the
Apple 1G5, A standard Apple 11 may also be called an 8-bit Apple
i because of the &hit regisiers in iis 6502 or 65002
I'I'IIILTUFIPI.":-I.'I." S50,

Imporant

Warning

8 ProDOsS: A general term describing the family of operating
systems developed for Apple 11 computers. It includes both
ProDOS 8 and ProDXOS 16; it does not include DOS 3.3 ar 505

® ProDOS 8 The 8-bit Prol}0S operating system, through version
1.2, originally developed for standard Apple 11 compulers but
compatible with the Apple 11GS. In previous Apple 11
documentation, ProDOS 8 is called simply ProDos,

® ProDOS 16: A 16-bit operating system developed for the Apple
[IGE computer, It is the system described in this manual

irpogruphl-t: conventions

Each new lerm introduced in this manual is printed first in bold
type. That lets you know that the term has not been defined earlier,
and also indicates that there s an entry for it in the glossary,

Assembly language labels, entry points, routine names, and file
mames thal appear in lext passages are printed in a special typeface
(for example, name_length and GET _ENTRY). Function names
that are English language terms are printed with initial caps (for
example, Load Segment By Number). When the name of a label or
variable is used to mean the vabie of that variable rather than is
name, the word is printed in italics (for example, “the first
name_lemgth bytes of this field contain the volume name i X

Watch for these
The following words mark special messages to you

Nate: Text set off in this manner—with a word or phrase such as
Note or By the way—presents sidelights or interesting points of
information.

Taxt set off In this manner—with the word Imparant —presents
impartant Information or Insfructions.

Teot st off In this manner—with the ward Wamlng —indicates
potential sedous probdems.

Notafions and conventions xx|

How ProDOS 16 Works

This pan of the manual gives a general description of ProDOS 16.
Profio5 16 is the disk operating system for the Apple 11G5; it
provides file management and input/output capabilites, and
contrels certain other aspects of the Apple 11G5 operatng
environment.

Chﬂ pter I This chapter introduces ProDOs 16, It gives background

information on the development of Prol0OS 16, followed by an
overview of ProDOS 16 in relation to the Apple 1165 A brief
comparison of ProDOS 16 with ProDOS 8, its closest refative in th

Apple 15 followed by a reference list of the most pertinent
Abuuf PTODOS 16 S I owed by a reference list of the most pentine

The chapler's orgar
wi

hly parallels thag of Part | as a
u to the appropriate chapter for more
information on each aspect of ProDOS 16

ale, Bach section refes yr

Background

The Apple [GS is the late i
the 65C816, is a successor 1o the standard Apple [1s' 6502 and
functions in both &-bit (6502 emulation) mode and 16-bit {native)
mode (see Technical miroduction fo the Apple IFGs). In
secordance with the desipn philosophy governing all Apple I
family products, the Apple TGS is compatible with standard

Apple I softwire—most presently available Apple 11, Apple Tlc,

and Apple le applications will run without modification on the
Apple 1IGS

er, Its microprocsssor,

retain this
Apple TGS requines two separile operaling sysie
and ProldOs 16

mpatibility while adding new features, the
D0 B

Prol30% & is the operating system for standard Apple 11
compauters. The Apple TIGS uses Prol0s 8 and puts the processo
into emulation mode in order to nan standard-Apple 11

applications,

ProDOS 16 is a newly developed system; it takes advantage of
Apple TGS fros that standard Apple 1T computers do not

hawe, | = 1165 uses ProDOS 16 and puts the processor into
native ma in order to run Apple [1GS applications

3 4 Part |: How ProlDOSs 16 Works

The user need not wormy abour which operaling system is active at
any one time, Whenever the Apple 11G5 loads an application, it
automatically loads the proper operating system for it

PraDOS 8 on the Apple 1IGS functions identically to Pral305 8 on
cther Apple I computers, For a complete description of ProDOs 8,
see Prof08 8 Technical Reference Manual

What Is ProDOS 167

Prol}0s 16 is the central pan, or kernel, of the Apple 1IGS
operating system. Although other software components (such as the
System Loader described in this manual) may be thought of as parts
af the overall operating system, ProDOS 16 is the key component. 1t
manages the creation and modification of files. It accesses the disk
devices on which the files are stared and retrieved, |1 dispatches
interrupt signals 1o Interrupt handlers. It also conteols cernain
aspects of the Apple 1GS operating environment, such as patfiname
prefixes and procedunes for quitting programs and staning new
s,

Programming levels in the Apple lics

Figure 1-1 is a sim|

plified lagical diagram of the Apple 11GS, from a
programmer’s point of view, Boxes representing parts of the system
form a verical hierarchy; arrows betwesn the boxes show the flow of
control or execution from one level to the next. At the highest level
is the programmer or user; he directly manipulates the execution of
the application program that runs on the machine. The

application, in turn, interacs directly with the next lower level of
saftware—ihe Operating system. The operating system interacts with
the very lowest level of software in the machine: the basilt-in
firmware and toolbox routines. Those routines directly manipulate
the switches, registers, and input/output devices that constitute the
computer's hardware

Chapter 1: Akout PraDos 14 5

(ool cok)
(character des

oesCo
accesil

v
. :
nfomupl h avents
Hordwore pr——y
Figure 1-1

Progromming levels in the Apple Bies

This hierarchical view shows that the operating system i an
inlermediary between the application program and d'u: computer
hardware, A program need not know the details of mc.imdu:l
hardware devices It acoesses; instead, it makes Up::rjln:lg Sysiom
calls, The operating system then translates those calls into the
proper instructions for whatever devices ane connected 1o the
SYSiEm.

The lowest software level, between the operating system and .
hardware, is extensively developed in the Apple I1GS. It consists of
two pans; the firmware, a collection of raditonal .H{'}M-bﬂscd
routines for pedforming such tasks as character 170, internipt o
handling, and memory manipulation; and the toolbox, a]armi. s
of assembly-language routines and macros useful to all levels o
software, As the arrows on Figure 1-1 show, ProDOS 16 accesses the
firmware/tools level of the Apple 1IGS directly, but so do _
application programs. In other words, for tool calls and ﬁ_‘;xmﬂ
wypes of /0, applications bypass ProDOS 16 and interact directly

with bowe-level system softwane.

Part | How ProDOS 16 Works

The arrows pointing symeard along the diagram show a counterflow
of information, in which lower levels in the machine notify higher
levels of impartant hardware conditions. Interropts from
hardware devices are handled both by firmware and by ProD{OS 16;
events are similar (o interrupts but are handled by applications
through tool calls

Disks, "ll-'l-.'.-I:]l..l.l"l"‘iES. and files

ProDOS 16 communicates with several different types of disk drives,
but the type of drive and its physical location (slot or port number)
need not be known 1o a program that wants to access that drive.
Instead, 2 program makes calls 1o ProlDOS 16, identifying the disk it
wanis (o access by iis volume name or device name.

Information on a volume is divided into files, A file is an ordered
collection of bytes that has several awributes, including a name and
a file type. Files are either standard fles {containing any type of
code o data) or directory files (containing the names and disk
locations of other files), When a disk is initially formated, its
volume directory file is created; the volume directory has the
same mime as the volume iself

ProlOs 16 suppons a hierarchical file system, meaning that
volume directories can conlain the names of either files or other
directories, called subdirectories; subdirectorics in tuen can
contain the names of files or other subdirectories. In a hierarchical
file system, a fAle is identified by is pathname, 3 sequence of file
names starting with the volume directory and ending with the name
of the file. Figure 1-2 shows the relationships among files in a
hierarchical file system

Chapter 1: About ProDas 146 7

Flgure 1-2)
Exarmpie of a hlercrchicol fle strochure

See Chapter 2 and Appendix A for denailed information on Prol)OS
: “hapter 2 ar :
16 file structure, organization, and formats,

Memory use

ProfX3S 16 and application programs on the Apple TGS are
relioved of most memory management tasks, The Memory :
Manager, an Apple TIGS ol set, allocates all memory space, Mdf'LPﬁ
track ol available memory, and [nees memory no longes necde .:n_.'
programs. If a program needs to allocate some memary s].l:;_mc", It
requests the space through 3_-_':4|| o the :'-1|_'|1'|n:."r' Manager, t'-l-.ml-\n
program makes a ProDOS 16 call that resulis in nnenu«.ar!.: allocation,
ProlH3S 16 requests the space from the Memory Mamager and
allocates it to the program

The Memory Manager is described further in Chapter 3 of this
manual, and In Appe s Toolbax Reference

Port I How ProDos 16 Works

External devices

Frold2s 16 communicates only with block devices, such as disk
drives. Programs that wish o acoess character devices such as
printers and communication pors must do so directly, either
through the device firmware or through Apple IG5 Toolbox
routines writlen for those devices, See Apple TGS Firmuare
Reference and Apple Hcs Toolbox Reference

Lertiin devices generite intermupts to el the computer that the
device needs anention. ProDOS 16 is able to handle up o 16
nterrupling devices, You may place an intermupt-handling routine
into service through a ProDOS 16 call; vour routine will then be
called each time an intermapt ocours, I you install more than one
rouine, the routines will be polled in the order in which they were
inszalled

You may also remove an interrupt routine with a ProDOS 16 call, In
writing, installing, and removing interrupt handling routines, be

sure 10 follow the conventions and requirements given in Chapter 7
“Adding Routines to ProDO5 16,*

ProDOS 16 and ProDOS 8

ProDO§ 16, although derlved [rom ProDOS 8, adds several
capabilities 1o support the new features and operating
configurations of the Apple IG5, For example:

1 Because the 63C816 microprocessor functions in beth 8-hit
(emulation) and 16-bit (native) execution modes, ProDOS 16 is
designed to accept system calls from applications running in
gither 8-hit or 16-bit mode, ProDdOS 8 accopes system calls from
applications running in &-bit mode only

Because the Apple 11GS has a total addressable memory space of
16Mb, ProDOS 16 has the ability to accept system calls from
anywhere in that memory space {addresses up 1o SFF FFFF), and
those calls can manipulate data anywhere in memary. Under
ProDO5 8, system calls can be made from memary addresses
below SFFTF only—the lowest 64K of memory

Chapter 1: About ProDos 14 o]

10

ProD0Os 16 relies on a sophisticated memory management
system (see Chapter ¥), instead aof the simple global page bit map
used by ProlxO8 8

3 Applications under ProDOS 16 must make calls 1o :1[|'r..'~:.".ﬂt.‘.
memory or to access system global variables, such as date and
time. svsem level, and 140 buffer addresses, L'rr:lDD’.S.S
maintains that information in the system global page in memory
bank $00, but under Prol}08 16 the global page {5 not suppored

O ProDS 16 also provides several programming convenionoes
aot available under ProDOS B, including named devices and
multiple, user-definable file prefises

‘U pwu?c omp?lbilihr

In a strict sense, PralOs 16 is not upwardly compatible from
PralH05 8, Programs written o function under Pm].‘-IU_S S_t:n_ an
Apple 11 will not run on the Apple [1GS, rirtder Prolios J:l:’1. withoul
some modification. Conceptually, however, ProDOS 16 &
upwardly compatible from ProD}OS B, in at least two ways:

1. The two operating systems are themselves similar in structure

The set of ProlOS 16 system calls is a superset of the PEDDOS

8 calls; for (almos() every ProDOS B system call, there i5 2

functionally equivalent ProDOS 16 call, usually with the same

NAmE

The calls are made in nearly identical ways in both ProDOS

systems, and the parameter blocks for passing values to

functions are lakd out similary

O ProDOS 16 uses exactly the same file system as ProDOS 8, It
can read from and write to any disk volume produced by
ProDO5 B

2. Both operating systems are included with the Apple 1165, Most
applications written for ProDOS 8 on standard Apple 11 .
compouters will Fun without modification on the Apple IIGS—not
uml::.r PraDOs 16, but under Prol05 8.

Part |: How ProDOSs 16 Warks

Thus, even though the individual operating systems are not
completely compatible, their stim on the Apple 11Gs computer s
completely upwardly compatible from other Apple I computers.
You never need be concerned with which operating system is
functioning—if you run an Apple I application, ProDOS 8 is
automatically loaded; if you run an Apple IIGS application, ProDOS
16 is automatically loaded. Chapter 5 explains the details of how
this is accomplished,

Downward compatibility

FraD05 16 is not downwardly compatible to ProDdOS 8,
Applications written for ProDO8 16 will not run on the Apple [1, Tlc,
or lle. The extra memory needed by Apple 11G5 applications and
the additional instructions recognized by the 650816
microprooessor make applications wrinen for ProDd05 16
incompatible with standard Apple 11 computers

Eliminated ProDOS 8 system calls

As mentioned under *Upward Compatibility,” maost ProDOS 8 calls
have functionally exact equivalents in ProDOS 16 However, some

ProDO5 8 calls do not appear in ProDOS 16 because they are
unnecessary, The eliminated calls are

RENAME The ProDOS 16 CHANGE_PATH call performs the
same function

GET_TIME Under ProlH05 16, the ime and date are obtained
through 2 call 1o the Miscellaneous Tool Set (see
Apple IfGs Toolbox Keference)

SET BUF Under ProDO5 16, the Memory Manager, rather
than the application, allocates file 'O buffers.

GET_BUF This call is unnecessary under Prol¥25 16 because
the OPEN call returns 2 handle to the file's /O
buller

ONLINE This call is replaced in ProfX0S 16 by the VOLUME
call

Chapter 1: About ProDos 16 1n

New ProDOS 16 system calls

The fellowing operating system calls, not recognized by ProlDO5 8,
are part of ProDos 16;

CLEAF BACKUP BIT (clears one of a file's acoess bits)

CHANGE PATH {changes the pathname of a file within 4
volume)
SET LEVEL (se1s the system file level)
-"E"‘:LEUE.L (returns the system file levelD)
GET DEV_NUM (retumns the device number for 2 named
device)
GET_LAST DEV (returns the number of the last device
accessed)
| FORMAT (formats a disk volume)
GET_MNAME (returns the filename of the curment
application)
GET_BOOT_VOL (returns the name of the volume that
containg ProDOS 16}
GET_VERSION (returns the cusrent PeoDOS 16 version)

These and all cther ProDOS 16 calls are described in detail in
Chapters 9 through 13

Other features

Like ProDOS 8, ProDOS 16 supports block devices only, It does not
support 1/0 operations for the buili-in serial ports, mouse, Apple
Deskiop Bus™, sound generation system, or any other nonblock
device, Applications must access these devices through the device
firmrware or the Apple G5 Toalbox,

Pral®35 8 and ProlX05 16 have identical file structures. Each can

read the other's hiles, buat

1 Prof06 16 load files (ypes $B3 - $BE) cannot be executed
under Prol0O5 8

1 ProDd% B system ffles (ype $FF) or binary files (ype $06)
cannot be executed under ProDOS 16

Part I How ProDdo8 14 Works

The default operating system on the Apple 11GS (afier a cold or warm
restart} can be either ProDdOS 8 or ProDOS 16, depending on the

organization of files on the starup disk. See *System Startup” in
Chapter 5.

Running under ProDOS 8 does not disable memory bevond the
addresses ProDdOS 8 can reach, nor does it disable any other
jilvanced :'-'5.|':||'I|E': 1635 feammres. All SYSIEM FesOUrees 28 3lwavs

available, even though an application itself may make use of only
the *ProfM25 B-standard Apple 11" portion.

Summary of ProDOS 16 features

The following lists summarize the principal features of ProDOS 16

Refer 1o the glossary and to appropriate chapters for definitions and
explanations of werms that may be unfamiliar to vou

In general, ProDOS 14...
is a single-task operating system
supports a hierarchical, ree-structured file system

2 allows device-independent 140 for block devices

ProDOS 16 system calls, ..

I use the J5L instruction and a parameter block
[meturn error status in the A and P registers
O preserve all other CPU registers

1 can be made from 65CB16 native mode or 6502 emulation mode
1 can be made from anywhere in memory

1 €an access paramater blocks that are anywhere in memory

I cin use pointers thal paint anywhere in memory

0 can ransfer data anywhere in memory

Chaptar 1: About ProDos 14 13

14

The ProDOS5 14 file management system...

uses a hierarchical file structure
supports 9 pathname prefixes
allows byte-oriented acoess (o both direciory files and data files

allocates files dynamically and nencontguously on block
devices

supports sparse fikes

provides buffers automatically

supports acoess attributes that enable/disable
O reading

0O wriling

O réfarming
O destroying
& badkip

assigns a system file level 1o open files

1 awlomatically marks files with date and time

uses 2 512-byte block slze

allows volume sizes up to 32 megabytes
allows data file sizes up o 16 megabyies
allows up to 14 volumes on line

allows up 1o B open files

allows 64 characters per pathname
allows fd-character prefixes

allows 15 characters per volume name

1 allows 15 characters per file name

The ProDOS 16 device management system...

supports the ProDROS block device protocol
names each block device

1 allows 15 characters per device name

allows 14 devices on line simullaneously

provides a FORMAT call to initialize disks

Part I: How ProlO5 14 Works

The ProDOS 16 interrupt management system...
1 receives hardware interrupts not handled by firmware
dispatches interrupts o user-provided interrupt handlers

1 allows installation of up (o 16 interropt handlers

For memory management, ProDOS 14...

1 dynamically allocates and releases system buffers (through the
Memory Manager)
can directly access up to 229 bytes (16 megabytes) of memory

T can run with a minkmum of 256K memory

In addition, ProDOS 14...

1 provides a QUIT call to cleanly exil one program and stan
another, with the option of returning later 1o the guitting
program

Chapter 1: About ProDos 14

Chapter 2

ProDOS 16 Files

1]

The largest past of ProDOS 16 is its file management system. This
chapter explains how files are named, how they arc_crcarcd _a.nd
used, and a linle about how they an: organized on disks. It discusses
PraDOs 16 file access and file housekeepring calls.

For move details on file format and organization, see Appendix A

Usi ng files

Filenames
Every ProDOS 16 file, whether it Is a direciory file, data file, or
program file, is identified by a filename. A ProDOS 16 filename
can be up to 15 characters long. Tt must begin with a letter, and may
contain uppercase leners (A-Z), digits {051, and periods ()
Lowercase letters are automatically converied o uppercase. & .
filename must be unigue within its directory. Some examples (laken
from Figure 2-1) are

MEMOS

CHAP11

. FROGAAM

An entire disk is identified by its volume name, which is the
flename of its volume directory, In Figure 2-1, the disk’s volume
name i5 /DISKRE

Part |- How PraDOs 18 Works

Pa!ﬁnumas

A ProDOS 16 pathname is a series of filenames, each preceded by a
stash (/). The first filename in a pathname is the name of a volume
directory. Successive filenames indicate the path, lrom the volume
directory o the file, that ProDOS 16 must follow o find a particular
file, The maximum length for a pathname is 64 characers,
Including slashes. Examples from Figure 2-1 are

Il calls that require you o name a file will accept either a full
pathname or a partial pathname. A partial pathname is a portion
ofa pathname; you can tell that it is not a full pathname because it
doesn't begin with a slash and a volume name. The maximum
length for a partial pathname is 64 characters, including slashes

These partial pathnames are all derved from the sample
pathnames abowe:

FralO5 16 automatically adds a prefix 1o the front of partial
pathnames o form full pathnames. A prefix is 2 pathname that
indicates a directory; it always begins with a slash and a volume
name, Several prefixes are stored internally by ProDOS 16,

For the partial pathnames listed above to indicate the proper files
Lhesir prefixes should be set 1o

KA6/CHRRTS/
BE/
BES

G/MEHOS

respectively, The slashes at the end of these prefives are optional;
however, they are convenient reminders that prefixes indicate
directory files

The maximum length for & prefix is 64 characters. The minimum
length for 2 prefix i5 #ero characters, known as 2 null prefix. You
set and read prefixes using the calls SET PREFIX and
GET_PREFIX.

Chapter 2: ProDOS 14 Fles %

& Note Because both a prefix and a partial pathname can be up
to 64 characters long, it is possibe 1o have a pathname (prefix
plus partial pathname) whose effective length is up to 128
characters,

Prol¥05 16 allows you 1o sct mores than one prefix, and then refier 1o
each prefix by code mumbers, When, as in the a._buw: examples, no
particular prefix number is specified, ProDOS 16 adds the default
prefix 1o the partial pathname you provide. See Chapaer 5 for a
mare complete explanation and examples,

Figure 2-1 fllustrates a hypothetical directory stracure; il coniains
all the files mentioned above, Note that, even though there are two
files mamed FROFIT . 3RD in the volume directory /DISK.BE/,
they are easily distinguished bocause they are in |JiIT--rn_n:
shibdirectories (MEMDS/ and CHARTS /). That is why a full pathname
is necessary o completely specify a file.

PROEN 3D |

=
] SALES M

\ |

Fgure 2-1
Example of a PreDOs 16 file structure

Part I: How ProlOs 16 Works

Creating files

A file is placed on a disk by the CREATE call. When you create a
file, you assign it the following properties

0 A pathname This pathname is 2 unigue path by which the file
can be identified and accessed. This pathname must place the
file within an existing directory.

1 An access byte, The value of this byte determines whether or
not the file can be written to, read from, destroved, or renamed.

0 A file type. This byte indicates 1o other applications the type of
information to be stored in the file, It does not affect, in any way,
the contents of the file.

A storage type. This byte determines the physical format of the
file on the disk. There are only two different formats: one is used
for directory files, the other for non-directory files

When you create a file, the properies listed above are placed on the
disk, along with the current system date and time {called creation
date and creatlon tme), in a format as shown in Appendiz A
Once a file has been created, it remains on the disk until it is deleted
(using the DESTROY call).

To check what the properties for a given file are, use the
GET_FILE_INFO call. To alier its properties, use the
SET_FILE_INFO call To change the file's name, use the
CHANGE _PATH call,

Opening files

Before you can read information from or write information o a file
that has been created, you must use the OPEN call to open the file
for access. When you open a file you specify it by pathname. The
pathname you give must indicate an existing file; the file must be on
a disk mounted in a disk drive.

The OPEN call returns a reference number (ref” rmum) and the
Incation of a bufler (fo_beyffer) 1o be used for transferring data o
and from the file. All subsequent references to the open file must

use its reference number, The file remains open until you wse the
CLOSE call.

