HIGH-RESOLUTION
COLOR GRAPHICS
ON THE
APPLE-II COMPUTER

S. Wozniak (WOZ)
APPLE COMPUTER, INC.
November 30, 1977
APPLE-II HI-RES GRAPHICS SUBROUTINES

The APPLE-II computer comes with a high-resolution (hereafter 'HI-RES') color graphics display mode of 280 horizontal by 192 vertical resolution. Because 8K bytes of RAM are dedicated solely to maintaining the HI-RES display, a minimum 12K byte system (configured for HI-RES) is required to use this mode. For practical reasons, 16K bytes is the strongly recommended minimum. A 6502 machine language subroutine package has been developed to simplify efficient use of the APPLE-II HI-RES display for assembly language and BASIC programmers. The routines for initializing the HI-RES display, plotting points, drawing lines, and drawing shapes are described herein.
USING THE HI-RES SUBROUTINES

Despite the fact that HI-RES graphics commands are not built into APPLE-II BASIC, a convenient scheme for referencing the subroutines and their parameters by name has been devised, as illustrated below.

<table>
<thead>
<tr>
<th>TRADITIONAL METHOD</th>
<th>IMPROVED METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADITIONAL METHOD</td>
<td>IMPROVED METHOD</td>
</tr>
<tr>
<td>OF CALLING</td>
<td></td>
</tr>
<tr>
<td>MACHINE LANGUAGE SUBROUTINES</td>
<td></td>
</tr>
<tr>
<td>> POKE 800, X MOD 256</td>
<td>> X0 = X</td>
</tr>
<tr>
<td>> POKE 801, X / 256</td>
<td>> Y0 = Y</td>
</tr>
<tr>
<td>> POKE 802, Y</td>
<td>> COLR = C</td>
</tr>
<tr>
<td>> POKE 812, C (color)</td>
<td>> CALL PLOT</td>
</tr>
<tr>
<td>> CALL 2834</td>
<td></td>
</tr>
</tbody>
</table>

The first statement of a program using the HI-RES subroutines should be as follows

```
0   X0 = Y0 = COLR = SHAPE = ROT = SCALE
```

The purposes of this statement are to define a line number 0 (necessary when later appending the HI-RES PREFIX program) and to enter the first 6 BASIC variable names in the symbol table in a fixed sequence. When executed, each of the 6 parameters will be assigned storage at fixed locations relative to the address contained in the BASIC 'start of variables' pointer, LOMEM, making them readily accessible by the HI-RES subroutines.
Different parameter names may be used provided that they retain the same number of characters. This is necessary to insure that the storage locations for each relative to LOMEM do not change. For example, the name XX could be used in place of X0 but XCOORD could not.

The parameters SHAPE, ROT, and SCALE are used only by the HI-RES shape draw subroutines and may be ommitted from programs using only the PLOT and LINE features. Ommitting unnecessary variable definitions is one method of enhancing the overall performance of some BASIC programs on the APPLE-II and is thus desirable.

FIRST LINE OF PROGRAMS NOT USING
THE SHAPE DRAW SUBROUTINES

0 X0 = Y0 = COLR

After the parameter names have been defined, the HI-RES subroutine names themselves may be defined and assigned corresponding subroutine entry addresses as values. Calling subroutines by name is preferable to calling them by entry address because the entry addresses may vary in future versions of the HI-RES subroutines, and names are better self documenting.
<table>
<thead>
<tr>
<th>Absolute CALL</th>
<th>CALL by name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 INIT = 2048</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 CALL 2048</td>
</tr>
<tr>
<td></td>
<td>100 CALL INIT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 CALL 2048</td>
</tr>
<tr>
<td></td>
<td>200 CALL INIT</td>
</tr>
</tbody>
</table>

In the above CALL by name example, should the INIT subroutine entry address change to -12288, only line 5 need be changed. In the absolute CALL example, lines 100 and 200 (and any others referencing the INIT subroutine) will have to be changed. The self documenting advantage of the CALL by name example should be apparent.

The following statement lists all HI-RES subroutine entry initializations available to BASIC programs. Other names may be used at the programmer's discretion.

```
5 INIT = 2048 : CLEAR = 2062 : BKGNL = 2865 :
POSN = 2809 : PLOT = 2830 : LINE = 2836 :
DRAW = 2871 : DRAW1 = 2874 : XDRAW = 2884 :
XDRAW1 = 2887 : FIND = 2556
```
The allowable color specification values may also be referenced by name, if the initialization statement below is included in your program. Note that 'GREEN' is preceeded by 'LET' to avoid a syntax error due to confusion with the GR command.