Chapter 2: ProDO5 14 Files 21

22

Fach open file's 1/0 buffer is used by the system the entire tme the
file is open: Thus, [0 cORSErve memory space, it is wise 1o keep as
few files open as possible. ProDOS 16 allows 2 maximum of 8 open
files at a time

When you open a file, some of the file's characteristics are placed
into a region of memory called a file control hiock. Several of
these characieristics—the location in memory of the file's buller, a
pointer 1o the end of the file (the EOF), and a pointer 1o the current
positicn in the file (he fie Mark)—are accessible o applications
via ProDOS 16 calls, and may be changed while the file is open

1t is important to be aware of the differences berwveen the file as it

exists on the disk and when it is open in memory, Although some of
the file's characteristics and some of its data may be in memory at

*any given time, the file isell sl resides on the disk. This allows

ProDOS 16 1o manipulate files that are much larger than the
computer's memory cApacity. As an application writes to the file
and changes its characteristics, new data and characleristics are
wiitien to the disk

Tl.'n.a _EIDF and Mark

To aid reading from and writing to files, each open file has one
pointer indicating the end of the file (the EOF), and another
defining the current position in the file (the Mark). Pro[¥25 16
mowves both EOF and Mark automatically when necessary, but an
application program can also move them independently of
ProDHs 16,

The EOF is the number of readable byles in the file. Since the first
byte in a file has number 0, the EGF, when treated as a poiner,
points one position past the last character in the file

When a file is opened, the Mark is set to Indicate the first byte in thie

file. It is automatically moved forward one byte for each byte wrillen

to or read from the Tile. The Mark, then, always indicates the next
byie to be read from the file, or the next byte position in which 1
wrile new data, [t cannol exceed the EOF,

Part I: How ProDOS 14 Waorks

If during a wrile operation the Mark meets the FOF, both the Mark
and the EOF are moved forward one position for every additional
bryte written 1o the file. Thus, adding bytes to the end of the file
automatically advances the EQF to accommodate the new

information. Figure 2-2 illustrates the relationshi
g p between the Mark

(a3 Beginning position

MARK

(b.) After writing or reading two bytes:

P

S MARE

() After writing two more bytes

1

Figure 2-2
Automatic movement of ECF and Mark

An Izppli::umn can place the EOF anywhere, from the current Mark
position o the maximum possible byte position, The Mark |:';m. e

[_ﬂau:_fl anywhere from the first byte in the file 1o the BOF, These two
lunctions can be accomplished using the 38T EOF and SET MARE

calls, The current values of the EOF and the Mark can be o

determined using the GET_EOF and GET MARK calls.

Chapter 2: ProlOS 14 Files 23

24

READ and WRITE calls to ProDOS 16 transfer data between memory
and a file. For both calls, the application must specify three things
The reference number of the file (assigned when the file was
opened).

O The location in memory of a buffer (data buffer) that
contains, or 15 to contain, the ransferred data, Note that this
cannat be the same buffer (io_buffer) whose location was
returned when the file was opened

o ‘The number of bytes to be transfierned

When the request has been carred out, ProD05 16 passes back o
the application the number of bytes that it actually transferred

A read or wrile request stans at the current Mark, and continues wnil
the requested number of bytes has been transferred (or, on a read,
until the end-of-file has been reached). Read requests can also
terminate when a specified character is read. To tum on this feature
and set the character(s) an which reads terminate, use the NEWLINE
call. The newline read mode is typically used for reading lines of
text that are werminated by carriage returns,

& By the way: Meither a READ nor a WRITE call necessarily causes
a disk access. ProDOS 1O buffer for each open file is 1024 byles
in size, and can hold one block (512 bytes) of data; it is only
when a read or write crosses 3 block boundary that a disk acoess
s

Closing and I‘qu.il‘-!.ihg files

When you finish reading from or writing 1o a file, you must wse the
CLOSE call 1o close the file, When you use this call, you specify only
the reference number of the file (assigned when the file was
opencd),

CLOSE writes any unwrilten data from the file's 10 buller 1o the file,
and it updates the file's size in the directoey, if necessary. Then it
frees the 1024-byte buffer space for clther uses and releases the file's
reference number and file contral block. To access the file once
again, you have 1o reopen it

Part I How ProDO3 16 Waorks

Information in the file’s directory, such as the file's size, is normally
updated only when the file is closed. IF the user were [0 press
Control-Reset (rypically halting the current program) while a file is
open, data written (o the file since it was opened could be lost, and
the: infegrity of the disk could be damaged. This can be prevented
by using the FLUSH call

FLUSH, like CLOSE, writes any unwritten data from the fle's 170
bufTer 1o the file, and updates the file's size in the directary,
However, it keeps the file’s buffer space and reference number
active, and allows continued access to the file. In other words, the
fMe stays open. If the user presses Control-Reset while an open but
flushed file is in memory, there is no loss of data and no damage 1o
the disk

Both the CLOSE and FLUSH calls, when used with @ reference
number of 0, normally cause all open files 1o be dosed or Mushed
Specific groups of files can be dosed or Nushed using the sstem file
feved (see next),

ﬁlwals

When a file is opened, it is assigned a level, according to the value
of a specific byte in memory (the system file level. If the file level
i never changed, the CLOSE and FLUSH calls, when wsed with a
reference number of 0, cause all open files 10 be closed or Aushed
But if the level has been changed since the first file was openad,

only thase files opened when the file was greater than or equal (o the
current system file level are dosed or flushed,

The system file level feature may be used, for example, by a

controlling program such 45 4 BASIC interpreler to implement an

EXEC command:

1. The interpreter apens an EXEC program file when the level is
S00.

2. The interpreter then sets the level to, say, $07

W

. The EXEC program opens whatever files it needs,

b

. The EXEC program execules 2 BASIC CLOSE command, o
close all the files it has opened. All files at or above level $07 ame
closed, but the EXEC file itsell remains open

You assign a value to the system file level with 2 SET LEVEL call:
you obiain the current value by making a GET LEVEL call

Chopter 2: ProDOS 14 Flles 25

24

Part |

File format and organization

This ponion of the chapter describes in general terms the
organization of files on a disk. For more detailed information, see
Appendix A,

In general, structure refers in this manual o the hisrarchical
relatinnships among files—directories, subdirectories, and files
Format refers to the arrangement of information (such as headers,
pointers and data) within a fle. Cvganization refers o the manner
in which a single file is stored on disk, in terms of individual 5132-
byte hlocks. The three concepts are separate but interrelated. For
example, because of ProDOS 16° hierarchical file struchire, pan of
the format of a directory file includes pointers to the [iles within

sthat directory. Also, because files are orpanized a8 noNCONLGUOWLS

blocks on disk, part of the format of every file larger than one block
includes pointers to other blocks.

Directory files and standard files

Every ProDOS 16 file is a named, ordered sequence of bytes that
can be read from, and to which the mles of Mark and EOF apply.
However, there are two types of [es: directory files and standard
files. Directory files are special files that describe and point to
other files on the disk. They may be read from, but not written to
{except by ProDOS 16), All nondirectory files are standard files
Thr_"!.- may be read Froem and wrilten o

A directory file contains a number of similar elements, called
eniries. The first entry in a directory [ile is the header entry: it holds
the name and other properties (Such as the number of files stored in
that directory) of the directary file, Each subsequent entry in the file
deseribes and points (o some other file on the disk Figure 2-3 shows
the format of a directory file.

The files described and pointed 1o by the entries in a directory file
can be standard files or cther directory files

An application does not need 1o know the details of directory
format to access files with known names. Only operaticons on
unknown files (such as listing the files in a directory) requine the
application to examine a directory's entries. For such tasks, refer to
Appendix A

How ProDOS 16 Works

Standard files have no such predefined internal format: the
armangement of the data depends on the specific file type.

Directary File Standard Flles of
Dirsstary Files
Haodar Enbry FilE A
" FeEnty _'_._.___,_.---F"""'
(Fim &)
Fie 8
|

Figure 2-3
Directory file format

File organization

Because directory files are generally smaller than standard files,
and because they are sequentially accessed, ProDOS 16 uses a
simpler form of storage for directory files than it does for standard
files. Both types of files are stored as a set of 512-byte blocks, but the
way in which the blocks are amanged on the disk differs

A directory file is a linked list of blocks; each block in a directory file
contiins 1 pointer to the next block in the directory file as well a5 2
pointer (0 the previows block in the directory, Figure 2-4 illustrates
this organizalion

Chapter 2: Prol<d5 14 Files a7

[hast
BHockl

Block

]
0
5

Figure 2-4
Block organization of a directony fle

Diata files, on the other hand, are often quite large, and their
contents may be randomly accessed. It would be very slow 1o access
such large files if they were organized sequentially. Instead, ProDOS
16 stores standard files using a tree organization, The largest
pessible standard file has a master index block that points 1o 128
index blocks. Each index block points to 256 data blocks and each
data block can hold 512 bytes of data. The block organization of the
fargest possible standard fle is shown in Figure 2-5,

Block

55

Figure 2-5
Bleck ergonizaotion of a standard file

Most standard fles do ot have this exact organizaton. ProDOS 16
only writes 2 subset of this form to the file, depending on the
amount of data written. This technigque produces three distinct

ms of standard file: seedling, sapling, and tree [ies. All Lhree are
Appendix A

explained in

28 Part I: How ProDO5 14 Works Chapter 2: ProDOS 14 Flles)

30

Impariant

Sparse files

In maost instances a program writes data sequentially into a file. But
by writing data, moving the EOF and Mark, and then writing more
data, 2 program can also write nonsequential data to a file. For
example, 3 program can open a file, write a few characters of data,
and then move the EOF and Mark (thereby making the file bigger)
by an arhitrary amount before writing a few more bytes of daa
Cinly those blocks that contain nonzero information are actually
albocated for the file, so il may take up as few as three blocks on the
disk (a total of 1536 bytes), However, as many bytes as are specified
by the value of EOF {up 1o 16 megabyies) can potentially be read
from iL Such files are known as sparse fles, Sparse files are
explained in more detail in Appendix A.

In transfemng sparse files, the foct that more data can be read
from the file than octualy resides on the disk can couse a
problam, Suppose thot you wera trying to copy a sparse fie
from one disk to another, If you were fo read data from one file
and write It to another, the new fle would be much larges than
the oniginal because dota that 8 not actually on the disk can
pa recd from the file. Thus If your application ks golng 1o transfer
sporse fles, you must use the information In Appendix A fo
detarmine which blocks should be coplad, and which should
nat,

The file wility programs supplied with the Apple 0G5 automatically
preserve the structure of sparse files on a copy

Part I: How ProlO5 16 Works

EEmMrS

ProDOS 16 and Apple llcs
Memory

3

32

Strictly speaking, memory management s separate from the
operating system in the Apple 1G5, This chapter shows how
Prold8 16 uses memory and how it interacts with the Memaory
Manager.

Apple lics n;*amurf c?n_ﬁgurmlons

The Apple 1G5 microprocessor i capable of directly addressing 16
megabytes (16Mb) of memory. As shipped, the basic memory
configuration for Apple [1GS is 256 kilobytes (256K) of RAM and
128K of ROM, arranged within the 16Mb memory space a5 shown in
Figure 3-1

SED SFE SFF

Figura 3-1
Apple llss mamory map

Part | How ProDOos 16 Works

The total memory space is divided into 256 hanks of 64K bytes each
(see Table 3-1). Banks $00 and $01 are used for system software,
ProDOS 16 applications, and are the only memaory space occupied
by standard-Apple I programs running under ProDOS 8. Banks
SEG and $E1 are used principally for high-resolution video display,
additional system software, and RAM-based tools. Specialized
areas of RAM in these banks include 1/0 space, bank-swirched
memary, and display buffers in locations consistent with standard
Apple I memory configurations (see “Special Memory and
Shadowing," below), Banks $FF and $FE are ROM; they contain
firmware and ROM-based rools. For more detailed pictures of
Apple 1G5 Memory, see Technical mtrduction to the Apple GS,
Apple I1G8 Hardware Reference and Apple IS8 Firmware
Referenice.

Table 3-1

Appla Ics memory unifs

Unit Sire

nibble 4 bits (one-half byte)

byie B bits

word 2 bytes

long ward 4 bytes

page 255 byles

hlock 512 bytes (Tor disk storage)
bank 65,5360 bytes (256 pages)

With & 1-megabyte Apple IIGS Memaory Expansion Card, 16
additional banks of memory are made available: they are
numbered sequentially, from $02 10 $11. Expansion banks have
none of the spedalized memory areas shown for banks $00-501 and
$E0-3E1—all 64K bytes in each bank are available for applications.

Chapter 3: ProDOS 16 and Apple lles Memory 3

34

special memory and shadowing

For running standard Apple I software, the Apple 11GS memaory
configuration is set 5o that banks 300 and 301 are identical to the
Main and Auxiliary RAM and ROM on an Apple [Ic or an Apple lle
with extended BO-column card See Apple Ifc Technical Reference
Manual or Apple [fe Technical Reference Manual for details.
Because they are used by standard Apple 11 programs, both banks
£00 and $01, as well as the display pages in banks $E0 and $E1, ame
called special memory; there are restrictions on the placement of
cerain types of code in special memory, For example, any sysiem
saftware that must remain active in the standard Apple 11
configuration cannot be put in special memory. See “Memoary
Manager® in Apple UGS Toolbox Reference for more details

Shadowing is the term used to deseribe a process whereby any
changes made 10 one part of the Apple IIGS memory ane
automatically and simulanecusly made in another part. Shadowing
is necesssary because standard Apple 11 programs can direcly
access banks 500 and $01 anly, but all the fixed locations and data
structures needed by those programs are maintained in banks $80
and $E1 (see Appie [165 Hardware Reference). When the proper
shadowing is on, an application may, for example, update a display
location in bank $00; that information is automatically shadowed to
bank $E0, from where the video display is actually controlled

PraDO5 16 and the System Loader together occupy nearly all
adddresses from $DO00 through $FFFF in bath banks 500 and $01
This is the same memory space that ProDOS 8 ocouples ina
standard Apple IL: all of the language card area (addresses above
SD000Y, including most of bank-swilched memory.

In addition, Prol¥05 16 reserves (through the Memory Manager)
approximately 107K bytes just below $C000 in bank $00 (in the
region normally occupied by BASIC.SYSTEM in a standard Apple
11}, for 140 bulTers, ProDOS 8 interface tables, and other code

The part of ProDdOS 16 that controls loading of both ProDOS 16 and
ProDd0s B programs Is located in pans of bank-switched memory in
bariks $E0 and $E1. Other system software occupies most of the res
of the kinguage card areas of banks $E0 and $E1.

Part I How PraDCS 146 Works

2

None of these reserved memory areas is available for use by
applications

h

SED SET |

J SR (ProDid 14
]

000K} (Svsiam Laader)

Figure 3-2
PraDOS 14 and System Loader mernary mop

ErW points and fixed locations

Because most Apple 11GS memory blocks are movable and under
the control of the Memory Manager (see next section), there are
very few fixed entry points available o applications p-n_:g:?.l'rm]l:ri
References to fixed entry points in RAM are strongly dist[hjrﬁﬂl.‘l.‘.
since they are inconsistent with flexible memory management and
are sure to cause compatibility problems in future versions of the
Apple IG5, Informational system calls and referencing by handles

tsee “Pointers and Handles” in this chapter) should take the place
of access to flxed entry points. F

The sing!f.- supported System Loader entry point is $E1 0000, That
location is the entry peint for all Apple 1165 ool calls,

The ;:ngk suppored ProDOS 16 entry point is $E1 00AB. That
location [s the entry point for all PraDOS 16 calls. In addition,
PraDOS 16 supports a few other fixed locations in s bank SFJI
vector space. Table 3-2 lists them. .

Chaopter 3: PFroDOS 16 and Apple lss Memony as

Fart I

Table 3-2
ProDs 14 fied localions

Address range Elp|!l|"!ﬂ”ﬂ!|-

Entry vector for all Prolx05 16
sysiem calls

$E1 D0AB - $E1 00AB

LE1 00OAC - $E1 00B9 (reserved)

5E1 O0BA — SE1 ODBR Two null bytes (guaraniead to be
FET0R)

$E1 00BC 05_KIND byte—indicates the

currently running operating system
500 = ProDO5 8
501 = PralO5 10

$E1 QOBD 05_BoOT byte—indicates the
r operating system that was initially
booted
500 = Prolx05 B
501 = PraDO5 16
Flag word. The bits are defined as
follows:
bit 15 (ProDO5 busy Nagh
0 = ProD}% 16 5 not busy
1 = ProDOS 16 is busy
Hits 14 - O
{reserved)

$E1 O0RE - SE1 O0BF

The ProDOS busy flag is explained under “Making Operating
Systern Calls During Interrupts,” in Chapter 7.

& Note ProDOS 16 does sof suppor the ProDOS 8 global page or
any other fxed locations used by ProDOS 8

Me mory management

PraDOS 16 itself does no memory management. All :lf.lf‘.u:al_iurl and
deallocation of memory in the Apple 11GS is performed by the
Memaory Manager. The Memory Manager is an Apple 11G5 wal
set, Tor a complete description of its functions, see Apple (IGS
Toolbox Reference

Hen ProDOs 16 Works

Table 3-3
Memory block atfributes

The Memory Ma nogur-

The Memory Manager is a ROM-resident Apple 1168 toal set that
contrals the allocation, deallocation, and repositioning of
memory blods in the Apple 11GS, Tt works dosely with ProDOS 16
and the System Loader to provide the needed memory spaces for
loading programs and data and for providing buffers for
input/output. All Apple IG5 software, including the System Loader
and ProDOS 16, must obtain needed memory space by making
requests (calls) to the Memory Manager,

The Memory Manager keeps track of how much memory is free and
what pans are allocated to whom. Memory is allocated in blocks of
arbitrary length; each block possesses several attributes that
descrile how the Memory Manager may modify it (such as moving
it or deleting it), and how it must be aligned in memory (for
example, on a page boundary). Table 3.3 lists the Memory
Manager attributes that a memory block has

Aftribute

Explanation

fixed (ves/no)

fiwed address (ves/no)
fixed bank {ves/no)

bank-boundary limited Cves/ng)

special memory not usable (yvesfno)

page-aligned (ves/nod
purge level (0o 3)

locked (yes/nod

Must the block remain at the same location in
maemory?

Musst it be at a specific address?
Must it be in a particular memory bank?

It is prohibited from extending scross a bank
boundary?

Is it prohibited from residing in spectal memary
{banks 300, $01, and parts of banks $E0. $E77?

Must it be aligned o a page boundarny?
Can it be purged? If 50, with what priorin?

Is the block locked (temporarily fixed and
unpurgeable)?

Each block is also defined by it's User ID, a code number that
shows what program owns iL

Chopter 3: ProDOS 14 and Apple llss Mamaory a7

Besides creating and deleting memory blocks, the Memary
Manager moves biocks when necessary consolidate free

memoary. When i compacts memory in this way, it of course can
move anly thase blocks that needn't be fixed in location Therefore
as many memory blocks as possible should be movable (not fixed),
if the Memory Manager i3 (o be efficient in compaction

When 3 memery block is no longer needed, the memory Manager
gither purges it (deletes its contents bt maintains it existence) or
disposes it (completely removes it from memaory)

Fointers and handies

T acoess an entry point in a movable biock, an application cannct
use a simple pointer, since the Memory Manager may move the
block and change the entry point's address. Instead, each time the
Memory Manager allocates 3 memory block, it returns 1o the
requesting application a handle referencing that block.

A handle is 3 pointer 1o a pointer; it is the address of a fixed
{nonmovable) location, called the master pointer, thal contiins
the address of the block, If the Memory Manager changes the
location of the block, it updates the address in the master pointer;
the value of the handle itself is not changed. Thus the application
can continue to access the block using the handle, no mater how
aften the block s moved in memory. Figure 3-3 [lustrates the
difference between a pointer and a handle.

If 2 block will always be fixed in memory (locked or unmaovable), it
can be referenced by a poimer instead of by its handle. To obtain a
painter to & particular block or location, an application can
dereference the block's handle, The application reads the
address stored in the location pointed to by the handle—that
address is the pointer 1o the block. OF course, if the block is ever
moved that pointer is no longer valid

Pro[0% 16 and the System Loader use both pointers and handles 1o
reference memory locations. Pointers and handles must be at leas
three bytes long 1o access the full mnge of Apple IG5 memory
However, all pointers and handles used as parameters by Prol3OS
16 are four bytes long, for ease of manipulation in the 16-bit
registers of the 65C816 microprocessor

Part | How ProDOS5 16 Works

a. Painden Merany Siock

Walue of pointar =
Worling aodieéss of mamony bioci

Mol s Poindr 1

b. Hondle: p
Vg [H
vl of honde = H i
o e i i
~ 1l

— T I
> I |
Volue of moster poinfer =
curent shafing oddhess of
memony Diock

Figure 3-3
Palnters and handles

How an application obtains memory

Normal memaory allocation and deallocation is completely
aulomatic, as far as applications are concerned. When an
application makes a ProDOS 16 call that requires allocation of
memory {such as opening a flle or writing from a file to 3 memory
locaticn), ProDOS 16 fist obtains any needed memory blocks from
the Memory Manager and then performs its tasks. Likewise, the
System Loader requests any needed memory either disectly or
indirectly (through Pro[0S 16 calls) from the Memory Manager.
Conversely, when an application informs the operating system thar
it no longer needs memary, that information is passed on 1o the
Memory Manager which in turn frees thar application’s allocated
memaory

Chapter 3: ProDOS 146 ond Apple lkes Mamony a9

Any other memaory that an application needs for s own purposes
must be requested directly from the Memary Manager. The shaded
arcas in Figure 3-3 show which parts of the Apple IG5 memory can
be allocated through requests 1o the Memory Manager.
Applications for Apple [IGS should avoid requesting absolute
(Fixed-address) blocks, Chaplers f and 16 of this manual discuss
program memary management further; see also Programmers
Introdisction 1o the Apple 16§ and Apple TGS Toolbox Reference.

. 500 501 502 57F SEQ

:’JE‘F ,|"|||!'|!I| |!'||'||| ‘ || =
| it
. _‘,_LlJLl'“,.“ _|I',’ | i ..

Fgure 3-4
Mermeary alocatable through the Memorny Manager

Part |: How ProDOS 16 Works

Chapter 4

Devices

ProDOS 16 and External

41

42

An external device is a piece of equipment that transfers .
information to or from the Apple G& Disk drives, printers, mice,
and joysticks are external devices. The keyboard and 5CTEEN Arc ;_;Isn
considered external devices, An input device transfers information
to the computer, an cuitt device transfers information from the
computer, and an inputoupul device transfers information both

wilys.
This chapter discusses how ProDOS 16 provides an interface
between applications and cenain extenal devices.

Block devices

* A hlock device reads and writes information in muliples of one

block of charactess (512 bytes; see Table 3-1) at a time.
Furthermaore, it is 4 random-geeess devico—il can access any block
on demand, without having 1o scan through the preceding or
succeeding blocks. Block devices are usually used for storage and
retrieval of information, and are usually input/output devices, Disk
drives are block devices.

ProDO5 16 suppons access to block devices. That is, you may read
from or write to a block device by making ProDOS 16 calls. In
addition to READ, WRITE, and the ather file calls described in
Chapter 2, ProDOS 16 also provides five “lower-Jevel” device- :
access calls, These calls allow you to access information on a block |
device without considering what files the information is in. The calls |
are

GET DEV_NUM returns the device number associated witha |

o particular named device or onling volume

GET LAST DEV remums the device number of the last device
- accessed through ProDOS 18

READ BLOCK reads one block (512 byies) of data from a
- specified device

WRITE_ BLOCK writes one block (512 bytes) of data o a
specified deviee

FORMAT formats {initializes) a volume in a device

Part | HowProDOSs 146 Works

A block device generally requires a devlce driver to translate
ProDOS 16% logical block device mode] into the tracks and
sectors by which information is actually stored on the physical
device, The device driver may be circuitry within the disk drive
itself (UniDisk™ 3.5), it may be included as part of ProDOS 16
(Disk 1%, or it may be on a separate card in an expansion shoL
This manual does not discuss device drivers,

& Note on RAM disks: RAM disks are internal software constructs
that the operating system treats like external devices. Although
ProDOS 16 provides no particular support for RAM disks, any
RAM disk that behaves like a block device In all respects will be
supparted just as if it were an external device,

Character d:\;ices

A character device reads or writes a stream of characters in order,
ane at a time. It is a sequential-access device—It cannot access
any position in a stream without first accessing all previous
positions, It can neither skip ahead nor go back 1o a previous
character. Characler devices are usually used to pass information o
and from a user or another computer; some are input devices,
some are outpul devices, and some are input/output devices. The
ﬁ?hmrd. screen, printer and communications port are chamcter
SMI0ES

Current versions of ProDOS 16 do not suppart character devices,
that is, you cannot access character devices through Prol0OS 16
calls. Consult the appropriate firmware or tools documentation,
such as Apple [IGS Firmware Reference o Apple IG5 Toolbax
Reference, Tor instractions on how to make calls 1o the particular
device you wish 1o wse,

Accessing devices

T_;'nc!cr PraDOS 16, you can aceess block devices through their
device numbers, device names, or the volume names of the
volumes mounted on them.

Chaopter 4: ProDOS 14 and Extemal Devices 43

Named devices

ProD¥0S 16 permils block devices o have assigned names This
ability is a convenlence for users, because they will no longer have
1o know the volume name (0 access a disk.

However, ProD0S 16's support for named devices is limited
Device rames may be used only in the VOLUME, GET_DEV_NUM,
and FORMAT calls. Other calls that access devices require either a
volume mame of the device number retumed by the GET_DEV_HUM
or GET_LAST_DEV call,

Devices are named according 1o a built-in convention; assigned
names may not be changed. The naming convention is as follows

Device Name
Any block device Dn
where n= 3 1-digit or 2-digit decimal number

(assigned consecutively)

Last device accessed

An application may ask ProDOs 16 for the identity of the last block
device accessed. The last device accessed is defined here as the
device to which the most recent call involving a disk read or write
{including a block read or write) was directed.

When an application makes the GET_LAST_DEV call, ProDos 16
retumns the device number of the last Block device accessed. The
application can then use that information as input & subsequent
device calls

Block read and block wr:rl_a_

ProDOS 16 provides two device-access calls analogous to the ik
access calls READ and WRITE, These calls, RERD BLOCE and
WRITE BLOCK, allow you to transfer information 1o and from 4
volume on a block device regardless of what files the volume
COnains,

Part |: HowProDOSs 164 Works

The device number of a device (returned by GET_DEV_NUM) is 2
required input for the block read and write calls. The block read and
write calls are powesful, but are not needed by most

applications—the filing calls described in Chapter 2 are sufficien
for normal disk 140,

fomuﬂing adisk

Your application can format (initialize) a disk in a device through
the Prol08 16 FORMAT call, The call requires both a device name
and a volume name as input. The disk in the specified device is
formatted and given the specified volume name

Thesother required input to the FORMAT call is the file system 1D, 11
specifies the dass of operating system for which the disk is o be
formatted (such as DOS, ProDOS, or Pascal). Under currem
versions of ProDOS 16, however, the FORMAT call can formar disks
for the ProDd05/504 file system only (file svstem 1D = 1.

Number of online devices

Prol}OS 16 suppons up 1o 14 active devices at & ime. The Apple
0G5 normally accepts wp to 4 deviees connected 1o s disk part
(Smanport) and two devices per expansion slot (slots 1 through 73.
It is possible, however, 1o have up to 4 devices on (3 Smartport card
in) slot 5. Nevertheless, the total number of devices on line still
cannod excesd 14,

Device search at startup

When ProDOS 16 boots, it performs a device search to identify all
built-in pseudo-slot ROMs (internal ROMs) and all real physical
slat ROMs (card ROMs). Every block devies found is incorporated
into ProDOS 16' list of devices, and assigned a device number
(dev_num) and device name (dev_mame).

Chapter 4: ProDO5 14 and Exfernal Deviceas 45

% MNate; Control Panel settings determine whether internal ROM
or card ROM is aclive for each slot. ProDO5S 16 cannot
simultanecusly support both internal and external devices with
the same slot mamber

In general, the device search proceeds from highest-numbered
slots downward. For example, a disk drive in siot 7 drive 1 will
be device number 1; another drive in slot 7 drive 2 will then be
device 2, and on downward through all the slos

SmartPort (slot 5°s internal ROM and diskport) is a special case
o 4 devices may be connected to SmartPort. However, because
ProDO5 16 suppons only 2 devices per slat, the third and fourh
devices ane treated as if they were in slot 2, Despite the mapping of
devices 3 and 4 into slot 2, however, all deviess connected 1o
*SmartPort are given consecutive numbers. Table 4-1 shown the
relaticnships.

p

Table 4-1
smartPort number, siot number, and device number
asslgnments

smartPart no.t slof and drive davice numbar
1 slot 5 drive 1 r

2 slot § drive 2 n+l

3 slot 2 drive 1 n+2

4 slot 2 drive 2 ey

t emanfaort device numbser 1 ts connected directly to Smanfort
Subsequent devices are conected in daisy-chain fashion to the preceding
ones, so that device numbser 4 is the fanhest from SmanPon

Apple Disk 1T and other related 5.25-inch disk drives are another
special case, Because of the relatively long Ume required 1o access 3
Disk I drive and to determing whether a disk is present in it, Disk 11

drives are given the highest device numbers on the system. That way

they will be searched last in any scan of online devices

HowProDOS 10 Works

Volume control blocks

Far each device with nonremovable media (such as a hard disk)
found at boot time, a volume control block (VCB) is created in
memory. The VOB keeps track of the characteristics of that online
volume. For other devices (such as Moppy disk drives) found at boot
time, VCB's are created as files are opened on the volumes in those
devices, A maximum of eight VCB's may exist at any one lme; if
you try to open a file on a device whose volume presently has no
open files, and if there are already eight VOB entries, error $55
(VOB table full} s returned. Thus, even though there may be up to
14 devices connecled Lo your system, only eight (at most) can be
active (have open files) at any one moment.

Interrupt hunElIing

On the Apple 1IGS, imerrupts may be handled at either the firmware
ar the software level. The built-in interrupt handers are in firmwae
(see Afple o8 Firmware Reference); user-installed intercupt
handlers are softeare and may be installed through ProDOS 16

When the Apple [IGS detects an intecrupt that is to be handled
through ProldO05 16, it dispatches execution through the intermupt
vector at 300 03FE (page 3 in bank zero). At this point the
MICFOPrOCessor IS running in emulation mode, using the standard
cock speed and B-bit registers. The vector at $00 03FE has only two
address bytes; in order to allow access 1o all of Apple 1G5 memory,
it points to another bank zero location. The vector in that location
then passes control (o the ProDOS 16 interrupt dispatcher, The
interrupl dispatcher switches the processor (0 full native mode
(including higher clock speed) and then polls the user-installed
imerrupt handlers,

Figure 4-1 is a simplified picture of what happens when a device
Benerates an interrupt that is handled through a ProDOS 16
intermupt handler.

Chapter 4: PraDO5 14 and External Devices 47

Biiit-in
rharept Honder

v

- "_fV:l
wars Indgrmunl Vaecior) jo Prola06 14
o 500 0 arupt
e b ProDeCxs 183 Dspat P

Fol aoch handhar In sequeanoe

clomed Imemnunt totol gnor —

war-nstalied
handtar

Hondlal Processas Inemap!

14 Irfemuot Dapatcher |
It e PO e ——

Figure 4-1
intermupt randiing through ProDOS 16

PraDOs 16 supports up 1o 16 user-installed interrupt handlers,
When an interrupt occwrs that is not handled by firmware, ProDOS
16 transfers control to each handler successively until cne of them
claims it. There is no grouping of nlerrups into classes; thels
pricrity rankings are reflected only by the order in which they are
polled

If you write an ntermapt-handling routine, 1o make i aFch wious st
fnstall it with the ALLOC_INTERRUPT call; to remove If, you must
use the DEALLOC. INTERRUET call. Be sure to cnable the hardware
generating the mL.l..-:mm only afferthe routing to handle it Is
allocated: likewise, disable the hardware before the routine is
deallocated. See Chapter 7 for further detalls on writing and
installing interrupt handlers

4R Part |: HowProDOSs 16 Works

R ET————.

=]

Unclaimed interrupts

An unclaimed interrit is defined as the condition in which the
hardware Interrupt Request Line (IRCY) is active (being pulled low),
indicating that an interrupt-producing device needs anention, bt
none of the installed interrupt handlers claims responsibility for the
interrupt, When an interrupt oocurs and ProDOS 16 can find no
handler to claim it, it assumes that a serious hardware error has
occurred. It ksues a fatal error message 10 the System Failure
Manager (see Apple (IG5 Toolbox Reference), and stops
processing the current application, Processing cannot resume until
the user reboots the system

Chapter 4: ProDOS 16 and External Devices 43

ProDOS 16 is one of the many components that make up the Apple
11G5 operating environment, the overall hardware and software
sefling within which Apple 1165 application programs run. This
chapter describes how ProDOS 16 functions in that environment

ProDOS 16 and the Operﬂ" ng and how it relates (o the other components
Environment

Apple liGs system disks

An Apple 1165 system disk is a disk conaining the system sofiware
needed o run any application you wish to execute. Most system
disks contain one or both operating systems (ProDOS 16 and
ProDOS 8), the System Loader, RAM-based ool sets, RAM patches

r ROM-based tool sels, fonts, desk accessores, boot-time
initinlization programs, and possibly one or more applications.

‘There are two basic types of system disks: compilete system disks and
application system disks. A complete system disk has a Rall set of
Apple 11GS system software, as listed in table 5-1, It 15 a resource
poal from which application system disks can be constructed. An
application system disk has one or more application programs and
only the specific system software it needs 1o run the applicationis)
For example, 2 woed processor system disk may include a large
selection of fonts, whereas a spreadshect system disk may have only
a few fonts,

Sofiware developers may creale application system disks for their
programs. Users may also create application system disks, pethaps
by combining several individual application disks into a mult
application system disk, Apant from the essential files listed in table
5-2, there 5 no single set of required contents for application
syslem disks

amphm system EisTr.

Every Apple 11GS user (and developer) needs al least one complete
system disk. It {5 2 pool of system softease resources, and may
contain files missing from any of the available applicalion system
disks. Table 51 lists the contents of a complels system disk.

51
52 Part 1; How ProDOS 16 Works

Table 5-1

Contents of a complete Apple lles system disk

Directary/File Description
FRODOS a routine that loads the proper operaling system and seleds an application,
both at boot time and whenever an application quits
S¥YSTEM/ a subdirectory containing the following fles:
PB ProD05 B operating system
Pls Prol¥25 16 operating system and Apple 1G5 System Loader
START typically & program selector
LIBS/ a subdirectory containing the standard system libraries
TOOLS/ a subdirectory containing all RAM-based tools
FONTS/ a subdirectory containing all fonts
DESK,ACCS/ a subdirectory containing all desk accessories
SYSTEM.5ETUR/

TOOL.SETUP

BASIC,SYSTEM

i subdirectory containing system initalization programs

2 load file containing patches (o0 ROM and a program to install them. This is
the only required file in the SYSTEM. SETUR/ subdirectory; it is executed
before any others that may be in the subdirectory.

The Applesoft BASIC system interface program

The complete system disk is an B00K byte, double-sided 3.5-inch
diskette; the required files will not fit on a 140K, single-sided 5.25-
inch diskette,

When you boot a complete system disk, it executes the file
SYSTEM/START. From the START file, you may choose to call

Applesoft BASIC, the only application program available on the
disk,

The SYSTEM.SETUP/ subdirectory

The SYSTEM. SETUP/ subdirectory may contain several different

types of files, all of which need to be loaded and initialized at boot

time, They include the following:

® The file TOOLSETUP: This file must always be present; it is
executed before any others in SYSTEM, SETUR/, TOOL, SETUP
installs and initializes any RAM patches to ROM-based ool sets.
Afler TOOL. SETUP is finished, PraDOS 16 lnads and execules
the remaining fles in the 5¥STEM. SETUP/ subdireciory, which
may belong 1o any of the categories listed below,

Chapter 5: ProDOS 14 and the Operafing Ernwironment 53

s Permanent initialization files (Aletype $8B6): These files are
loaded and executed just like standard applications (rype $B3),
but they are not shut down when finished. They also must have
cenain characleristics:

1. They must be loaded in non-special memory.

2. They cannot permanently allocate any stack/direct-page
space,

3. They must terminate with an RTL (Reum from subroutine
Long) rather than a QUIT.

® Temporary Initlalization files (type $B7): These files arc
loaded and executed just like standard applications (type $B3),
and they are shut down when finished. They must terminate with
an RTL mther than a QUIT.

& New desk accessories (type $B8): These files are loaded but
not executed. They must be in non-spedial memory.

s Classic desk acoessories (type $B9): These files are loaded bl
not executed. They must be in non-special memory.

Application system disks

Fach application program or group of related programs comes on
its own application system disk. The disk has all of the system fles
needed 1o run thar application, but it may not have all the files
present on a comphete system disk. Different applications may have
diffierent system files on their application system disks.

For example, the Pm00OS 16 Exerciser disk, included with this
manual, is an application system disk. It contains all the system files
listed above, plus the file EXERCTSER {the exerciser itsell)

Table 5-2 shows which files must be present on all application
system disks, and which fles are needed only for particular .
applications. In some very restricted instances, it may be]::u)§5|blr.'
to fit an application and its required system files onlo a 5.25-inch
(140K} diskette; most applications, however, require an BO0K
diskene

Part 1: How ProDo5 14 Works

Toble 5-2

EYSTEM. SETUR/
TOOL.SETUP

BASIC.SYSTEM

{required if the program selector is to be used)
(required if system library foutines are needed)
trequired if the application needs RAM-based tools)
(required if the application needs fonts) .
(required if desk accessories are (o be provided)
required

required

{required if the application is wrigten in Applesall BASIC)
The files PRODOS, PR and P16 all have version numbers.
Whenevar It loads an operating system (at startup or when
launching an application), PRODOS chacks the P8 or P14
varsion numbar against its own, If they do not mateh, itis o

fatal emor. Be careful not to construct an application system
disk using Incompaotible vesions of PRODOS, PA and PLE

System startup -

Diisk blocks 0 and 1 on an Apple 1G5 system disk eontain the starup
(boot) code, They are identical 1o the boot blocks on st
Apple 11 system disks (ProDOS 8 system disks). This al
8 system disks 1o boot on an Apple 1G5, and it also means that the
initial part of the ProDO8 16 boatstrap procedure is identical to that
[or Prolx0s5 8

Chapter 5 PreDOS 14 and the Operating Enviranment 55

Required contents of an Apple lies oppllcation systerm disk BQO" Inirlalizﬁnn o N
Drectory /File Required, (Required N..) Figure 5-1 shows the boot initialization procedure. First, the baot
e firmware in BOM reads the boot code (blocks 0 and 1) inta memory
required and executes it, For a system disk with a volume name /v,
required 1. The boot code scarches the disk’s volume directory for the fist
(recuired if the application is ProDOS 8-based) file named /V/PRODOS with the [e type 5FF
required

21 the fle is found, it is loaded and execuied at location $2000 of
bank S00

From this point on, an Apple 1G5 system disk behaves differently
from a standard Apple II system disk. On a standard Apple 11 sysiem
disk, the file named PRODOS is the ProDOS 8 operating system. On
an Apple IG5 system disk, however, this PRODOS file is not the
operating system itself; it is an operating system loader and
application selector. When it recelves control from the boot code,
/V/PRODOS pedorms the following tasks (see also Figure 5-13
3. It relocates the par of itself named POUIT (0 an arcd in memory
where FQUIT will reside permanently. PQUIT contains the
code required 10 terminate one program and start another
{either ProDO5 B or ProDOS 16 application)

4. /v/PRODOS loads the ProDOS 16 operating system and Apple
NGs System Loader (file /v/SYSTEM/FP16)

5. /v/PRODOS performs any necessary boot initalization of the
systermn, by executing the files in the subdirectory
/V/SYSTEM/SYSTEM, SETUR/, If there is a file named
TOOL. SETUF in that subdirectory, it Is executed first—it loads
RAM-based tools and BAM patches to ROM-based tools.
Every file in the subdirectory /V/SYSTEM/5¥YSTEM. SETUR/
must be an Apple 11GS load file of type $B6, $B7, SBE, or SED
Thess file types are described under “The SYSTEM . SETUR/
Subdirectory,” earlier in this chapter. After execuling
TOOL.SETUR, /v/PRODOS loads and execules, in turn, every
other file that it finds in the subdirectory

Part 1: How ProDOS 16 \Works

Powar On
Armasate Mook initialzation |
expCUte +

| Bood Firmriw

n [

=i]

* Escat Toiuns

Boof Bloeks
cblocha 0 ored 1)

‘Theck Zafup Davica

* Boof fodura

fia ngmed —‘LNAL-.E T2 LOAD PRODOS

PROIDOE
‘__||

m Appha NG5 a stoncovd Appis (1

k)

] I*r Yo0F § Systam Digic) |

Thes file PROIDOS i ProDOHs A

b pesfamms its own initialzation
and bings up o PoDOS 8
vyrlam progam—iee
ProQ05 § Reference

visvsTEmserup
Executicn retuens 1o PRODOS

f _
¥ Dask Accessonas

W0 Frogram Seleciion” (Figune 5-2)

Figure 5-1
Boot infiolization sequence

Chapter 5: ProDO5 16 and the Operating Environment

57

Startup program selection

6. Now /V/PRODOS selects (determines the pathname of) the
system program or application to mun. Figure 5-2 shows this
procedure.

a. Tt first searches for a type $B3 file named /V/SYSTEM/START.
Typically, that file is 2 program selector, but it could be any
Apple 1G5 application. If START is found, it is selected,

b. If there s no START file, /V/PRODOS searches the boat
volume directory for a file that is either one of the following:

a ProDO8 8 system program (type $FF) with the flename
extension . S¥YSTEM

0 & ProDOS 16 application (type $B3) with the filename
extension S¥YS16

Whichever is found first is selected

@ Nofe: If a ProDOS B sysiem program is found first, but the
ProDOS B operating sysiem (file /v/SYSTEM/PE] {5 not on the
system disk, /V/PRODOS will then search for and select the firat
ProDOS 16 application (ProDOS 16 is always on the system
disk)
c. If /v/PRODOS cannot find a file to execue (for example, if
there is no START file and there are no ProDOS 8 or ProD0S
16 applications), it will bring up an interactive routine that
prompts the user for the filepame of an application to load
Finally, /v/PRODOS passes control 1o an entry point in BOUTIT It
{s POUIT, not /V/PRODOS, that actually loads the selected
program. The next section describes that procedure

& Naote: PRODOS will write an error messsage to the screen if you
try o boot it on an Apple 1T computer other than an Apple IIGS
This is because Prol}5 & on an Apple 1G5 disk is in the file
v/SYSTEM/FE, not in the file PRODOS,

58 Part 1; How ProDOs 16 Works

e e e PR

froem “Boat I

PQUIT

e PQUIT is the ProDOS program dispatcher for the A
determines which ProDOS B or Prol205 16 program s to be run
next, and runs & After startup, POU i
memory; POUIT loads ProDOS 16 programs through cal
Svsiem Loader

; permanently re

the PEPQUIT entry point. Whenever a ProlXOS 16 ;
execuies 4 QUIT call, contrel passes theough the PLEPQUIT

¥

- o Fat " 1 - & > e
recUte an L.L. SYSTEM o pioing, To lunch the first program at system startup, /v
€5Vl Tha Toundr passes control 10 FQUIT as if executing a ProDd05 8 or ProDOS 16

QUIT call

the standard ProDOS B
call, and the Prold5 16

POULT sup
QUIT call, an &
QUIT call

= types of quit
nhanced ProldS 3 gl

o Tun-tms fa un-fme
om Setaction’ am Sova
Figure 510

Standard ProDOS 8 QUIT call

: The standard ProDd0s 8 QUIT call's parameter bleck consists ©
e IEYETEM [START one-byte parameter count field (which must have the value 504)
] followed by four null fields in this ordern: byte, word, byte, word. As
ProD0s 8 is currently defined, all fizlds must be present and all
& typically o progmam selactor Y s R
Nooee a program o ioad must be set to zera. There is thus no way for @ program 1o use the

standard QUIT call to specily the pathname of the next program 0

o &
sacuta

Fgure 5-2
Startup program salection fun

Enhonced ProDOS5 8 QUIT call
Sfﬂﬂing and quiﬂing ﬂpp"cmﬁons The enhanced ProDOS B QUIT call differs from the standand call

only in the permissibée values of the first two parameters Lis

The Apple 11GS startup sequence ends when control is passed to the parameter count field must stll have the value $04). In the
program selection routine (PQUIT), This routine is entered both at enhanced QUIT call, the fist (byie) parameter is defined as the qui
boot time and whenever an application terminates with 2 ProDOS fype. IF 1t s zern, the call is identical to a standard QUIT call; iF it is

16 or ProldOS5 8 QUIT call SEE

POUIT interprets the following (word) parameter as a pointer
ter 4 string which is the pathname of the next program 1o un

Chapter 5: ProDOS5 14 ond the Operating Envitonment oy &0 Part 1: How ProDO5 14 Works

The enhanced ProDO5S B QUIT call is meaningful only on the Apple
11GS, and only when PQUIT is present (o interpret it (that is, only
when the computer has been booted with an Apple TIG5 system
disk). It behaves like the standard ProldOS B QUIT call in any other
situation

% Note: Because of the way ProDOS uses memory, 4 ProDOS 8
application must not make an enhanced QUIT call (with a quir
type of SEE) from any location in page 2 of bank 00 (addresses
£00 0Z 00 — 500 02 FF).