7 BLACK = 0 : LET GREEN = 42 : VIOLET = 85 : WHITE = 127

If your APPLE-II has been modified for additional HI-RES colors, the following assignments are also valid.

8 ORANGE = 170 : BLUE = 213 : BLACK2 = 128 : WHITE2 = 255

Unnecessary variable definitions should be avoided as they will slow some programs. Therefore, a program should not define VIOLET = 85 unless it uses the color VIOLET. The example below illustrates condensed initialization statements for a program using only the INIT, PLOT, and DRAW subroutines, and the colors GREEN and WHITE.

0 XO = Y0 = COLR = SHAPE = ROT = SCALE
5 INIT = 2048 : PLOT = 2830 : DRAW = 2871
7 LET GREEN = 42 : WHITE = 127
In extreme cases any of the following techniques will further enhance program performance.

(1) Omit the color and subroutine name initializations. Refer to colors and subroutines by value, not name. This does not apply to the parameter references.

(2) Define the most frequently used program variable names prior to the subroutine name and color name initializations (lines 5 and 7 in the prior examples). The example below will speed up programs extensively referencing variables I, J, and K.

0 X0 = Y0 = COLR = SHAPE = ROT = SCALE
2 I = J = K
5 INIT = 2048 : CLEAR = 2062 : BKGND = 2865 :
 POSN = 2809 etc.
7 BLACK = 0 : LET GREEN = 42 : etc.

(3) Use the parameter names as program variables when possible. Because they are defined first, the parameters are the most quickly accessed BASIC variables.
INITIALIZATION SUBROUTINES

The normal HI-RES display consists of a 280 horizontal by 160 vertical grid above 4 lines of text and is initiated with the BASIC command below.

> CALL INIT

The INIT subroutine also clears the HI-RES display and initializes other HI-RES subroutines. After calling INIT the programmer may eliminate the 4 line text display, extending the HI-RES display to a 192 vertical resolution, with the following command:

> POKE -16302,0

The 4-line text display may be restored at any time as follows:

> POKE -16301,0

Valid X-coordinates vary from 0 (leftmost) to 279 (rightmost) Valid Y-coordinates vary from 0 (topmost) to 159 or 191 (bottommost) depending on whether or not the 4 line text display is enabled.

At any time after INIT has been called, the entire HI-RES display may be cleared with the CLEAR subroutine as shown below.

> CALL CLEAR
The HI-RES display may be quickly set to any background color with the BKGND subroutine. BKGND expects a color specification in the BASIC variable COLR. The example below turns the entire HI-RES display green.

```
0  X0 = Y0 = COLR
5  INIT = 2048 : BKGND = 2865 :
       LET GREEN = 42
10  CALL INIT
20  COLR = GREEN
30  CALL BKGND
40  END
```

Only the colors previously mentioned (BLACK, GREEN, VIOLET, and WHITE) may be specified in COLR. Do not make up your own. For example, COLR = YELLOW is not allowed.

If COLR is greater than 255 when BKGND is called then a range error will occur. The message '(beep) *** RANGE ERR' will be displayed and the program will halt.
POINTS AND LINES

The PLOT subroutine is used to plot a single point of the HI-RES display in a specified color. COLR must be less than 255, X0 must be 0 to 279, and Y0 must be 0 to 191 when PLOT is called or a range error will result and the program will halt. The program below plots one white dot at X-coordinate 35, Y-coordinate 55 (35,55) and one at (85,90).

0 X0 = Y0 = COLR
5 INIT = 2048 : PLOT = 2380 : WHITE = 127
10 CALL INIT
20 COLR = WHITE
30 X0 = 35 : Y0 = 55 : CALL PLOT
40 X0 = 85 : Y0 = 90 : CALL PLOT
50 END

Connecting any two coordinates with a straight line is almost as easy as plotting points. After plotting one endpoint as shown in the example above, the other endpoint is specified in X0 and Y0 and the the LINE subroutine is called. As with the PLOT subroutine, COLR must be less than 256, X0 must be 0 to 279, and Y0 must be 0 to 191 or a range error will result and the program will halt. The following example draws a white line from (35,40) to (170,100), a green line from (270,10) to (5,145), and a violet line from (20,70) to (190,110).
0 \ X0 = Y0 = COLR
5 \ INIT = 2048 : PLOT = 2830 : LINE = 2836 :
 LET GREEN = 42 : VIOLET = 85 : WHITE = 127
10 CALL INIT
20 COLR = WHITE : X0 = 35 : Y0 = 40 : CALL PLOT
25 X0 = 170 : Y0 = 100 : CALL LINE
30 COLR = GREEN : X0 = 270 : Y0 = 10 : CALL PLOT
35 X0 = 5 : Y0 = 145 : CALL LINE
40 COLR = VIOLET : X0 = 20 : Y0 = 70 : CALL PLOT
45 X0 = 190 : Y0 = 110 : CALL LINE
50 END

The following example illustrates that the parameter variables may be used as FOR loop indices. Horizontal violet lines are drawn on a green background at every tenth vertical coordinate.