ProDQS 16 QUIT call

The Pral¥05 16 QUIT call has two parameters: a pointer 1o the
pathname of the next program (o execute, and a pair of boolean
flags: one (the neftern flag) notifies POUIT whether or not control
should eventually return to the program making the QUIT call; the
other one (the restart-from-memory flag) lets the System Loader
know whether the quitting program can be restarted from memory
when it rehims,

If the value of the return lag is true, POUIT pushes the User 1D of the
calling {quitting) program onto an intemal stack. As subsequent
programs man and quit, several User ITVYs may be pushed onto the
stack. With this mechanism, multiple levels of shells may execule
subprograms and subshells, while ensuring that they eventually
regain control when their subprograms quit,

For example, the program selector (START file) might pass control
1o a soltware development system shell, using the QUIT call 1o
specify the shell and placing its own 1D on the stack. The shell in
turn could hand control to a debugger, likewise puting its own ID on
the stack. If the debugger quits without specifying a pathname,
control would pass automatically back 1o the shell; when the shell
quit, control would pass automatically back to the START file.

This automaltic return mechanism is specific to the ProDd05 16 QUIT
cill, and therefore is not available to ProDOS 8 programs, When a
ProDOS B application quits, it cannot put its 1D on the intemal
stack

Chapter 5 ProlOs 14 and the Operafing Emvdronment &1

&2

Part 1

QUIT procedure

This is a briel description of how PQUIT handles all three types of
QuIT call Refer also to Figure 5-3.

1. If a ProDOS 16 or enhanced ProD0S 8 QUIT call specifies 2
pathname, PQUIT atlempls (o execute the specified file. Under
certain conditions this may not be possible: the file may not
exist, there may be insufficient memary , and 50 on. In that case
the QUIT call executes the interactive routing described below
(step 3}

¢ Note: PQUIT will load programs of file type $B3, $B5, or $FF
anly.

[N

Il the QUIT call specifies no pathname, POQUIT pulls a User [0 of
its internal 1D stack and attempts 1o execule that program.
Typically, programs with User [[}'s on the stack are in the System
Loader's dormant state (see "User Shutdown” in Chapter 17),
and it may be possible o restant them without reloading them
from disk. Under certain conditions it may not be possible o
excoule the program: the file may not exisy, there may be
insufficient memory , and so on, In that case the QUIT call
execues the interactive moutine described next {step 33

3_ If the QUIT call specifies no pathname and the 10 stack is empty,
POUIT executes an inleractive routine that allows the user to do
any of these

O reboot the system

O execule the file /v/SY¥STEM/START

o0 enter the pathname of a program (0 execute

4, 1f the quitling program is 3 ProDOS 16 program, PQUIT calls the
loader's User Shutdown routing o place that program in a
dormant state

5, Once it has determined which program to load, PQUIT knows
which operating system is required, If it is not the curment sysiem,

4. PQUIT shuts down the current operating system and loads the
required one

b. PQUIT then makes Memory Manager calls to free memory
used by the former operating system and allocale memory
necded by the new system, IF the new operaling system (s
Prol¥D5 8, POUIT allocates all special memory for the
program

How ProldO5 14 Works

ti. The new program is loaded. PQUIT calls the System Loader to
load ProDO5 16 programs; for ProDOS 8 programs, PQUIT
passes control (o Prolx08 8, which then loads and execules its
own program direcily,

7. Finally f it is a Prol05 16 program), PQUIT 5215 up virous
aspects of the program's environment, including the direct-
register and stick-pointer values, and passes control to the
program.

Pral0s 16 Prolods &
Ul Col Sl Cod

Bxacula l l* Bxpcute

wtire

for tigrnome
masn that the o et
n@xl program DrcHgeam
Naxt program - e ——— S 4

fias Doan seacren

= § Salecied Program
e

Flgure 5-3
Run-fime progrom selection (QUIT coll)

Chapter 5: ProDOs 14 and the Operating Enviranment 63

Machine configuration at application launch

POUIT initializes certain hardware and software components of the
Apple 1G5 before it passes control to a program. There are many
other factors the machine's state that are nat considered here, such
as memory used by other software and the state of the dozens of soft
switches and pseudoregisters avallable on the Apple [1G5. This
section summarizes only the aspects of machine state that are
explicitly set by ProDOS 16,

s Reserved bank $00 space:

Addresses above approximately $9600 in bank zero are reserved
for ProDOS 16, and thesefore unavailable to the application. A
direct-page/stack space, of 4 size determined either by ProDOS
16 or by the application iself, is reserved for the application (see
Chaptes 6); it is located in bank $00 at an address determined by
the Memory Manager. ProDOS 16 requires no other space in
RAM (other that the language-card areas in banks $00, 301, SEO,
and SE1—see Figure 3-I).

s Hardware registers:

The accumulator containg the User 1D assigned to the
application

The X- and Y-registers contain zero (300000,

The e-, m-, and x-flags in the processor status register are all set
to zero, meaning thar the processor is in fdl rative mods,

The stack register contains the address of the wop of the direct-
page/stack space (sce Chapler 6}

The direct register contains the address of the bottom of the
direct-page/stack space (see Chapter 6)

s Standard lnput/outpul:
For both $B3 and 5B5 files, the standard input, output, and emor
locations are et 10 the Pascal B0-column character device
vectors. See "Text Tool Set® in Apgle [fos Toolbox Reference
s Shadowing:
The value of the Shadow register is 31E, which means;
language card and I/O spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF

Port 1: How PraDOSs 16 Works

8 Vector space values:

Addresses between $00AB and $00BF in bank $E1 constitute
PraDO5 16' peclor hace—so named because it containg the
entry point (vector) to all PraDOS 16 calls, It also containg other
information useful 1o sysiem soltware such as AppleTalk®. The
spedific values an application finds in the vector space are listed
in Table 3-Z These ane the only fixed locations supported by
PraDOS 16.

s Pathname prefix values:

The nine available pathname prefives are set as described in the
NExl SECLon

Pathname prefixes

A pathname prefix is a part of a pathname that stans with a volume
name and ends with the name of a subdirectory. A preassigned
prefix is convenient when many files in the same subdirectory are
accessed, because it shonens the pathname references, A sof of
prefixes is convenient when files in several different subdirectories
must be repeatedly acoessed. The System Loader, for example,
makes use of multiple prefixes, Once the pathname prefixes are
assigned, an application can refer 1o the prefixes by code instead of
keeping rack of all the different pathnames,

PralOs 16 suppons 9 prefixes, referred 1o by the prefix numbers
04,174, 2/4,..,7/, and */. Each prefix number includes a
terminaling slash to separate it from the rest of the pathrame, A
prefix number at the beginning of a partial pathname replaces the
actual prefix. One of the prefic numbers has a fixed value, and the
others have defaull values assigned by ProDOS 16 (see Table 5-4)
The most important predefined prefices are

*{ the boot prefix—it is the name of the volume from which the
presently running Prolx08 16 was booted,

0/ the default prefix (automatically attached w any partial
pathname thal has no prefix numberi—it has a value
dependent on how the current program was launched, In some
cases it is equal o the boot prefix.

Chapter 5 ProDOs 16 and the Operating Envirarment 65

Table 5-3
Exarnples of praflx use

1/ the application prefix—it is the pathname of the subdirectory
that contains the currently monning application

2/ the system library prefix—it is the pathname of the
subdirectory (on the boat volume) that contains the library
fles wsed by applications,

Your application may assign the rest of the prefixes. In fact, once
your application is running, it may also change the values of
prefizes 0/, 1/, or 2/ (applications may not change prefix * /)

Prefix 0/ is similar 1o the ProDOS 8 system prifix, in that ProDOs
16 autcenatically attaches prefix 0/ to any partial pathname for
which wyou specify no prefix. Howewver, its initial value is not always
equivalent to the ProDOS 8 system prefic’s initial value. Ses

Profs & Technical Reference Manual

The prefix numbers are set (assigned to specific pathnames) and
retrieved through the SET_PREFIX and GET_PREFIX calls.
Although a prefix number may be used as an input (o the

SET PREFIX call, prefixes are always stored in memory ag full
pamﬂamm (that is, they include no prefix numbers themselves),

Table 53 shows some examples of prefix use. They assume thal
prefix 0/ is sel (o /VOLUHMELS and that prefix 5/ is set o
/VOLUMEL/TEXT .FILES/. The pathname provided by the cller
is compared with the full pathname constructed by Prol3OS 16,

Full pathname
provided:

Partial |:\-3[]|nu: -

implicit use of prefix /0.

Explicit use of peefix /0

Use of prefix 5/

o8 supplied

os expanded by ProDos 16

/VOLUMEL/TEXT.FILES/CHAP .3

PRODOS

0/5YSTEM/FINDER

S/CHRP.

/VOLUMEL/TEXT .FILES/CHAP .3

SVOLUMEL fPRODGS
fYOLUMEL fSYSTEM/FINDER

12 /VOLUMEL /TEXT .FILES /CHAF .12

b Part 1: How ProDOS 16 Works

Table 5-4
Initiai ProDOs 16 prefix values

Initial ProDOS 16 prefix values

When an application is launched, all nine prefix numbers are
assigned (o spedific pathnames (some are meaningful pathnames,
whereas others may be null strings), Remember, an application
may change the assignment of any prefix number except the boot
prefix (* /). Furthermore, in some cases certain initial prefix values
may be lelt over from the previous application. Therefore, bewars
af assuming a value for any particular prefix,

Table 54 shows the indtial values of the prefix numbers that a
ProDOS 16 application receives, under the three different
launching conditions possible on the Apple 11GS. At all dmes during
execution, GET NAME returns the filename of the current
application (regardless of whether prefix 1/ has been changed),
and GET_BCOT VOL returns the boot volume name, equal 1o the
value of prefix =/ (regardless of whether prefix 0/ has been
changed)

Prafix no.

Inilial valus

Prol»0s 16 a

launched at boot time: o/

boot volume name

full pathname of the directory containing the current
application

full pathname of the application libsary directory (/oo
tofume name/ SYSTEM/LIBS)

null string

null string

null string

null string

null string

boot volume name

Chapter 5: PraDOS 16 and the Operating Environment &7

Table 5-4 (continued)
it ProDOs 16 prefis values

Prefix no Inificl volue d
ProDOS 16 application
launched after a ProDOS 8
application has quit: o/ unchanged from the ProDOS 8 sistem prefix under the
previous application
1/ full pathname of the directory containing the carrent
application
2/ full pathname of the application library directory (/boot
polfume name/ SYSTEM/ LIBS)
ar null string
af nill string
g f

null string

B/ null string
T null siring
ProDOS 16 application
launched after a ProDOS 16
application has quit: o/ unchanged from the previous application
1/ full pathname of the directory containing the
current application
2/ unchanged from the previous application
al unchanged from the previous application
4/ unchanged from the previous application
5/ unchanged from the previous application
7 unchanged from the previous application
' ¥ unchanged from the previcus application
“f unchanged from the previous application
ProDOS 8 prefix and pathname convention
Prol308 & suppans a single prefix, called the system prafie (o
crrrent prefid. It has no peefix number—it is anached
automatically to any panial pathname (one that does not begin wits
a stash and a volume name). Like the ProDOS 16 prefixes, the
Prol¥25 B system prefix may be changed by a SET_PREFLX call
On a standard Apple 11, the default value of the sysiem prefix at
stariup is the boot volume name; however, Sysicm programs such
the Applesoft BASIC interpreter commonly reset the system prefix
1o orther valises
-] Part 1: How ProDOS 14 Works

Tabie 5-5

An application that is running under ProDOS B can always find its
own pathname by looking at location $0280 (in bank $00 on an
Apple 11GS);, ProDOS B stores the application’s full or partial
pathname there. For details of this and other ProDOS 8 pathname
conventions, see P08 8§ Technical Referemce Manual

On the Apple [1GS, the PQUIT routine allows a ProDOS 8
application to be launched at boot time, or after another ProDOS B
application has quit, or after a ProDOS 16 application has quit The
initial values of the system prefix and the pathname at location
$0280 are dependent on which way the application was launched
Table 5-5 lists the possibilities

Initiai ProDOS 8 prafic and pathname: volues

systemn preflx location $0280 pathnoma

ProDO5 8 application
launched ar boot time

Prald05 8 application
launched through an
enhanced Prol}05 8
QUIT call

ProDCE 8 application
launched through a

ProDOS 16 QUIT call

(Il the ProDOS 16 gUIT call
dpecified & il pathname)
ProD¥05 & application
launched through a

ProDOS 16 QUIT call

(If the ProDOS 16 QUIT call
specified a partial pathname)

boot volume name filename of the just-launched
application

unchanged from the previous the full or partial pathname given in
(ProD:O5 8) application the enhanced PeolX05 8 QUTT call

the previous (ProDOS 16) the full pathname given in the
application's prefix 0/ ProD}O8 16 QUIT call

the prefix specified in the the partial pathname {minus the
ProDOS 16 QUI'T call prefix number) given in the
PraDO5 16 QUIT call

@ Nate: Conditions (2) through (3b) in Table 5-4 apply only 1o
ProDOE 8 applications launched from an Apple IIGS booted on
an Apple I1GS system disk 1f a ProDOS 8 application on 3
standard Apple IT system disk Is booled on an Apple 11GS, the
Apple TGS acts like a standasd Apple I and condition (1) is the
only possibility.

Chapter 5: ProDOS 16 and the Operating Environment &

0

Tools, firmware, and sysiam_wnwure

Although ProDOS 16 Is the principal part of the Apple IG5
operating system, several “operating system-like” functions are
actually earried out by other soffware components. This section
briefly describes some of those components; for detailed
information see the references listed with each one.

The Memory Manager

As explained in Chapter 3, the Memory Manager takes care of all
memory allocation, deallocation, and housekeeping chores.
Applications obtain needed memory space either directly, through
requests 1o the Memory Manager, or indirectly through PraDOS 16
or System Loader calls (which in twrn obtain the memory through
requests to the Memory Manager).

The Memory Manager is a ROM-resident Apple 1165 ool ser; for
more detailed information on s functions and how to call them,
see Apple ITGS Toolbox Reference.

The Sﬁiam Loader

The System Loader is an Apple 1G5 tool set that works very closely
with ProDOS 16 and the Memory Manager, It resides an the system
disk, along with ProDO5 16 and other system softwarne (see "Apple
1165 System Disks” in this chapter). All programs and data are
loaded into memory by the System Loader.

The System Loader supports both static and dynamic loading of
segmented programs and subroutine libraries. It loads files that
conform 1o a specific format (object module format}; such files
are produced by the APW Linker and other components of the
Apple 1G5 Programmer's Workshop (see Apple (IG5
Programmer’s Workshop Reference),

The System Loader Is described in Part [11 of this manual

Part 1: How ProDioE 16 Works

Iﬁl Scheduler

The Scheduler is a tool set that functions in conjunction with the
Apple 1IGS Heartbeat Interrupt signal (see “Scheduler” in Apple BGS
Toolbar Reference), [ts purpose is 1o coordinate the execution of
interrupt handlers and other intermupt-based routines such as desk
ACCESSONIES,

The Scheduler is required only when an interrupt routine needs to
call a piece of system software, such as ProDOS 16, that is no
reentrant. If ProDOS 16 is in the middle of a call when an interrupt
occurs, the interrapting foutine cannot itself call ProDOS 16,
because that would disrupt the first (not yet completed) call The
system needs 3 way of telling an intermupt routine to hold off untl
the system software it needs is no longer busy,

The Scheduler accomplishes this by periodically checking a word-
length flag called the Busy word and maintaining 3 quese of
processes thal may be activated when the Busy word is cleased.
Interrupt routines that make operating system calls must go through
the Scheduler (see Chapter 73

The User ID Manager

The User 1D Manzger Is 4 Miscellaneous toal set that provides a way
for programs to obtain unique identification numbers. Every
memory block dllocated by the Memory Manager is marked with a
User ID that shows what system software, application, or desk
accessory il belongs 1o,

Part of each block's 2-byte User ID is a TypeID field, describing the
ategory of load segment that occupies it. All ProDOS 8 and
ProDOS 16 blocks are type 3; System Loader blocks are type 7;
blocks of controlling programs (such as a shell or switcher) are Iy pe
2; and blocks containing application segments are type 1.
Appencix [} diagrams the format for the User ID word. See
“Miscellaneous Tool Ses” in Appie If55 Toolbox Reference for
further details

PraDO5 16 and the System Loader rely on User IDVs to help them
restart or reload applications. See "Quit Procedure® in this chapter,
and “Restart” and *User Shutdown® in Chapler 17.

Chapter 5 ProDOS 16 and the Operating Ervircnment il

72

Part 1

All fatal errors, including fatal ProDiOS 16 errors, are routed
through the System Failure Manager, 4 Miscellaneous Tool ﬁnL It
displays a default message on the screen, or, if passed a pointer
when it is called, displays an ASCII string with a m:r-chnsm
message. Program execution halts when the System Failure Manager
i5 called.

The System Failure Manager is described under "Miscellaneous
Tool Sets” in Apple HGs Toolbox Reference.

How Prol05 16 Works

_

C_hqp'fer 6

Programming With ProDOS 16

74

This chapter presents requirements and SUERESUONS for writing
Apple 11GS programs that wse ProDOS 16.

Programming suggestions for the System Loader are in Chapter 16
of this manual Mare general information on how 10 program for
the Apple TGS is avallable in Frogrammers Introduction to the
Apple IIGS. For language-specific. programming instructions,
cansult the appropriate language manual in the Apple [1GS
Programmer’s Workshop {see "Apple IG5 Programmer’s
Workshop® in this chapter).

AppﬂEﬁon ;quimm:nis

As used in this manual, an application is a complete program,
typically called by a user, that can communicate directly with
ProDOS 16 and any other system software or firmware it needs, For
example, word processors, spreadsheel programs, and
programming-language inlerprelers an examples of applications.
Diata files and source-code files, as well as subroutines, libraries,
amed wtilities that must be called from other programs are not
applications.

To be an application, 2n Apple IG5 program must
[

consist of executable machine-language code
O be in Apple 1G5 object module formal (see Appendix D)

be file type $83 (specialized applications may have other file
types—ses Appendix A)

| have a filename extension of . SYS16 f you want it 1o be self-
booting at system startup—see Chapter 5)

0 make PralO5 16 calls as described in this manual (see
Chapter 8}

o ohserve the ProDOS 16 QUIT conventions (see Chaprer 3)

1 observe all other applicable ProDOS 16 conventions, such as the
conventions for intermupt handlers (see Chapler 7)

1 get all needed memory from the Memory Manager (see
Chapter 3)

Part |: How ProDOS5 16 Works

Most ather aspects of the program are up to you, The rest of this
chapter presents conventions and suggestions to help you create an
efficient and useful application, consistent with Apple NIGs
programming concepts and practices,

Stack and direct page

In the Apple 1G5, the 65C816 microprocessor's stack-pointer
register is 16 hits wide; that means that, in theory, the hardware
stack may be located anywhere in bank $00 of memory, and the
stack may be as much a5 64K bytes deep

The direct page is the Apple 1165 equivalent to the standard Apple
I zero page. The difference is that it need not be page zero in
memory. Like the stack, the direct page may theoretically be placed
in any unused area of bank $00—he microprocessor's direct
reglster is 16 bits wide, and all zero-page (direct-page) addresses
are added as offsets 1o the contents of that register.

In practice, however, there are several, restrictions on available
space. First, only the lower 48K bytes of bank $00 can be
allocated—ithe rest is reserved for IO space and system software
Also, because more than one program can be active a1 a lime, there
may be more than one stack and more than one direct page in bank
$00. Funhermore, many applications may want to have pans of
their code a5 well as thedr stacks and direct pages in bank $00

Your program should therefore be as efficient as possible in its use
of stack and direc-page space. The total size of bath sheuld
probably not exceed about 4K bytes in most cases, Suill, thar gives
you the opportunity 1o write programs that reqquire stacks and direct
pages much larger than the 256 bytes available for each on standard
Apple 11 computers

;ulnrnuﬂe allocation of stack and direct page

Only you can dedde how much stack and direct-page space your
program will need when it is unning. The best time to make that
decision is during program development, when vou create your
source fike(s), If you specify at that time the total amount of space
needed, ProD0S 16 and the System Loader will automatically
allocate it and set the stack and direct registers each time your
Program runs,

Chapter &: Programming With ProDOS 14 75

-]

dirsci-pogs /siock

Definition during program development

You define your program's stack and direct-page needs by
specifying a “direct-page/stack” object segment (KIND = $12; see
Appendix D) when you assemble or compile your program (Figure
&-1). ‘The size of the segment is the total amount of stack ani i&m
ur program needs, It is not necessary (o crea
F:mag;e sri::;mi?::u n:eds:n such space or il the ProDOS 16 :Itfa.ul.[_ is
sufficient (see "Prol¥05 16 default stack and direct page® later in ths
section), you may leave it out.

When the program is linked, it is important that the ::Iirc.cl-
page/stack segment not be combined with any other object .
segments 1o make a load segment—the linker rust creats a single
load segment corresponding to the direct-page/stack object _
segment. If there is no direct-page/stack object segment, the linker
will not create a cormesponding load segment.

1
|- YeHcaeg & Moussmmme

EFreci-pogo/iiock

sagrmant in e sagrmeant 5
objact ooda singls load
sagmant
Chnbae ! Tl Load Fie 3 The A PraDOS 16
e d Sysfem Loador i) tha
Segrmen Ragmant diocales s stock mgister
1 blaek i toihe highest
5 | Bank 500 pqual e]
Sagmant _ug';uﬂ i §iza 1o tha nive
B drect-poge/stack segment
N aril Ioad segment
SEgrTETy
Warmary Dark 1-[1]
H i
i 1
-
-l. oodar
-
i i
[1
1 '
ProDOt5 1 =——
1afs the
diract regser
o thie loweett
addres
nihe
isgmant

Figure &-1
Automatic direct-poge/stack allocation

Part I: How ProDO5 146 Works

Impardant

Allocation of run time

Each time the program is started, the System Loader looks for a
direct-page/stack load segment. If it finds one, the loader calls the
Memory Manager to allocate a page-aligned, locked memory block
of that size in bank $00. The loader loads the segment and passes its
base address and size, along with the program’s User ID and starting
address, 1o ProDOS 16, PraDOS 16 sets the A (aceumulator), D
(direct), and 5 (stack)} registers as shown, then passes contral (o the
program:

A = User ID assigned o the program
[= address of the first (lowest-address) byte in the direct-
page/stack space
5§ = address of the last (highest-address) byte in the direct-
+ page/stack space

By this convention, direct-page addresses are offsets from the base

of the allocated space, and the stack grows downward from the op
of the space

ProDO3 16 provides no mechanism for detecting stack averfiow
of undarfiow, of collision of the stack with the direct poge. Your

program must be carefully designed and tested o moake sum
this cannot occowr,

When your program terminates with 3 QUIT call, the System
Loader's Application Shutdown function makes the direct-
page/stack segment purgeable, along with the program's other
static segrments. As long as that segment is not subsequently purged,
15 conlents are preserved untll the program restans, See
“Application Shutdown® and *Restan” in Chapter 17,

Nore: There is no provision for extending or moving the direct-
page/stack space after its initial allocation. Because bank $00 is
50 heavily used, any additional space vou later request may be
unavailable—the memory adjoining your stack is likely to be
occupied by a locked memory block. Make sure that the amount
of space you specify at link time fills all your program's needs,

Chapter & Programming With PraDOSs 16 77

78

ProDOS 146 default slack and direct page

If the loader finds no direct-page/stack segment in a file at load
timne, it still reurns the program's User [D and starting address o
PraDOS 16, but it does not call the Memory Manager to allocate a
direct-page/stack space and it returns zeros as the base address and
size of the space. ProDOS 16 then calls the Memory Manager itself,
and allocates a 1K direct-page/stack segment with the fellowing
attributes:

ize: 1,024 bytes
e;::{m; program with the User D retuned by
the loader
fixed/movable: fixed
locked/unlocked: locked
purge level: 1
may cross bank boundary? no
may use special memony? yes
alignment; page-aligned
absolute starting address? no
fixed bank? yes—bank $00

See Apple TGy Toolbax Reference for 2 general description of
memory block atributes assigned by the Memory Manager.

Omee allocated, the default direct-page/stack is treated just as it
would be if it had been specified by the program: ProDOS 16 sets
the A, D, and § registers before handing control 1o the program,
and at shutdown time the System Loader purges the segmenL

Manual allocation of stack and direct page

Your program may allocate its own stack and direct-page space al
run time, If you prefer. When ProDOS 16 transfers control to your
program, be sure the program saves the User [D value lelt in the
aocumulator before doing the following:

Part |: How ProDO5 14 Works

1. Using the staring or ending address left in the D or 5 register by
ProDx05 16, it should make 3 FindHandle call to the Memory
Manager, o get the memory handle of the automatically-
provided direct-page/stack space. Then, using that handle, it
should get rid of the space with a DisposeHandle call,

. It ean now allocate its own direct-page/stack space through the
Memory Manager KewHandle call The allocated block must be
purgeable, fixed, and locked,

3. Finally, the program must place the appropriate values

(beginning and end addresses of the segment) in the D and §
registers

Managing system resources
Various hardware and software featres of the Apple 11GS can

provide an application with useful information, or can otherwise

increase 15 fexibility, “This section suggests ways 1o use those
features,

Global variables
Under ProDOS 8, a fixed-address global page maintains the values
of important variables and addresses for use by applications. The

global page is at the same address in any machine or machine

configuration that supports ProDXOS B, so an application can always
access those variables at the same addresses,

PraDOS 16 does not provide a global page, Such a set of fixed
loeations is inconsistent with the flexible and dynamic memory
management system of the Apple 11GS, Instead, calls to ProDOS 16,
tools, or firmware give you the information formerly provided by
the global page, Table 61 shows the Apple TGS calls used to obain
information equivalent to ProDOS 8 global page values,

Chapter &: Programiming With ProDOS 14 e

BO

Table &-1

Apple lies equivalents to ProDOS 8 global page Infommation

Global poge Informafion

Apple lig: Equivalent

Global page entry poinis
Device driver veciors
List of active devices
Memory Map

Pointers 1o L'O buffers
Interrupt vectors

Date/Time
System Level
MACHID

Application version
ProD{5 16 Version

(not supported)
{not supported)
reumed by VOLUME call

(ProDOS 16)
(responsibility of the Memory
Manager)

returned by OFEN call (ProDOS 16)
returned by ALLOC INTERRUPT call
(ProDOS 16)

remumed by ReadTime call (Misc
tool set)

returned by GET_LEVEL call
(ProDKO5 163

{not supporied)

(not supporned)

returned by GET_VERSION call
(Pro[08§ 16)

Of course, the Apple 1G5 always supports the ProDOS B global page
when a PmDOS 8 goplication is runming.

Prefixes

The nine available prefixes described in Chapter 5 affer
convenience in coding pathnames and Hexibility in writing for
different system and application disk volumes, For example, any
files on the boot disk can always be accessed through the prefix */,
regardless of the volume name of that particular boat disk. Any

library routine in the system library subdirectory will have the prefis
2/, regardless of which system disk is on line (unless your program
has changed the value of the prefix). If you put routines specific to
your application in the same subdirectory as your application, they
can always be called with the prefix 1/, regardiess of what
subdirectony or disk your program inhabits.

Part I: How ProDOS 14 Works

Your application can always change the values of any of the prefixes
except */. For example, it may change prefix 2/ if it wishes to
access libraries (or any other files) on a volume other than the boot
volume. But be careful: once you change prefix 1/, for example,
you can no longer use it as the application prefix. Be sure (o save the
value of a prefix number before you change it, if you may want 1o
recover it later.

Native mode and emulation mode

You can make ProDdO5 16 calls when the processor is in either
emulation mode or native mode. So If part of your program
requires the processor 1o be in emulation mode, you needn’t reset it
to native mode before calling ProDOS 16. However, emulation-
mode calls (o Prol05 16 must be made ffom bank $00, and they
can reference information (such as parameter blocks) in bank $00
only. Furthermore, intermupts must be disabiled

Prol¥36 B programs run entirely in emulation mode. If you wish to
modify 4 ProDOS B program to run under ProDdO5 16, or if you wish
to use Apple 1IGS features available only in native mods, see
“Revising a Prol¥05 8 Application for ProDOS 16" in this chapter.
See also Programmer's Introductiom to the Apple ITcs,

Selilng inifial machine canﬂgufnﬂnn

When an Apple [1GS application (rvpe $B3) is fimst launched, the
Apple 1IGS is in full native mode with graphics shadowing off (see
“Machine Configuration at Application Launch® in Chapter 5). If
your program needs a different machine configuration, it must
make the proper settings once il gains control,

ProDOS 16 does not initialize soft switches, fismware registers, or
any hardware registers other than those listed in Chapter 5. Your

program is responsible for initializing any needed switches and
registers,

Chapter &: Progromming With ProDOS 16 a1

82

+ "Setting up a Parameter Block in Memory” in Chapter 8

Allocating memory

All memory allocation is done through calls to the Memory
Manager, described in Apple [IGS Toolbox Referemce. Memory
space you request may be either mevable or unnmovable (fxed) I
it is movable, you access it through a memory handle; if it is
unnmovable, you may access it through a handle or through 2
pointer. Sinee the Memory Manager does not relurn a pointer Lo an
allocated block, you obtain the pointer by dereferencing the handle
{see Chapter 3).

ProDOS 16 parameter blocks are referenced by pointess; if you do
nol code them into your program segments and reference them
with labels, you must put them in unnmaovahle memory blocks, See

Lou?lng dl‘lﬂ[hﬂl‘ program

if you do not want your program to load another program when it
findshes, it should use & ProD0S 16 QUIT call with all parameters s
to 01, The QUIT routine performs all necessary functions o shut
down the current application, and normally brings up a program
selector which allows the user to choose the next program o load.
Most applications function this way.

However, if vou want your application 1o load and execute another
application, there are several ways to do it If you wish to pass
conteol permanently 1o another application, use the ProDOS 16
au1T call with only 3 pathname pointer, a5 described in Chapier &
If you wish contral 1o refurm to your application once the next
application is finished, use also the return flag parameter in the
gUIT call. That way your program can function similasly 1o 4
shell—whenever it quits to another specified program, it knows that
it will eventually be re-executed.

If you wish 1o koad but not necessarily pass control to another
program, of if you wani your program Lo remain in memory after it
passes control 1o another program, use the System Loader's Initial
Load function {described in Chapter 17). When your program
actively loads other program files, it Is called 3 controlling
program; the APW Shell (see "Apple [IG5 Programmer’s
Workshop” In this chapler) is 4 controlling program. Chapter 16
gives suggestions for writing controlling programs

Part |: How ProDOs 16 Works

e G

You can load a ProDOS B application (type $FF) through the
ProD}E 16 QUIT call, but you cannot do so with the Systam
Loader’s Initial Load call; the System Loader will load only PraDOS
16 load files (types SB3-5BE).

¢ Note: Because ProDi0S 8 will not load type $B3 files, ProDOS
B-based applications that load and run other applications
cannot run any ProDOS 16 applications. This restriction is a
natural consequence of the lack of downward compatibility. T
you wish 1o modify an older application 1o be able to use it with
ProDOS 16, see *Revising a ProDOS & Application for PraDOS
16," later in this chapter.

Using interrupts

Pro[}05 16 provides conventions (see Chapter 7) to ensure that
interrupt-handling routines will function correctly. If you are writing
i print spooler, game, communications program or other routine
that uses interrupds, please follow those conventions,

As explained in Chapter 4, an unclaimed friermipt causes a system
failure: control is passed to the System Failure Manager and
execution halts. Your program may pass a message to the System
Faiture Manager to display on the screen when that happens. In
addition, because the System Failure Manager is a tool, and because
all tocls may be replaced by user-writlen routines, you may
substitute your own error handler for unclalmed intermupts. See
Apple HES Toolbox Reference for information on the System
Failure Manager and for instructions on writing your own lool set

If ProDOS 16 is called while it Is in the midst of anather call, it issues
a "ProDOs is busy” error, This situation pormally arises only when
an interrupt handler makes ProDOS 16 calls; a typical application
will always find Prola0S 16 free to accept a call. Chapter 7 provides
instructions on how to avaid this error when writing intermupt
handlers; nevertheless, all programs should be able 1o handle the
“ProlM35 is busy” error code in case it occurs.

Chapfer & Programming With PraDOS 14 B3

Accessing devices

Under ProDO5 8, block devices on Apple 11 computers are specified
by a umit number, related to slot and dove number (such as slot 5,
drive 1). ProDOS$ 16 dees not direcdy support that numbering
system; instead, it identifies devices by dedce number and dewice
name As explained in Chapter 4, device numbers are assigned in
order of the device search at system startup, and device names are
assigned according 1o a simple ProDOS 16 convention. You must
use device numbers or names in ProDO5 16 device calls,

Far filing calls and for one device call (GET_DEV_NUM), you may
also access a device through the name of the volume on the device
In addition, you may use the GET_LAST DEV call to identify the last

. device accessed, in case you wish 1o acoess it again,

File cr;aiionfmndlﬁcuﬂon date nnd' time

The information in this section is imporant 1o you If you are wriling
a file or disk utlity program, or any routine that copies files,

All Prol¥05 16 files are marked with the date and ume of their
creaticn. When a file is fiest created, ProDOS 16 stamps the file's
directory entry with the current date and time from the system
clock, If the file is later modified, ProDOS 16 then stamps it with a
modification date and time (its creation date and time remain
unchanged).

The ¢reation and modification Gelds in a file entry refer to the
contents of the file. The values in these fields should be changed
only if the contents of the file change. Since data in the file's
directory entry itself are not part of the file's contents, the
modification field should not be updated when another field in the
file entry is changed, wnless that change is due to an alteration in
the file's contents. For example, a change in the file's name is nota
modification; on the other hand, a change in the file’s BEOF always
reflects a change in its contents and therefore is 2 modification.

Remember also that a file’s entry is 2 pan of the contents of the
directory or subdirectory that contains that erdry. Thus, whenever a
file entry s changed in any way (whether or not its modification
fiedd is changed), the modification Gelds in the entries for all its
enclosing subdirectories—including the volume direciorny—must

be updated.

Part |: How ProDOS 14 Works

Finally, when a file is cofded, a utility program must be sure (o give
the copy the same creation and modification date and time as the

orginal file, and nof the dawe and time at which the copy was
created.

To implement these concepts, file utility programs should note the
following procedures:

1. To create a new fAle:
4. Set the creation and modification fields of the file’s entry 1o
the current system date and time.
b. Set the modification fields in the entnes of all subdirectories
in the path containing the file o the current system date and
Lime
2. To rename a file:
4, Do not change the file's modification field.
b, Set the modification felds of all subdirectories in the path
containing the file to the current system date and time,
3. To alter the contents of a file:
a. ProDOS 16 considers a file’s contents to have been modified if
any WRITE or SET_ECF operation has been performed on the
file while it is open. If that condition has besn met, set the

file's modification field o the current system date and time
when the file i closed,

b. Also set the modification felds of all subdirectories in the
path containing the file to the current system date and time
4. To delete a file:

a. Delete the file's entry from the directory or subdirectory that
contains it

b. Set the modification fields of all subdirectories in the path
containing the deleted file to the current system date and
time,

5. To copy a file:

1, Make a GET_FILE INFO call on the source file (the file to be
copied), to get its creation and moedification dates and times.

b. Make 2 CREATE call 1o create the destination file (the file to be

copied o). Give it the creation date and time values obtained
in step (a).

€. Open both the source and destination files, Use READs and
WRITES to copy the source to the destination. Close bath files.

Chapter & Programming With ProDOS 14 BS

& Note: The procedure for copying sparse files s more
eomplicated than this. See Chaptler 2 and Appendix A

d, Make 2 SET FILE INFO call on the destination fike, using all
the information rewmed from GET_FILE_INFO in siep (ad
This sets the modification date and time values 1o those of the
source file.

PraDOS 16 automatically carries out all steps in procedures (1)
through (4). Procedure (5) is the responsibility of the fle-copying
utility.

) Ewlé.-lng a ProDOS 8 application for

ProDOS 16

If you have wrinen 4 Prol05 8-based program for a standard Apple
11 (64K Apple I Plus, Apple Ile, or Apple IIc), it will nun without
maodification on the Apple 1165, The only noticeable difference will
be its faster execution because of the greater clock speed of the
Apple IIGS. However, the program will not be able to take advantage
of any advanced Apple 11GS features such as large memoary, the
toolbox, the mouse-based interfzce, and new graphics and sound
ahbilities. This section discusses some of the basic alterations
necessary to upgrade a PraDOS 8 application for native-mode
execution under ProDOS 16 on the Apple [1GS5.

Because ProDO5 16 closely parallels ProDOS B in function names
and calling structure, it 5 not difficult to change system calls [rom
one ProDO05 to the other. But several other aspects of your program
also must be redesigned iF it is 1o run in native mode under ProDOS
16, Depending on the program’s size and struchure ard the new
features you wish 1o install, those changes may range from minot 10
drastic.

Memory management

Because the Apple 11GS suppors segmented load files, one of the
first decisions 1o make is whether and how to segment the program
{both the original program and any added paris), and where in
memory to put the segments.

Part | How ProDOS 16 Works

To help decide where in memory to place pieces of your program,
consider that execution speed is related 1o memory location: banks
SE0 and §E1 execute al standard clock speed, and all the other
banks execute at fast clock speed (see Apple Iies Hardware
Reference), Those pants of your program that are executed most
often should probably go into fast memory, while less-used pans
and data segments may be appropriate in standard-speed memory.
On the other hand, because all 1/O goes through banks SE0 or $E1,
program segments that make heavy use of 1/0 instructions might
work best in standard-speed memory, Performance testing of the
completed program is the only way o accurately determine where
segments should go.

Memory management methods are complelely different under
ProD05 16 than under ProDOS B, If your ProDOS B program
manages memory by allocating its own memory space and marking
it off in the global page bit map, the ProDOS 16 vesion must be
altered so that it requests all needed space from the Memory
Manager, Whereas ProDOS 8 does not check to see if you are using
only your marked-off space, the Memory Manager under ProDOS
16 will not assign to your program any part of memory that has
already been allocated.

Hardware configuration

ProD(5 8 applications nun only in 6502 emulation mode on the

Apple [1GS. That does not mean that applications converted 1o run

under Prolx05 16 must necessarily run in native mode. There are at

least three configurations possible:

O The pragram may run in emulation mode, but make ProDOS 16
calls.

O The program may ran in native mode with the m- and x-bits set.
The accumulator and index registers will remain 8 bits wide.

0O The program may run in full native mode (m- and x-bits
cleared)

Modifying a program for the first configuration probably fnvolves
the least effon, but refurns the least benefit

Modifying a program to run in full native mode is the most difficuly,
but it makes best use of all Apple 11GS features,

Chapter & Programming With ProDOs 18 &7

Converting system calls

For mest Prol05 8 calls, there is an equivalent ProDOS 16 all with
the same name, Fach call block must be modified for ProDOS 16:
the J5R (Jump to Subroutine) assembly-language instruction
replaced with a J5L (Jump to Subroutine Long), the call number
field made 2 bytes long, and the parameter list pointer made 4 bytes
long, The only other conversion required is the reconstruction of
the parameter block to the ProlOS 16 format.

For other ProDO5 8 calls, the ProDOS 16 equivalent performs a
slightly different task, and the original code will have to be changed
o account for that For example, in ProDOS 8 an O8_LINE call can
be used directly to determine the names of all online volumes; in
Preld05 16 a succession of VOLUME calls is required. Refer to the
detailed descriptions in Chapters 9 through 13 to see which ProDOS
16 calls are different from their Prold05% 8 counterparts.

5till other ProDOS B calls have no equivalent in ProDOS 16, They
are listed and described under “Eliminated ProlX08 B System
Calls,” in Chapter 1. If your program uses any of these calls, they
will have: 1o be replaced as shown.

Modifying interrupt handlers

IF you have wrilten an intermupt handling routine, it needs to be
updated 10 conform with the ProDOS 16 interrupt handling
conventions, There may be very few changes necessary: il must
requrn with an RTL (Return from subroutine Long) rather than an
RTS (Return from Subroutine), and it must start and end in 5CA16
native mode, See Chapter 7.

Converling stack and zero page

The fixed stack and zero-page locations provided for your program
by ProDOS5 8 are not available under ProDOS 16, You may either let
ProDOS 16 assign you 2 default 1,024-byte space, or you may define
direct-page/stack segment in your object code, In either case, the
lcader may place the segment anywhere in bank $00—you cannot
depend on any specific address being within the space, See “Stack
and Direct Page," earlier in this chapter.

Part I: How Prol05 14 Works

Compilation/assembly

Once your source onde has been modified and avgmented as
desired, you need 1o recompile/reassemble it You must use an
assembler or compiler that produces object fles in Apple 11GS
object module format (OMF); otherwise the program cannot be
propely linked and loaded for execution, Using a different
compiler or assembler may mean that, in addition to modifying
your program code, you might have to change some assembler
directives o follow the syntax of the new assembler,

If you have been using the EDASM assembler, you will not be able o
use it to write Apple [1GS programs, The Apple [1GS Programmer's
Warkshop is a set of development programs thar aflow you to
preduce and edit source files, assemble/compile object files, and
link them inte proper OMF load files. See "Apple 11GS
Programmer's Workshop® in this chapier

After your revised program is linked, assign it the proper Apple TIGS
application file type (normally $B3) with the APW File Type
utility

Apple llcs Programmer's Workshop

The Apple IG5 Programmer's Workshop (APW) is a powerful set of
development programs designed to facilitate the creation of Apple
UGS applications. If you are planning to write programs for the

Apple 1G5, APW will make your job much easier, The Workshop
includes the following components

g Shell

O Editor

O Linker

0 Debugger
[

Assembler
C

C Compiler

All these components work together (under the Shell) 1o speed the
wriling, compiling or assembling, and debugging of programs. The
Shell acts as a command interpreter and an imerface 10 ProDO3§ 16,
providing several operating system functions and file utilives that
can be called by users and by programs running under the Shell,

Chapter & Programming With PraDOS 16 B9

See the following manuals for more information on the Apple I1GS
Programmer's Workshop:

0 Apple TGS Programmer's Workshop Reference (describes the
Shell, Editor, Linker, and Debugger)

0 Apple TGS Programmers Workshop Assembler Reference
O Apple HGS Programmers Workshop © Reference

Human Interface Guidelines
All people who develop application programs for the Apple TGS
computer are strongly encouraged o follow the principles

Jpresented in Human Intenface Guidelines: The Apple Deskiop

Imterface. That manual describes the deskiop user interface
through which the computer user communicates with his compuer
and the applications running on il This section brieflly outlines a
few of the human interface concepts; please refer to the manual for
specific design information

The Apple Desktop Interface, first introduced with the Macintosh™

computer, is designed to appeal 1o a nontechnical audience:

Whatever the purpose or structure of your application, it will

comunicate with the user in 2 consistent, standard, and non-

threatening manner if it adheres o the Deskiop Interface standards,

These are some of the basic principles:

® Human control: Users should feel that they are controlling the
program, rather than the reverse. Give them clear alternatives 1o
select from, and act on, their selections consistently.

= Dialog: There should be a dear and friendly dialog between
human and computer. Make messages and requests to the user in
plain English.

® Direct Manipulation and Feedback: The user’s physical
actions should produce physical results, When a key is pressed,
place the commesponding lenter on the screen, LUse highlighting,
animation, and dialog boxes to show users the possible actions
and thelr consequences

s Exploraton: Give the user permission 1o lest oul the possibilites
of the program without worrying about negative consequences,
Keep ermor messages infrequent. ' Warn the user when risky
sitfuations are approached,

Port I: How ProDOS 16 Works

Graphic deslgn: Good graphic design is a key feature of the
guidelines. Objects on the screen should be simple and clear,
and they should have wdoual fdelity (that is, they should look like
what they represent), foons and palettes are common graphic
elements that need careful design.

Avolding modes: a mode is 3 portlon of an application that the
user has to formally enter and leave, and that restricts the
operations that can be performed while iUs in effect. By
restricting the user’s options, modes reinforce the idea that
computers are unnatural and unlrendly, Use modes sparingly

Device-independence: Make your program as hardware-
independent as possible. Don't bypass the tools and resources in
ROM—your program may become incompatible with future
products and features

Consistency: As much as possible, all applications should use
the same interface. Don'l confuse the user with a different
interface for each program

Evolutlon: Consistency does not mean that you are restricted 1o
wsing existing deskiop features, New ideas ane essential for the
evolution of the Human Interface concept. If your application
has a feature that is described in HMuman meerface Guidelines,
you should implement it exactly as described; if it is something
new, make sure it cannot be confused with an existing feature. It is
better 1o do semething complelely different than to half agree
with the guidelines

Chapter &: Programming With ProDOS 14 7l

Chapter 7

Adding Routines to ProDOS 16

w3

This chapter discusses additional specific routines that may be used
with ProDO5 16, Because these routines are directly Cﬂnnl:d_.:d [[x}
ProDO5 16 and interact with it at 2 low level, they are essentally
transparent to applications and can be considered "pcar_: af”
Prold)5 16, Interrupt handlers are the only such extensions 1o
ProDOS 16 presently suppored

Interrupt handlers

The Apple OGS has extensive firmmware intermuipl suppor (see Affle
IfGS Firmuware Reference), In addition, ProDOS 16 supparts up (o
16 user-installed interrupt handlers (see Chapter 4). If you write an
. interrapt handler, it should follow the conventions described here
Mote also the precautions you must take if your handier makes
operaling system calls,

Interupt handler canvnﬂiians

Intermupt handling routines written for the Apple 11GS must fﬂ-!lm'.-’
cemain conventions, The interrapt dispatcher will set the following
machine state before passing control 1o an interrupt handier:

e = 0
m - 0
% = 0
i = 1
c = 1
speed = high

Before returning 1o ProDOS 16, the intermept handler must restone
the machine to the following state:

e = 0
m = 0
x = 0
i =- 1
speed = high

How PraDos 14 Works

In addition the c flag must be cleared (= 0) if the handler serviced
the interrupt, and set (= 13 if the handler did not service the
interrupt, The handler must return with an RTL instruction,

When an interrupt is passed 1o ProDOS 16, ProDOS 16 first sets the
processor to full native mode, then successively polls the installed
interrupt handlers. If one of them services the interrupt, ProDOS 16
knows because it checks the value of the ¢ flag when the routine
returns. [f the c flag is cleared, ProDOS 16 switches back to 2
standard Apple I1 configuration in emulation mode, and performs
an RTI to the Apple 1G5 firmware intemupt handling system. If no
handler services the interrupt, it is an unclaimed interruptl and it will
result in system falure (see Chapter 4),

Installing inierrupr-handlers

Interrupt handlers are installed with the ALLOC_INTERRUPT call
and removed with the DEALLOC_INTERRUPT call The PraDOS 16
interrupt dispatcher maintains an interrupt vector table, an array
of up 0 16 vectors to interrupt handlers, As each successive
ALLOC_INTERRUPT call is made, the dispatcher adds another
entry to the end of the table. Each time a DEALLOC INTERRRUPT
call is made 1o delete a vectar from the table, the remaining vectors
are moved toward the beginning of the array, filling in the gap.
Internspt handling routines are polled by ProDOS 16 in the order in
which their vectors ocour in the interrupl vector table,

There is no way to reorder interrupl vectors except by allocating
and deallocating internapts. Interrupts that occur often or require
fast service should be allocated first, so their veciors will be near the
beginning of the interrupt vectar wable, I you need extremealy fast
interrupt service, install your interrupt handler directly in the Apple
0G5 firmware interrupt dispatcher, rather than through ProDOS 16,
See Apple INGS Firmware Reference for further informaticn

Be sure (o enable the hardware generating the interrupt only
after the routine 1o handle it is allocated; likewise, disable the
hardware bafore the routine is deallocated. Otherwise, a fatal
unclaimed tnterrupl error may occur (see "Unclaimed
Interrupts”™ in Chapter 4)

Chapter 7: Adding Routines to PraDOS 14 75

Part |

Making operating system calls during interrupts

ProDOS 16 is not reentrant. That is, it does nol save ils own state
when interrupled, It therefore is illegal to make an operating system
call while another operating system call is in progress; if a call is
attempted, ProDOS 16 will return an error (number $07, "ProDO5
is busy™)

For applications this is not a problem; the operaling system Is
always free o accept a call from them, Only routines that are staned
through interrupts (such as interrupt handlers and desk acoessories)
need be careful not to call ProDd08 16 while it is busy,

One acceptable procedure is for the interrupt handler to consult the
ProDOS busy flag at location SE100BE-SE100BF (see Table 3-3),
and simply not make the sysiem call unless ProDdO5 16 5 not busy

If an interrupt handler really needs to make an operating system
call, it must be prepared to deal with a returned *ProlX05 is busy®
efeaf. IF thit hippens the haadlar shauld

1. Defer itself temporarily

2. Retrn control to the operating system so that the operating
system may complete the current call

3. Regain control when the operating system is no longer busy, and
make ils own system call

The Scheduler, part of a ROM-based tool set, allows intermapt
handlers o follow these procedures in a simple, standard way. The
Scheduler consults a system Busy word that keeps track of noen-
reentrant system software that is in use, ProDOS 16 executes the
Scheduler routine INCBUSYFLAS whenever it is called, and
DECBUSYFLAG before it returns from 2 call An interrupt handler
may use the Scheduler's SCHADDTASK routine (o place izell in a
queue of tasks waiting for ProDOS 16 to complete any calls in
prograss. Sas Apple IS Thalbax Reference for detailed

information.

How ProDos 16 Works

ProDOS 16 System Call
Reference

This part of the manual describes the ProDOS 16 system calls in
detail. The calls are grouped into five categories:

0 File houscheeping calls (Chapter 93
o File access calls (Chapter 100
O Device calls (Chapter 11}
O Environment calls (Chapter 12
O Interrupt contral calls {Chapter 13)

Chapter 8 shows how 10 make the calls, and explains the format for
the call descriptions In Chaplers 9 through 13, See Appendix E for a
list of all ProDOS 16 emars retumned by the calls

C h uptEr 8 Any independent program in the Apple 11G5 that makes sysiem
calls is known as a ProDOS 16 calling program or caller. The

current application, a desk accessory, and an interrupt handler

are examples of potential callers. A ProDOS 16 caller makes a

system call by executing a call block. The call block contains a

qulng PFDDOS l 6 Cﬂ“s pointer 1o a parameter block. The parameter block is used for
passing information berween the caller and the called function;
additional Information about the call is reflected in the sute of
certain hardware registers. This chapler discusses these aspects of
system calls and compares them with the calling methed used in
ProldS 8.

& Note: The phrase system call as used here is synonymous with
operating system call or ProD0S 16 call, and s equivalent to

. MLI call for ProDOS 8. It includes all calls to the operaling
system for accessing system Information and manipulating
apen or closed files. It is not restricted o what are cilled
“system calls® in the ProDOS 8 Tecknical Reference Marnual

The call block

A system call block consists of 2 JSL (Jump (o Subroutine Lomg) 1o

the ProDOS 16 entry point, followed by a 2-byte system call number

and a 4-byte parameter block painter. ProDOS 16 performs the

requested function, if possible, and returns execulion to the

instraction immediately following the call biock.

All applications writien for the Apple 11GS under ProDOS 16

must use the system call block format. When making the call, the

caller may have the processor in emulation mode or full native

maode or any stale in between (see Technical ftroduction to the

Apple I1GS)

¢ Note: To call PraDOS 16 while running in emulation mode,
your program must be in bank 500 and interrupls must be
disabled

i 100 Part I ProD0s 14 System Call Reference

octherwise, continue.

The call block looks like this;
PRODOS GEQU SE100AS Ziunid tsy vedbox Types of parameters

) fach feld in a parameter block contains a single parameter. There
. are three types of parameters: values, results, and poinfers. Each is
J3L BRODOS ; either an froud 1o PraDOS 16 from the caller, or an oudput from

= ¢ Dispateh call to ProDOS 16 entr PraDO5 16 o the caller. The minimum field size for a meter is
o 12 "CALLNUM' ¥ A
o T4 ‘;p R”;JM . i 2-byte call number one word (2 bytes; see Table 3-13,

LOCK 4-byte parameter block pointer A :) i
BCS ERROR i If carry set o A vahue is a numerical quantity, 1 or more words long, that the
1 e 48 B erroe: handler caller passes to Pro[¥05 16 through the parameter block 1t s an

il parameler
O A result is 2 numerical quantity, 1 or more words long, that
ProDOS 16 places into the parameter block for the caller 10 use.

ERROR .
¢ error handler It is an oudptid paramelter
0° A polnter is the 4-bytc (Jong word) address of a location
contalning data, code, an address, or buffer space in which
FARMBLOCK ProDOS 16 can receive or place data. The pointer itself is an

7 parameter block

The call block itself conslsts of onl i
y the JSL instruction and the D
(Define Constant) assembler directives, The BCS (Branch DEIE:I'}"

Set) instruction in this example is a condid
onal branch
handler called ERROR. e

A J5L rather than a J5R Jump to Subroutine) i

: is required because
E_]'u: JSL uses a 3-!:!1.1& address, allowing a caller to make the call
from anywhere in memory, The J5R instruction uses only a 2-byte

address, restricting it to jum: Lt
' ps and refurns within the
bleck of memory, " current (64K)

he parameter block
A parameter block s a specifically formatted tabl i
: e thal ocoupies a
set of contiguous bytes in memory. It consists of a number o&']ﬁ:]ds

that hold information that the calling program supplies 1o the

ction it as well as information e e the fun
fi ¥ calls, s
I d h'j? unction to

Every ProDOS 16 call requires a valid parameter b ARMB

in the example just given), rcFe;enc&dFI; a 4-byte Ig-fkmf:r in :I';?:EE
block. The caller is responsible for constructing the parameter
I::Ind-: for each call it makes; the list may be anywhere in memory
Formats for individual parameter blocks accompany the d.cr.a:'[e;::l.
system call descriptions in Chapters 9 through 13

Chapter 8 Making ProDos 14 Calls 1M

input for all ProDOS 16 calls; the data it points to may be either
inpndl OF Gl

A parameter may be both a value and a resull. Also, 3 pointer may
designate a location that contains a value, a result, or both,

¢ Nofe: A handle is a special type of pointer; it is a pointer 10 2
pointer. 1t is the 4-byte address of a location that {fself contains
the address of a locatlon containing data, code, or buller
space. ProDO$ 16 uses a handle parameter only in the OPEN
call (Chapter 10); in that call the handle is an ougprr (result).

Parameter block format

All parameter fields that contain block numbers, block counts, fle
affsets, byte counts, and other file or volume dimensions are 2
bytes long, Requiring 4-byte ficlds ensures that ProDO3 16 will
accommodate future large devices using guest file systems.

All parameter fields contain an even number of bytes, for ease of
manipulation by thel6-bit 65CB16 processor. Thus pointers, foe
example, are 4 bytes long even though 3 bytes are sufficient 1o
address any memory location. Whernever such extra bytes oocur
they must be set 1o zero by the caller; if they are not, compatibility
with future versions of ProDO5 16 will be jeopardized

part - PraDOS 16 System Call Referance

_orde 2. Use Memory Manager and System Loader calls to place the block
Pointers in the parameter block must be writen with the Jow: -

in memory:
byte of the low-order word at the lowest address, a. Request a memory block of the proper size from the Memary
Comparison of ProDOS 16 parameter blocks with their ProDOS 8 Manager. Use the procedures described in J‘;Pf"jﬂg; =
counterparts reveals that in some cases the arder of parameters is Toolboe Reference. The block should be either
slightly different. These alterations have been made 1o facilitate locked.

sharing 3 single parameter block among a aumber of calls, For
example, most file access calls can be made with a single parameter
block for each open file; under ProDO5 B this sharing of parameter
blocks is not possible,

b. Obtain a pointer to the block, by d.:referendng: the memory
handle retumed by the Memory Manager (that is, read the
contents of the location pointed to by the handle, and use that

value a5 a pointer to the hlock)
Set up your parameter block, starting at the address pointed o}
by the pointer obtained in step (b).

[=
Important A parameter’s flald width In o ProDOS 14 porameter block ks
offen very different from the range of permissihle values for that
parameater, The fact that all lekds ore on even Aumber of bytas z
Iz oRe eason. Another reason Is that certain feids are larger - T — = ———— =
than presantly needed in anticipation of the requirements of

future guest flle systems. For example, the ProDOS 18 CREATE Register values "
call's parameter bleck ncludes a 4-byte a2ux_type flald, even . i nis on entry to 2 ProDOs 16 call,
thaugh. on disk, the aux_type flald B only 2 bytes wide (see me:gz‘i;:gf;m;;iﬁ;::“ :egist:rsu:xcl&]:'[the acoumulator
“Femnat and Organization of Directory Flles® In Appendlx A). E:S :n{i the processar status register (P); these two registers store
erhm high-order bytes In the fisld must thersfore always be information on the success ar failure of the call. On exit, the
registers have these values:
Ranges of permissble values for all parametens ore glven as part s) ode
of the system call descriptions In the following chapters. When A zero if call successful; if nonzero, number is the error coded
coding o parameter block, note carefully the range of % unchanged
parmissible values for eoch parameter, and make sure that e ¥ unchanged
value you assign Is within that range. 5 unchanged
] unchanged
P (ses below)
: — DB unchanged
Settingup o meter bl in mem B unchanged
SRR povs ock i ic ;ddmssggf location following the parameter block pointes
Ear.'.hFmDDS1ﬁﬁJlu5ma4-h}ﬂ.cpn[ﬂtermpchnmiispm1ntlﬂ o et
block, which may be anywhere in memory. All applications must “Unchanged” means that ProDOS 16 initially saves, and L em 58
obtain needed memory from the Memory Manager, and therefore restores when finished, the value the register had just before the
cannot know in advance where the memory block holding such a FRODOS 8 instructicn,

parmeter block will be,

There an: two ways 10 set up a ProDOS 16 parameter block in

MEMmory;

1. Code the block directly into the program, referencing it with a
label. This is the simplest and most typical way to do it The
parameter block will always be comectly referenced, no matter
where in memory the program code is loaded,

Chapter 8: Making ProDos 14 Cals 103 104 Part Il: ProDOS 16 System Call Refersnce

—_

On exil, the processor status register () hits are

n undefined

v undefined

m unchanged

x unchanged

d unchanged

i unchanged

z undefined

C zero if call successful, 1 If not
- unchanged

L

mﬂ‘:ﬂe:;mém 16 weats several flags differently than ProDOS 8
nd z flags are undefined here; under ProDS 8, the
i::c;n;inﬁén the value in the dccumulator. Here I[h: fa&:i
e ¢ flag to see if an en -
1 ror has occurred;
ProDOS 8, both the ¢ and z lags determine error SL::L: e

Comparison with the ProDOS 8 call mﬂrﬁ

3’;[.:]“!:? uI:;.er[iuns nated in Chapter 1, ProDOS 16 provides an
al call for each ProDOS 8 system call. The ProDOS

K ro)
pe.:‘form.s_ exactly the same function as its ProDOS 8 D?balm b
it iz in a format thar fits the Apple 1G5 environment i

o i
itsﬂr:n :—'mDJ:DE 8, the system call is issued through a subroutine
inmictr_;: J_xved system entry poinat, However, the jump
n is 2 JSL rather than a J5R, and it is o 2 location In
bank $E1, rather than bank $00.

& .
ol r;:pal-arru:ncr block pointer in the system call is 4 bytes lon
ther than 2, so the parameter block can be anywh : ’
St ywhere in
n] ;]I memory pointer fields within the parameter block are als
yies long, so they can reference data anywhere in memory, =

All 1-byte parameters are
: _ extended 10 1 word in length
efficient manipulation in 16-bit processor mode s

.I:Iig:enpcslunn {such as EOF) and block-specification (such as
numbser or block count) lelds in the parameer blﬂ i
bytes long, in anticipation of future guest file systems h:w I
suppart files larger than 16 Mb or volumes larger than 32 [%1]:: -

]

=

Choapter 8: Making ProDos 16 Calls 108

& Note: Although only 3 bytes are needed for memory pointers
and block numbers in the Apple 1168, 4-byte polnters are used
for ease of programming. The high-order byte in each case is
reserved and must be zero,

The ProDOS 16 Exerciser
To help you learn o make ProDOS 16 calls, there is & small
program called the ProDOS 16 Exerciser, on a disk inchuded with
this manual. 1t allows you to eéxecule Sysiem calls from 2 menu, and
examine the results of your calls. 1t has a hexadecimal memaory
editeor for reviewing and altering the contents of memory bulfers,
ind it includes a catalog command.
When you use the Exerciser to make 3 ProDOIS 16 call, you first
request the call by its call number and then specify its parameter
list, just as il you were coding the call in a program. The call is
axecuted when you press Return You may then use the memary
editor or catalog command 1o examine the results of your cail.
Instructions for using the ProDOS 16 Exerciser program are in
Appendix C.

Format for system call descriptions
The following five chapters list and describe all ProDOS 16
operating system functions that may be called by an application

Each description includes these elements:

O the function's name and call number

1 @ short explanation of iis use

0 a diagram of its required parameter block

O a detailed description of all parameters in the parameter block

O a list of all possible operating system error MeSSages.

The parameter block diagram accompanying each call's
description is a simplified representation of the parameter black a8
memaory. The width of the diagram represenls one byte; the
numbers down the left side represent byte offsets from the base

address of the parameter block, Each parameter field is further
identified as containing a value, result, or polnter.

Part Il: ProDos 16 System Coll Refarence

The detailed parameter description that follows the diagram has the
following headings
® Offset: The position of the parameter (relative to the block's
base address)
& Label: The suggested assemnbly-language label for the parameter
B Description: Detailed information on the parameter,
including:
parameter name: The full name of the parameter
size and type: The size of the parameter (word or long word),
and its dassification (value, result. or pointer). A word is 2 byles;
i long word is 4 bytes
range of values: The permissible range of values of he
pdrameter. A parameter may have a range much smaller than its
size In bytes
Any additional explanalory information on the parameter
follows

Chapter 8 Making ProDos 14 Colls 107

_

Chapter 9

File Housekeeping Calls

These calls might also be called “closed-file” calls; they are made — e —_—
1o get and set information about files that need not be open when CREATE (53])
the calls are made. They do not alter the contens of the files they] N
ACCEss, Every disk file except the volume directory file (and any Apple 1T
. - Fascal region on a panitioned disk) must be created with this call, It
The PeoDOS 16 file housekeeping calls are described in this order: establishes a new directory entry for an empty file,
Mumber Funchon Purpose N of -]
501 CREATE arales i new e E : pothnamig : oot
$02 DESTROY deletes a file 4
$04 CHANGE_PATH changes a file’s pathname sl Dorast] volue
305 SET_FILE_INFO assigns attributes (o a file ﬁ' - file_type i e
506 GET_FILE_INFO returns a file's atnbules 4L]
08 VOLUME returns the volume on a device : = aux_type - Wl
09 SET PREFIX assigns a pathname prefix B[B
£0A GET_PREFIX refurng 4 pathname prefix E - storoge_type = value
fon CLEAR BACEUF BIT zeroes a file's backup attribue E
- = Ef craéate_date = wvalug
e}
nr create_ftime = yaolue
CREATE ($01)
Parametar block
Parameler descrplion
Offsel Label Description
S00-503 pathname parameter name: pathname
size and type: long word pointer Chigh-order byte zero)
range of values: $0000 0000-S00FF FFFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCII string representing the pathrname of the file 1o
create,
)
110 Part il: ProDOS 14 System Call Referance I Chapter 9: Flle Housakesping Calls m

Parameler description (continued)

Citsat Label !}ilcﬂmlun_
L04-%05 access parameter name: 100ess
slze and type: word value Chigh-order byte zern)
range of valoes: $0000-500E3 with exceptions
A word whose low-order byte determines how the file may be
accessed, The access byte's format is
m [7]a]s]afaf2]1]0]
vaiue: | D[R] B | reserved |W I-!]
“where [= destrov-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-cnable bit
R = read-enable bit
arvd for each bit, 1 = enabled, § = disabled. Bits 2 through 4 ase
reserved and must always be set 1o zero (disabled). The most typical
serting for the acoess byte is $C3 (110000117
306-507 file type parameter name: file type
size and type: word value Chigh-order byte mero)
range of values: S0000-500FF
A number that categorizes the file by its contents (such as text file
binary file, ProDOS 16 application). Currently defined file Lypes
are listed in Appendic A
508-3008 aux_type parameter name: auxiliary type

long word value Chigh-order word zero)
S0000 D000-30000 FFFF

size and type:
range of values:

A number that indicates additional arributes for certain file types.
Example uses of the auxiliary type feld are given in Appendix A

112 Part 1l: ProDOS 146 Systen Call Refersnce

Parameler description (conlinued)

Offsel Lkl Description
S0C-50D SCorage_type parameter name: siorage ype
size and type: word value/result Chigh-order byie zero)
range of values: F0000-5000D with exceptions
A number that describes the logical organization of the file (see
Appendix Al
500 = inactive entry
301 = seedling file
$02 = sapling file
303 = iree file
504 = Apple 11 Pascal region on 4 paritioned disk
30D = direciory file
501 and 50D are the most wpical input values for this Geld in the
CREATE call; any value in the range $00 through $03 is
automatically converted 1o an input (and output) of 501.
©® Note: S0E and S0F are not valid storage types; they are
subdirectary and volume key block identifiers,
$UE-$0F

cre E.T.E_'."!.‘l Ea

parameter name: creation dale
size and type:
range of values:

word value
limited range

The date on which the file was created, Its format is

Byte 1 Byt 0
s Nsfafa2[n0]e[a]7[&]5][4[3]2]1]0
VilLie Year Maonth Day

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock,

Chapter & Flle Housakeaping Calls 113

Porameter description (confinued)

Oifset Label Descriplion

$10-311 create_tims parameter name: creation time
size and type: wond value
range of values: limited range

The time at which the file was created. Its format is

Byte 1 Byte O
ar [Isnapaz[nofe(a[7[&[5]4]3]2]1]0
vaue: (O[O0 Haur I Minute

.

[the value in this feld is zero, ProD08S 16 supplies the time
obtained from the system clock

Possible ProDOS 16 ermors

507 ProDO5 is busy

510 Device not found

jz7 10 ermror

§2B Disk write-protected

£40 Invalid pathname gyniax

544 Path not found

545 Volume not found

346 File mat found

547 Duplicate pathname

548 Volume full

5409 Volume directory full

4B Unsupported storage (ype

352 Unsupported volume type

§53 Invalid parameter

$58 Mot a block device

554 Block number out of mnge
114 Part ll: PraDas 14 System Coll Reference

0
2' - pathname = poanter
3

DESTROY (502)
Parameter block

Porameler description

Cfsel Label

DESTROY ($02)

This function deletes the file specified by pathname. It removes the
file"s entry from the directory that owns it and returns the file's
blocks to the volume bit map,

Volume directory files, files with unmecognized storage types (other
than 301, 502, 303, or $010), and open files cannot be destroyed,
Subdirectory files must be emply before they can be destroved.

& MNote: When a file is destroyed, any index blodks it contains are
inverted—that is, the Arst halfl of the block and the second half
swap positions, That reverses the order of the bytes in all
pointers the block contains. Disk scavenging programs can use
thiz information (o help recover accidentally deleted files. See
Appendix A for a description of index block structure,

Description

F00-503 pathname

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: S0000 O000=-S00FF FFFF

The long word address of a buffer, The bulfer containg a length byte

followed by an ASCII string representing the pathname of the file 1o
delets

Chapter %: Flle Housekesping Calls 115

Possible ProDOS 14 erors

507 ProDO5 is busy

510 Device not found

$27 1/0 error

428 Disk write-protected

$40 Iovalid pathrame syntax

S44 Path not found

545 Volume not found

S46 File not found

F4A Version error

348 Unsupported storage type

$4E Access: [ile not destroy-enabled

550 File is open

$52 Unsupported volume type

558 Mat a block device

554 Block number cut of mnge
114 Part ll: ProD¥D5 16 System Call Refaranca

CHANGE_PATH ($04)

This functicn performs an intravolume file move, It moves a file's
direciory entry from one subdirectory (o another within the same
volume (the file itself is never moved), The specified pathname and
new pathname may be either full or partial pathnames in the same
volume. See Chapter 5 for an explanation of partial pathnames.

To rename a volume, the specified pathname and new pathname
must be volume names only

If the two pathnames are identical except for the rightmost file name
(that is, if both the old and new names are in the same
subdirectory), this call produces the same result as the RENAME call
in ProDD05 B

= BEfRRSTS 3 BoiAtEr

= e _palhnome — poinfer

A

CHANGE_PATH (504)
Farameter bock

+ Note: In initial releases of ProDOS 16, CHRNGE PATH s

restricted to a filename change only—that is, it is functionally
identical 1o the RENAME call in ProDOS 8.

Chaplar %: File Housakaaping Calls nz7

I

Paramaeter descriplion

Cffsel Label Descriplion

$00-803 pathname parameter name: pathname
slze and type: long word pointer Chigh-order byte zero)
range of values: $0000 0000-$00FF FFFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCII string representing the file's present
pathname

504-%07 new pathname parameter name: new pathname
size and type: long word pointer Chigh-order byte zero)
range of values: 0000 00O0-S00FF FEFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCIT string representing the file's new pathname.
Possible ProDOS 16 errors
a7 Prol08 is busy
527 17D error
328 Disk write-protected
540 Invalid pathname syntax
$44 Path not found
$45 Valume not found
$46 File not found
547 Duplicate pathname
S4A Version error
548 Unsupported storage Lype
$4E Access: file not rename-enabled
350 File is open
$52 Unsuppored volume type
§57 Duplicate volume
558 Mot a block device

1148 Part lI: PreDO5 14 System Call Reference

SET_FILE_INFO ($05)

This function medifies the information in the specified file's
directory entry, The call can be made whether the file is open or
closed; however, any changed access atribules are not recognized
by an open file untl the next time the file is opened, In other words,

this call does not modify the accessibility of memory-resident
information

@ Node Current versions of Prol}05 16 ignore input values in the
create_date and create time felds of this function.

a - .
2 [pathramea - poirdar
al]
4
= [QCiCEss o wialug
& iy
7 [fila_typa - wvalue
a —
g 7]
al aux_type = wialue
A I
:'_:: o (ol field) = walug
b} ceote_dore 4 vaue
Ell I cragte_tima = waliie
? r~ mad_date = value
14 5
15 mad_time = VLB
SET_FILE_INFO ($05)
Parameter block

Chopter ¥ Flle Housekeeping Caolls ns

Parameler descriplion

Ofifset Labal

Description

$00-503 pathname

504-505 acceas

$06-507 file_type

$08-508 aux_type

parameter name: pathname
size and type: long word pointer (high-order byte sero)
range of values: 0000 0000-300FF FFFF

The long word address of 4 buffer. The buffer contains a length byte
followed by an ASCII string representing the file's pathname.

parameter name: ooess
size and type: word value Chigh-order byte zero)
range of values: $SO000-$00E3 with exceptions

A word whose low-order byte determines how the file may be

« accessed, The aceess byte's format is

B 1714
Volue D |RN

on

4falz2]17]o
redervad W [R

L)

wherne D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W= writc-enable bit
R = read-enable bit

and for each hit, 1 = enabled, 0 = disabled. Bits 2 through 4 are
reserved and must always be set o pero (dissbbed). The most typical
setting for the access byte is $C3 (110000113,

parameter name: [file ype
size and type: word value Chigh-order byte zero)
range of values: S0000-500FF

A number that categorizes the file by its contents (such as text file,
binary file, ProDOS 16 application). Currently defined file types
are listed in Appendix A

parameter name: auxiliary type
size and type: long word value Chigh-order word 2ero)
range of values: 0000 0000-$0000 FFEF

A number thal indicates additional antributes for cerain file types.
Example uses of the auxiliary type field are given in Appendix A,

120 Part Il: ProDO5 14 System Call Reference

Parameter description {centinued)

Oflset

Labal

Description

S0C-50D

SOE-3QF

510=-511

$12-%13

[Aull field)

create_date

create t ime

mod date

parameter name: {none)
size and type: word value
range of values: (undefined)

Values in this ficld are ignored,

parameter name: creation date
size and type: word value
range of values: limited range

The date on which the file was created. s format is

. Byte 1 Byia O
& Nshalaf2nfoje[8]76[5]4[3]Z]1]0]
Ve Year Manth | Day |

(Values in this field are ignored)

parameter name: creation tme
size and type: word value
range of values; limited range

The time at which the fle was created. Its format s
Byte | Byta D

& N1sTiaNaniz[nfo]e[e]7 (654 [afz]1]o
Vole: (O0f0][D f Howr oo Minute

(Values in this field are ignored,}

parameter name: modificalion date
size and type: word value
range of values: limited range

The date on which the fle was last modified. Its format is ideatical
o the create date formar

Byt 1 Byta O
at 15]1[13)i2(nfofeTa[7]&[5]4[3]2]1]0
Wialue: Year Manih Day

If the vilue in this field is zero, ProDOS 16 supplies the date
abtained from the sysiem cock,

Chopter 2: Flle Howsekeeping Colls 121

Parameter descriplion (conlinuad) GET FILE INFO (sm} =
Offsal Labal Cescriplion) = o=)
This function returns the information that is stored in the specified
$14-%1% mod_tims parameter name: modification tme file's directory entry, The call can be made whether the file is opan
size and type: word value or closed, However, if you make the SET FILE INFO call to
range of values: limited range change the access byte of an open file, the access information
The time at which the file was last modified. Its format is identical 1o ':‘_m”n;d by GET_FILE INFOmay not be accurate until the file is
the create time format rased.
Byte | Bvie D o[]
s [15[4[1af1[nfwoje 8|7 |sfs]4[3]2[1]0 IF polfiname - pointer
voue: [D|0|0| Hour |0]0 Minite 3]
: = aQCCess o rapult
If the value in this Geld is zero, ProDH05 16 supplies the time a1 fla tioa J resut
obtained from the system clack. 7l G e
= |— aux_type -
M or = risut
5 totolblocks S
Possible ProDOS 16 ermors o
= storoge_type o resut
07 PraD}5 is busy |
327 I/0 error El= create_date - resu
$2R Disk write-protected OL create_time o ress
540 [nvalid pathname syntax 1%
£44 Path nol found ;:1 r mod_dote = result
545 Volume not found 14 RS
. 3 2 r mod_ftime - resu
546 File not found 151 3 1
S4A Version error = ..
54B Unsuppored storage type A blocks_used - resut
$4E Access: file not write-enabled wl 1
$52 Unsuppored volume type
55 Invalid parameter GET_FILE_INFO (506)
£58 Mot a block device Paramater block
122 Part Il: FroDO35 14 System Call Refarance Chapter 9: Filke Housekeeping Calls 123

e ————

Parameter description

Offsel Lobel

Description

S00-503 pathname

F04-805 Beoess

506-507 fila typa

parameter name: pathname
slze and type: long word pointer (high-order byte 2era)
range of values: FO000 0030-300FF FFFF

The long word address of a buffer. The buffer contains a length byte
followed by an ASCI string representing the pathname.

parameter name: ac0css
size and type: word result Chigh-order byte zero)
range of values: 30000-$00E3 with exceptions

A word whose low-order byte determines how the file may be
atcessed, The access byte's format is

e [7]a]slafalz]n

Vol | D iFN‘ B i'—:-sen-'ed WIR

wherns D = destroy-cnable bit
BN = rename-enable bit
B = backup-necded bit
W = wrile-enable bit
R = read-enable bit

and for each bit, 1 = epabled, 0 = disabled. Bits 2 through 4 are
reserved and must always be set 10 zero (disabled). The most typical
serting for the access byte is $C3 (1100001 1.

parameter name: fle type
size and type: word result (high-order beyte pero)
range of values: S0000—500FF

A number that categorizes the file by its contents (such as text file,
birary file, ProDOS 16 application). Currently defined file types
are listed in Appendix A

124 Part |I: ProDOS 14 System Call Reference

Parameler descrptlon (continued)

Descriplion

Otfset Lobel
508-508 aux_type

o

total blocks
F0C-50D storage_type
SOE-30F create date

parameter name: auxiliary type
size and type: long word result (high-order word zera)
range of values: 0000 0000-50000 FFFF

A number that indicates additional attributes for cenain file types.
Example uses of the auxiliary type field are given in Appendix A

parameter name: (ol blocks
slze and type: long word result Chigh-order byte 2ero)
range of values: $0000 DODO—$00FF FFFF

I the call is for 2 volume directory file, the otal number of blocks
on the volume is returned in this field.

parameter name: SO Ype
slze and type: word result (high-order byte zera)
range of values: S0000-30000 with exceplions

A number that describes the logical erganization of the file (see
Appendix A):

500 = inactive entry

501 = zeedling file

502 = sapling file

503 = tree fike

504 = UCSD Pascal region on a panitioned disk
30D = directory file

& Note: S80F and S0F are not valid storage types; they are
subdirectory and volume key block identifiers.

parameter name: creation date
size and type: word resull
range of values: limited range

The date on which the file was created, Iis format is

Byte 1 Byt O
s [18[1a[1ahe[no[eJaf7]els]af3][2]1]0
Vialug Yaar | Month Day

Chapter @ File Howsakaeping Caolls 125

Parameter descrption (continued)

Offset

Label Dascription

$10-511

£12-513%

514-515

126

parameter pame: crealion Ume
size and type: word result
range of values: limited range

create time

The time at which the file was created. [1s format is

Byte |1 Byta
g [15[1a13[12[11]10]9[B] 7]6]5 d|.3i2|1j—l:l‘
value: Year hanth Cay

mod_date ‘parameter name: modification date
size and type: word result
range of values: limited range
The date on which the file was last modified. Its format is identical
(o the create date formal:
Byte | Byta O
ar [15[1a[a2[o[e (a7 [&s][5]4]3]2]! .:.,
Vel Yaar 1 Marith Day
mod_time parameter name: modificatdon tdme
= size and type: wird result
range of values: limited range

The time at which the file was last modified. Its format is identical 1o

the create_time format

Byher 1

Byte D

s [1ENapafiz[no]efe]7[s]5

vaue: [B]0[0] Hour ojo]

fafalzfijo
Mirvute

Bart Il: ProDO5 14 System Call Reference

§16-519

blocks used

parameter name: blocks used
size and type: long word result
range of values: $0000 0O00-SFFFF FFFF

The total number of blocks used by the file. It equals the value of the
bBlocka_used parameter in the files directory entry.

or

The total number of blocks used by all files on the volume GF the call
is for a volume directory),

Possible ProDOS 14 ermrors

07 Prolx05 is busy

$27 IO errar

§40 Invalid pathname syntax

$dd Path not found

545 Volume not found

546 File not found

S4A Version eror

54B Unsuppored storage type

552 Unsuppored volume type

553 Invalid parameler

558 Mol a block device
Chapter 9: Flla Housekeeping Calls 127

—
b s e s A s S b i Lt i 21

I:I - —
é - div_name = poirter
A g -
11 - —
5
sl vol_name - paintes
“ -
7
8
2
s total_blocks = resuit
o -
c - —
o
o fram_Blocks = r@ult
E = -
F
:? - files_svs_|d — sl

VOLUME ($08)
Porameater block

Parameter description

VOLUME ($08)
When given the name of a device, this function retumns:

o the name of the volume that occupies that device

01 the total number of blocks on the volume

O the current number of free (unallocated) blocks on the volume
0 the file system identification number of the volume

The volume name is returned with 2 leading slash (7.

To generate a list of all mounted volumes (equivalent 1o calling
OH_LINE in ProDOS 8 with a unit number of zera), cll VOLUME
repeatedly with successive device names (.D1, .D2, and so ond

“When there are no more online volumes o name, ProDO5 16

returns errof $11 Onvalid device request),

& Note In certain cases (for example, when polling Disk 11 drives)
ProDOS 16 cannot detect the difference between an empty
device and a nonexistent device. It may therefore assign a
device name where there 5 no device connected, just to make
sure it hasn't skipped over an empty device. Because of this, in
making VOLUME calls, vou may occasionally find that there are
more "valid® device names than there are devices on line

Cttset Lakel Descriplion

F00-503 dev_name parameter name: device name
size and type: long word pointer Chigh-order byte zero)
range of values: 30000 O0M-$00FF FFFF
The long word address of a bufTer. The buffer contains a length byte
followed by an ASCIH string representing the device name

§04-507 vol name parameter name: volume name
size and type: long word pointer Chigh-order byte zero)
range of values: 50000 0OO0-$00FF FFFF
The long word address of 2 buffer. The buffer contains a length byte
followed by an ASCII string representing the volume name
(including a leading slash)

128 Part 11: ProDOS 14 Syetem Coll Referance

Parameter descriplion {continuad)

Oftsel

Labal Descripfion

J0B-508 total blocks parameter name: (otal blocks
size and type: long word result (high-order byte zero)
range of values: FO000 0000-300FF FFFF
The total number of blocks the volume contains

S0C-30F free_blacks parameter name: [free hlocks
size and type: long word resull thigh-order byte zero)
range of values: FO000 K000-300FF FFFF
The number of free (unallocated) blocks in the volume

$10-511

file ays id

parameter name: file system [D

slze and type: word result Chigh-order byte zera)
range of values: $O000-S00FF

A word whose low-order byie identifies the fle system (o which the

specified file or volume belongs, The cummently defined file syslem
identification numbers inchude

0 = [reserved)

1 = PraDOs/S05
2=DOS 33
3=D0O532 31

4 = Apple 1T Pascal

5 = Macintosh

6 = Macintash (HFS)
7 = LISA®

8 = Apple CP/M
9-255 = {reserved]

Chapter 9: Fla Housskeeping Calls 129

a0

Possible ProDOS 146 ermrors

$07
510
$11
327
428
JZE
$2F
540
545
F4a
$52
555
857
358

ProDO5 is busy

Device not found

Inwalid device request
LAY error

No device connected
Disk switched: files open
Device not on line
Invalid pathname
Volume not found
Version error
Unsupponed volume type
Volume control block full
Duplicate volume

Not a block device

Pot 1 PraDOs 14 System Coll Referance

SET_PREFIX ($09)

This function assigns any of B prefix numbers to the pathname
indicated by the pointer prefix A prefic number consisis of a
digit followed by a slash: 0/, 1/, 2/, 7/. When an
application starts, the prefixes have default values that depend on
the manner in which the program was launched. See Chapler §
It input pathname to this call may be
1 a full pathname
4 partial pathname with a prefix number. The trailing slash on
the prefix number is optional
I a partéal pathname with the special prefix number */ (asterisk
slash}, which means *boot volume name.® The trailing stash is
oplional
1 4 partial pathname without a prefix number, In this case ProDOS
16 does mot atach the defaylt prefix {number 0/, Instead. it

appends the input pathname to the prefix specified in the
prefix num feld

¢ Note: This method can be used o append a partial pathname o
an exisiing prefix only. If the spedified prefix is presently null,
error $40 (invalid pathname syntax) is returned.

Specifying a pathname whese length byte is zero, or whose synax is

itherwise illegal, sets the designated prefix to null (unassigned)

¢ Note: ProDOS 16 does nor check to make sure that the
designated volume is on line when you specify a prefix; it only

checks the pathname string for correct synlax.

e boot volume prefix (%9 cannot be changed through this call

SET_PREFIX ($0%)
Farameater block

Chapler 9: Fle Housekeeping Calls 131

e —

Farometer description

offset Labed

SO0-%01 prefix_num

$02-505 prefix

Dascription

parameter name: prefic number

size and type: word value

range of values: SO000-F0007

One of the 8 prefix numbers, in binary (without a lerminating
slash)

parameter name: prefix)
size and type: long word pointer (high-order byle zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a length byte

‘followed by an ASCII string representing 3 directory pathmame

Possible ProDOS 146 ermrrors

507 PralOs s busy
sS40 Invalid pathname syniax
553 Parameter out of range

132 Part Il: PraDOSs 14 Systam Coll Reference

B prafix_num - volue

- crells ~ poirdar

B Lo B — O

a

GET_PREFIX (50A)
Porameter block

Parameter description

GET_PREFIX (30A)

This function returns any of the current prefives (specified by
number), pacing it in the buffer pointed to by prefix, The returned
prefix is bracketed by slashes (such as /APFLE/ or
/APPLE/BYTES/). If the requested prefix has been set o null (see
SET_PREFIX), a count of zero s refurned as the length byte in the
prefix buffer

The boat valume prefix (*/) cannot be returned by this call
Instead, use GET_BOOT_VOL to find the boot volume's name,

Oflset Label

Description

prefix num

§02-505 predix

parameter name: prefix number
size and type: word value
range of values: S0000-50007

One of the 8 prefix numbers, in binary (withoul a terminating
slash).

parameter name: prefix
size and type: long word pointer (high-order byte zero)
range of values: S0000 OO00—S00FF FEFF

The long word address of 2 buffer, in which ProDOS 16 places a
length byte followed by an ASCII string representing a directory
pathname

Possible ProDOS 16 emrors

507 PraDO5 s busy
553 Parameter out of range

Chopter 2 Flle Howsskeeping Caolls 133

CLEAR_BACKUP_BIT ($0B) Chapter 10
This is the only call that will clear the backup bit in a file's access —_—
byte, Once cleared, the bit indicates that the file has not been e e

altered since the last backup. ProDOS 16 automatically resets the

backup bit every time a file is allered, File Access Cq"s

important Only disk backup programs should use this function|

k pathrome = paintar

LA kg = O

CLEAR_BACKUP_BIT (508)
Parameater block

Parameter descriplion

Ctiset Label Description
300-503 pathname parameter name: pathname
size and type: long word polnter (high-order bytle zero)

range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a length byie
followed by an ASCII string representing the file’s pathname.

Possible ProDOS 16 ermrors

507 ProDO8 is busy

540 Invalid pathname syniax I

544 Path not found

§45 Volume not found

546 File not found

SdA Version error

§52 Unsupported volume type

358 Not 2 blodk device .:
134 Part Il: ProDOs 16 Systam Call Reference

—

134

These might be called "open-fle” calls. They are made (o access
and change the information within files, and therefore in most
cases the files must be open before the calls can be made

The ProDOS 16 file access calls are described in the following

order:

Humber FuncHan Purpnu.
510 OPEN

311 NEWLINE
J12 READ

$13 WRITE

514 CLOSE

+515 FLUSH

516 SET_MARK
317 GET_MARK)
$18 SET EOF
519 GET_EQF
§1A SET_LEVEL
31B GET LEVEL

Part Il ProD0s 14 System Call Reference

prepanes file for acoess
enables newline read mode
transfers data from [ile
transfers data to file

ends zccess (o file

empiies 'O bufler to e
sels current position in file
returns current position in file
sots size of file

returns size of file

scls system file level
returns system file level

raf_num = resull

|

l&_buffer
result

O OB s Ok OF Ba D RS — O

T
S I |

QPEN (510}
Parcmeter biock

Parameter descriplion

= pathnome - pointes

OPEN ($10)

This function prepares a file 1o be read from or written 1o, I creates
a file control block (FCB) that keeps track of the current
characteristics of the file specified by pathname. It sets the current
position in the file (Mark) (o 2ero, and returns a reference number
Cref_num for the file; subsequent file access calls must refer to the
file by its reference number. It also retums @ memory handle 1o a

1024-byte 1/O bulfer used by ProDOS 16 for reading from and
writing (o the file,

Up to & files may be open simultaneously

® Note: Normally, attlempting to open a file that is already open
cpuses an emror ($500. However, if a file is not write-enabled, it
may be opened more than once

Cifset Labsal

Descripiion

S00-501 ref num

502-505 pathnames

S6-309 lo buffer

parameter name: reference number

size and type: word resull Chigh-order byte zero)
range of values: $0001-500FF

An identifying number assigned to the file by PraDOS 16. It is used
in place of the pathname in all subsequent file acoess calls,
parameter name: pathname

size and type: long word pointer (high-order byte zero)
range of values: S0000 O000-S00FF FFFF

The long word address of @ buffer, The buffer contains 2 length byte
followed by an ASCII string representing the pathname of the file o
apen,

parameter name: 10 buffer

size and type: long word result thigh-order byte zero)
range of values: S0000 OO00-S00FF FFFF

A memary handle, It points to a location where the address of the
1 buffer allocated by ProDOS 16 is stored.

Chapter 10 Flle Access Calls 137

Possible ProDOS 16 errors

07 Prold05 is busy

527 /0 error

540 Invalid pathname synlax

542 File controd block table full

544 Path not found

£45 Volume not found

46 File not found

S4A Version error

348 Unsupported storage tvpe

§50 File is open

£52 Unsuppored volume type
138 Part i: PraDOs 16 Systermn Call Refarence

NEWLINE ($11)

This function enables or disables the newline read mode for an
apen file. When newline is disabled, a3 READ call {described next)
terminates only when the requested number of characters has been
read (unless the end of the file is encountered first), When newline
is enabled, the READ will also termingte when & newline character
(as defined in the parameter block) is read

Whena READ call is made and newline mode is emabled,

1. Each character read in is first transferred to the user's data buffer

2. The character is ANDed with the low-order byte of the newline

enable mask (specified in the NEWLINE call's parameter block)
3. The resull is compared with the low-order byte of the newline
chiracter
4. IF there is a match, the read is ferminated,
The enable mask is typically used to mask off umwanted bits in the
character that i read in. For example, if the mask value is $7F
(binary 0111 1111, a newline character will be corectly matched

whether or not its high bit is set. I the mask value is $FF (1111 1111,
the character will pass through the AND operation une hanged

Newline read mode is disabled by setting the enable mask (o $0000

.i - ref_num -'! result
alF enable_mask WS
= [h newline_cha value

NEWLINE (511}
FParometer block

Chapter 10: Fle Access Calis 139

Parameter description

[=1{IT 1) Lobel Dasc ri!;!Hnn 3
§00-801 ref num parameter name: reference number
size and type: word result thigh-order byte zero)
range of values: $0001-$00FF
The identifying number assigned to the file by the OPEN funcion.
S02-503 enable_mask parameter name: enable mask
size and type: word value (high-order byte zero
range of values: S0000-500FF
The current character is ANDed with the low order byte of this word
S04-505 newline char .parameter name: newline character
size and type: word value Chigh-order byte zero)
range of values: S0000-500FF
Whatever character occupies the low-order byte of this field is
defined as the newline character.
Possible ProDOS 16 errors
507 ProDOS is busy
543 Invalid reference number
140 Part Il: Pral05 16 Systemn Call Reference

READ ($12)
When called, this function amempts to transfer the requested
number of bytes (starting at the current positdon of the file specified
by ref num) into the buffer pointed to by data_bfer. When

finished, the function returns the Aumber of brytes actually
transfered

IT, during a read, the end-of-file is reached before Teqest_cotir
bytes have been read, transfer count i set to the number of
bytes transfered, If newline mode is enabled and 2 newline
character is encountered before request_coustt bytes have been
read, tranafer count is set to the number of bytes ransferred
(ncluding the newline byte),

No more than 16,777,215 ($FF FF FF) bytes may be read in 3 single
call ' '

=
' I~_ raf_num —J wolue

2 e

o -

; = dota_Dauffeer = poaribar
5 -

&

. ragquest_cowunt = WVidlLsl
sk E

A

B]

g f whar count T
cr ransfar_coun :| esult
READ (512)

Parometer block

Chapter 10: Fla Access Calis 141

I ———l |

Paromeler descriplion

Offsal

Label Dwscription

S00-501

502-50%

$06-509

S0A-30D

142

ref num parameter name: reference number
slze and type: word value Chigh-order byte zera)
range of values: $0001-800FF

The identifying number assigned to the file by the CPEN function

data buffer parameter name: dai buffer
size and type: long word pointer Chigh-order byte zerm)
range of values: $0000 0000-S00FF FFFF

The long word address of a buffer, The buffer should be large
encugh o hold the requested data

request_count paramMeter NAmMe: request count
slze and type: long word value Chigh-order byte zera)
range of values: $0000 0000-S00FF FFFF

The number of bytes to be transferred
tranafer count parameter name: transfer count

size and type: long word result (high-order byte zerc)
range of values: S0000 0000-S00FF FFEF

The acual number of bytes transferred

Possible ProDOS 16 errors

507 ProlMD5 is busy

327 Ly error

§43 Invalid reference number

$4C EOF encountered (Out of data)
$4E Access: file not read-enabled

Part Il: PraDO5 14 System Coll Reference

WRITE ($13)

When called, this funciion attempts to transfer the specified
rumber of bytes from the buffer pointed 1o by data_buffer to the
file specified by ref mum (slaring at the current positon in the
file). When finished, the function remms the number of bytes
actually transferred.

After @ write, the current file position (Mark) is increased by the
transfer count. If necessary, the end-of-file (FOF) is extended (o
accomodate the new data,

Mo more than 16,777,216 ($FF FF FF) bytes may be wrilten in a
single call.

0

Y ref_num = wolus
? —

3 -

i data_bufler = painter
5 -

*'}-“ L i

o - mequest_count = walue

E - -

A

al .

C I transfer_count e LT

= -

WRITE (513)

Parameter block

Chapter 10: Flle Accass Calls 143

S SES———

Parameler description

Oftsael

Lk Description

300-501

502-505

S06-509

L0A-50D

144

ref _num parameter name: reference number
a size and type: waord value Chigh-order byte zerc)
range of values: $0001-300FF

‘I'he identifying number assigned to the file by the OPEN function

data buffer parameter name: dxa boffer
- size and type: long word painter Chigh-order byte 2ero)
range of values: S0000 0000-S00FF FFTF

The long word address of & buffer, The buffer should be large
enough to hold the requested data.

request _count parameter name: fequest coumt :
size and type: long word value (high-order byue zero)
range of values: $0000 0000-S00FF FFFF

The number of bytes o be transferred

tranafer count parameter name: transfer count
slze and type: long word result (high-order byte zero)
range of values: SO000 DOD0-SD0FF FEFF

The actual number of bytes transferred

Possible ProDOS 14 arrors

507 ProDd{5 is busy

$27 1/0 error

$2B Diisk write-peotecied

£43 Invalid reference number
§48 Volume full

S4E Access: file not write-enabled
3$5A Block number out of range

Part i PraDOS 16 Systern Call Reference

Porameter description

CLOSE ($14))

This fundtion is called 1o release all resources used by an open file
and terminate further access o it The file control block (FCB) is
released; if necessary, the file's 1/O buffer is emptied (wrillen to
disl} and the directory entry for the flle is updated. Once a file is
closed, any subsequent calls using its zef num will fail (uneil that
number is assigned to another open file),

If the specified ref_num is 0, all open files at or above the current
file level (see SET LEVEL and GET_LEVEL calls) are closed. For
example, I files are open at levels 0, 1, and 2 and you have set the
current level 1o 1, a CLOSE call with ref num set 1o O will close ail
files at levels 1 and 2, but leave files at level 0 open,

[u]
1 raf_ridm walisa

CLOSE ($14)
Parameter block

Ofisel

Label

Description

S00-501

ref_num

parameter name: reforence number

slze and type: word value Chigh-order byte sera)
range of values: $0000-$00FF

The idemtifying number assigned to the file by the ©PEN function

Possible ProDOS 16 ermrors

507 PraDOs is busy
£27 LA error
528 Diisk wrile-protected
543 Invalid reference number
35A Block number out of range
Chapter 10: Fle Access Colls 145

Parameler description

FLUSH ($15)

This function is called to empay an open file's buffer and update its
directory, If zef_num is zero, all open files are flushed.

& Nate; Current versions of ProDOS 16 ignore ref_mum in this
call The FLUSH call Aushes all open files

r[t raf_num -I value

FLUSH ($15)
Parameter block

offsat Label Descriphion
$00-501 ref num parameter name: reference number
o slze and type: word value (high-order byte zera)
range of values: S0000-500FF
The identifying number assigned 1o the file by the OPEN funcion.
Possible ProDOS 16 errors
07 ProDOS is busy
527 I/D error
28 Disk write-protected
543 Invalid reference numbser
548 Volume full
$5A Block number out of mnge
144 Part Il: PralOs 146 Systemn Call Referance

Parameter description

SET_MARK ($16)

For the specified open file, this function sets the current position
(Mark, the position at which subsequent reading and writing will
ocour) o the point specified by the position pammeter, The value
of the current position may not exceed EOF (end-of-file; the size of
the [ile in bytes).

I~ ref _mum = volua

Ba G B — T3

I~ position = valus

]

SET_MARK ($18)
Parametaer béock

Offset Lobel Descripiion
$00-301 ref _num parameter name: reference number

size and type: word value Chigh-order byte zera)

range of values: $0001-400FF

The identifying number assigned to the file by the CPEN function
$02-505 position

parameter name: position
size and type:
range of values:

long word value Chigh-order byte wero)
$0000 D000-$00FF FFFF

The value assigned to Mark. It is the position, In bytes relative to the
beginning of the file, a1 which the next read or write will occur

Possible ProDOS 16 errors

507 ProD(S is busy
527 /0 error
543 Invalid reference number
54D Posilion out of range
55A Block number out of range
Chapher 10: Flle Access Calls 147

et

b
GET_MARK ($17) SET_EOF ($18)
This function returns the current position (Mark, the posilion st # For the specified file, this function sets its logical size (in bytes) 1o
hich subse i reading and writing will oecur) for the specified B ref_num - walue OV i i
which subsequen B 1 the value specified by EOF (end-of-file}. If the specified EOF is less
open file. ; B - than the current EOF, then disk blocks past the new EOF are released
al eof < value tothe system and index-block pointers 1o those blocks are 2croed.
5[I However, if the specified EOF s equal to or greater than the current
2 }- ref_num = walue EOQF, no new blocks are allocated until data are actually written 1o
1 SET_EOF (§18) them.
i - -1 Parometer block
F posttion = volue The value of EOF cannot be changed unless the file is write-enabled
GET MARK ($17) Porameter description
Paramater biock y = —
Offsel Label Dascription
$00-501 ref num parameter name: reference number
Parameler description N sixe and type: ward value (high-order byte zero)
oftset Lobel Description range of values: 50001-500FF
ur’ nxees polesence oumber The identfying number assigned to the file by the CPEN function.
FO0-501 ref num parame : T ~
size and type: word value (high-order byte zero) $04-507 eof parameter name: end-of-file
range of values: $0001-$00FF size and type: long word value (high-order byte zera)
) range of values: S0000 OO000-S00FF FFFF
The identifying number assigned to the file by the OPEN function. BE 0]
ielom The specified logical size of the file. Il represents the total number of
502805 poaition parameler name: posii bytes that be read fi the file,
slze e type:]nng R 'L'I'Ligh-urdr.'r b',.'l:r_‘ zere) Vies thal may read mom the [
range of values: $0000 0000-S00FF FFFF
The current value of Mark. It is the position, in bytes relative 1o the = .
beginning of the file, at which the next read or write will occur Possible ProDOS 16 errors
307 Prol¥05 is busy
327 /0y error
= = 543 Invalid reference number
Possible ProDOS 16 errors 54D Position out of range
807 PraDOS Is busy S4E Access: file not wrile-enabled
543 Invalid reference number $34 Block number out of range

148 Part II; ProDOS 16 Systemn Caoll Referance

Chapter 10: File Access Calls 149

GET_EOF ($19)

{ i i i its logical size, of
For the specified cpen file, this function retums ils .
EOF (end-of-file; the number of bytes that can be read from it).

of ref_riem - ‘alue
2 [{]

j = ol = result
11 -
GET_EOF (519}

Poromeater block

Poromeler descripiion

SET_LEVEL ($1A)

This function sets the current value of the system file level (see
Chapter 2). All subsequent OPEN calls will assign this level to the
files opened. All subsequent CLOSE calls for mueltiple files (that is,
those calls using a specified ref num of 0) will be effective only

on those files that were opened when the system level was grealer
than or equal o the new level,

The range of legal system level values is $0000-300FF. The file level
initially defaults to wero

I:l: P HEg q WOl

SET_LEVEL (51A)
Parometer bock

Offsal Label Description — Poromeler descriplion
. arameter name: reference number
500-501 ref rnuam :'llz Forh word value (high-order byte zerc) Otfset Label Description
range of values: $0001-500FF _ S00-501 laval parameter name: sysiem file level
The identifying number assigned 1o the file by the OFEN [unction size and type: word value Chigh-order byte zero)
$04-307 eof parameter name: end-of-file ; Epec T, Tanb-ey
size and type: long word result Chigh-order byte zero) The specified value of the system file level
range of values: $0000 0OC0-$O0FF FFET
The current logical size of the file. It represents the total number of o s
bytes that may be read from the file Possible ProDOS 16 errors
507 ProDOS is busy
- §59 Invalid file level
Possible ProDOS 16 errors
307 Prol¥0S is busy
543 Invalid reference number
Chaptaer 10: File A Call 151
150 Part II: ProDOS 14 System Coll Reference . i

Parameler descriplion

Oftset

500501

152

Lokl

GET_LEVEL ($1B)

iz function returms the current value of the system file level (see
Chapier 23 All subsequent OPEN calls will assign this level to the
files opened. All subsequent CLOSE calls for mudrigde files (that is,
those calls using a specified ref_oum of 0} will be effective only on
those files that were opened when the system kevel was greater than
of equal to its current level

OF ot e

GET_LEVEL ($18)
I-;qunmafar block

Dascription

lavel

Part Il: ProlOs

parameter name; system file level
shze and type: word result (high-order byte sero)
range of values: SO000-500FF

The carrent value of the system file level,

Possible ProDOS 16 erors

307 ProlMD5 is busy

16 System Call Refarence

Chapter 11

Device Calls

&

Device calls access storage devices directly, rather than through the

logical structure of the volumes or files on them {;_ET_DEU_NUM (55}

The PraDO5 16 device calls are described in the following order: af] ... Forthe device specified by name or by the name of the volume
10 i e i PEE! mounted on it this function retums its device number. All other
o = device calls (except for FORMAT) must refer to the device by its
Mumber Functlon Purpose 4 PR] regult number,

: : : e 5 = Device numbers are assigned by ProDOS 16 at system starup (boot)
320 GET_DEV_HNIM PeRE GET_DEV_NUM ($20) time. They are consecutive integers, assigned in the order in which
521 GET_LAST_DEV remurns the last device Paramater block ProDOS 16 polls external devices (see Chapter 43,

aceeased % Note: Because a device may hold different volumes and
522 READ BLOCK transfers 512 bytes from a because volumes may be switched among devices, the device
device number returned for a particular volume name may change,
. Likewise, the volume name assoclated with a particular device
T b 1 2 bytes 1o & device
5§23 WRITE BLOCK transfers 512 byles o a fiumber may change
524 FORMAT formats a volume in a device

Parameter description

Oifsel Labasl Dascription
$00-503 dev_name parameter name: deviee name/volume name
size and type: long word pointer Chigh-order byte zera)

range of values; S0000 0O00-S00FF FFFF

The long word address of a buffer, The buffer contains a length byte
followed by an ASCI string representing the device name or the
volume name.

S04-505 dev_mum parameter name: device number
slze and type: wiord result (high-order byte 2ero)
range of values: S0000-200FF

The device's reference number, to be used in other device calls

Possible ProDOS 16 ermrors

o7 ProDO5 is busy

510 Device not found

511 Invalid device request

$40 Invalld device name syniax
545 Volume not found

11+ Davie) 15
154 Part Ii: PraDOS 14 Sysfem Call Referance Chapter 11: Device Calis 55

Parameter description

GET_LAST_DEV ($21)
This function retums the device number of the last device accessed.

The last device accessed is the last device to which a command was
directed that caused a read or wrile [0 0oour

1

GET_LAST_DEV (521}

Offsatl

Lobel

Dasctiption —_—

$00-501

156

da v_num

arameter name: device number
giu and type: word result (high-ordes byte zera)
range of values: F0000-300FF

The device's reference number, to be used in other device calls

f-‘nﬁEln F_'EDE}S ;ié aﬁ-dls

07 ProDOS is busy
560 Data unavailable

Part Il PraDOs 16 Systermn Caoll Referance

Parameter description

Cifset Label

S00-501 dev_num
502305 data buffer
S06-509 block num

READ_BLOCK (522)

This function reads one block of information from a disk device
(specified by dev_mum) inlo memory starting at the address
pointed 1o by data buffer. The buffer must be at least 512 bytes in
length, because existing devices define a block as 512 bytes

I'?- - diy_rim - valua

-4 |

3

al dota_puffer =1 Poinrer
s R

&

al Diock_num = valua

¥

READ_BLOCK (522
Parameter block

Descriplion

parameter name: device numbser

size and type: word value (high-order byie zero)

range of values: FOO00-S00FF

The device's reference number, as returned by GET_DEV_NUM.

parameter name: data buffer
size and type: long word pointer Chigh-order byte zero)
range of values: S0000 OO0=$00FF FFFF

The long word address of a bulfer that will hold the data 1o be read
in

parameter name: block number
size and type: long word value Chigh-ocder word zero)
range of values; S0000 DO00=-50000 FFFF

The number of the block to be read in,

Chapter 11: Davice Calls 157

Possible ProDOS 14 ermors

so7
511

527
$28
$2F
$53

PraDO8 is busy

Invalid dewvice request
Ly error

No device connected
Device not on line
Parameter out of range

Part Il: PraDOS 146 Systemn Call Reference

= dev_num = value

data_buffer = pointer

= Dlock_rum = walus

O e O CP B Dk R — 3

WRITE_BLOCK (§23)
Paramater block

Parameler descripllon

WRITE_BLOCK ($23)

This function transfers one block of data from the memory buffer
pointed to by data_ buffer to the disk device specified by
dey_num. The block is placed in the specified logical block of the

volume occupying that device, For currently defined devices, the
data buffer must be at least 512 bytes long.

Offsat Label Dwescription
§00-$01 dev_num parameter name: device number

size and type: word value Chigh-order byte zerc)

range of values: 30000-500FF

The device's reference number, as returned by GET_DEV_NUM.
502-505 data buffer parameter name: daia buffer

size and type: long word pointer (high-order byte wera)

range of values: $0000 0000-300FF FFFF

The long word address of a buffer that holds the data o be writen.
506-509 block _num parameter name: block number

size and type: long word value (high-order ward zera)
range of values: 30000 0000-$0000 FFFF

The number of the blodk to be writien o,

Possible ProDOS 16 errors

507 ProDOS is busy

5N Invalid device request
527 IOy errar

$28 No device connected
328 Disk write-protected
§2F Device nol on line
533 Parameter out of range

Chapter 11: Davice Calls 159

Parameler description

FORMAT ($24)

This function formats the volume (disk) in the specified (by name)
device, giving it the specified volume name. The volume is
formaned according to the specified file system ID

@ Npie: Current versions of ProDOS 16 supporst formatting for the
Prold5/505 file system only (fle system ID = 1). Specifying
any other file system will generate error 550

oL o pointar
:'! r dev_name .

i 3 7 poirtar
5 e 4l

A : vol_mome ¥

? volue
B b -

of file_sys_ld

FORMAT ($24)

Paramater block

Ofiset Lobal Descriptlon

200-503 dev name parameter NAame: device name
size and type: long word pointer Chigh-order byte zero)
range of values: £0000 0OM0-$00FF FFFF
The long word address of a buffer, The buffer contains a length byie
followed by an ASCH string representing the device name

$04-507 vol name parameter name: volume name
slze and type: long word pointer (high-order byte zero)
range of values: 0000 Q000—300FF FFFF
The long word address of a buffer. The buffer contains a length byte
followed by an ASCII string representing the volume name
(including a leading slash).

140 Part Il: PraDOS 14 Systen Coll Reference

SO8-500

file ays

parameter name: fie system [D
size and type: word result Chigh-order byte zero)
range of values: $0000-300FF

A word whose low-order byte identifies the file system to which the
formatted volume belongs. The currently defined file system
identification numbers include

0 = {reserved)

1 = Proldds/5085
2=D533
3=D05 3.2 3.1

4 = Apple I Pascal

5 = Macintosh

6 = Macintosh (HFS)
7 = LISA

B = Apple CP/M

Possible ProDOS 16 errors

$07 ProDO5 is busy
§10 Device not found
511 Invalid device request
327 I/C error
55D File system nol available
Chapter 11: Device Calls 141

aapterﬁ

Environment

Calls

164

These calls deal with the Apple [1G3 cperating environment, the
software and hardware configuration within which applications run
They include calls to start and end ProDOS 16 applications, and 1o
determine pathnames and versions of system software

The ProD¥05 16 envirenment calls are described in the following

order:

Humbaer

$28

329
SIA

Function

Pumpose

GET_NAME

GET_BOOT_VOL

QuIT

GET_VERSICOHN

Part Il: PralDO5 14 System Call Refarence

returns application filename

returns ProDOS 16 volume
name

lerminates present application

returns. ProDOS 16 version