0 \ X0 = Y0 = COLR
5 \ INIT = 2048 : BKGD = 2865 : PLOT = 2830 :
 LINE = 2836 : LET GREEN = 42 : VIOLET = 85
10 CALL INIT
20 COLR = GREEN : CALL BKGD
30 COLR = VIOLET
40 FOR Y0 = 5 TO 155 STEP 10
50 X0 = 10 : CALL PLOT : X0 = 270 : CALL LINE
60 NEXT Y0 : END
Multiple lines which are connected endpoint to endpoint may be drawn without intervening PLOT calls. In the example below, a white line connects (10,20) to (250,70), and green line connects (250,70) to (20,150), and a violet line connects (20,150) to (260,30).

```
0  XO = YO = COLR
5  INIT = 2048 : PLOT = 2830 : LINE = 2836 :
   LET GREEN = 42 : VIOLET = 85 : WHITE = 127
10 CALL INIT
20  COLR = WHITE : XO = 10 : YO = 20 : CALL PLOT
30  XO = 250 : YO = 70 : CALL LINE
40  XO = 20 : YO = 150 : COLR = GREEN : CALL LINE
50  XO = 260 : YO = 30 : COLR = VIOLET : CALL LINE
60  END
```

CAUTION

Do not attempt to draw a line prior to the first PLOT. Because the first endpoint has not been defined, the line may be drawn in random memory locations, not necessarily restricted to the screen memory.
DRAWING SHAPES

Up to 255 different shapes may be defined, edited, and saved on a single tape.
After loading the HI-RES subroutines such a 'shape tape' (containing a 'shape table') may be read as follows.

1. Position shape tape in recorder.
2. Load shape tape with the BASIC command:
 > CALL 3001
3. Start recorder (PLAY).
The above command immediately begins reading tape.
4. Wait for two beeps.

Shape tables always load beginning at address $C000 with the HI-RES subroutines in locations $800-$BFF. Upon loading a shape table, the BASIC 'start of variables' pointer LOMEM is set to contain the address of the location immediately following the last shape table byte.

If not enough free memory is available to contain the shape table then the message '(beep) *** MEM FULL ERR' will be displayed.
If no beep is heard when loading a shape tape then something is probably wrong with the tape connection and you will have to hit RESET and type CC (Control-C) to reenter BASIC. If you hear a single beep and then the system hangs it means your shape tape is probably bad and after hitting RESET and typing CC you may have to restore the LOMEM setting to $C000 ($3072) as follows.

> LOMEM : 3072
The DRAW subroutine is used to display any of the predefined shapes included in the current shape table. The origin or 'beginning point' of the shape is specified in X0 and Y0 and the color is specified in COLR as with PLOT. The shape number desired is specified in SHAPE. For example, SHAPE = 3 specifies that the third shape of the current shape table is to be drawn. A scale factor is specified in the variable SCALE and a rotation in ROT. A scale factor of 4 implies a shape 4 times the defined size. A scale factor of 0 is always interpreted as 256.

Rotations

<table>
<thead>
<tr>
<th>ROT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROT=0</td>
<td>(no rotation)</td>
</tr>
<tr>
<td>ROT=48</td>
<td>(270 deg. CW)</td>
</tr>
<tr>
<td>ROT=16</td>
<td>(90 deg. CW)</td>
</tr>
<tr>
<td>ROT=32</td>
<td>(180 deg. CW)</td>
</tr>
</tbody>
</table>

COLR must be 0 to 255, X0 must be 0 to 279, Y0 must be 0 to 191, ROT must be 0 to 255 (due to MOD 64 arithmetic, ROT=64 is equivalent to ROT=0), SCALE must be 0 to 255, and SHAPE must be greater than zero and less than or equal to the current number of shape table shapes or else a range error will result when DRAW is called and the program will halt. In other words, the programmer will always be notified if HI-RES subroutines are called with any invalid parameters.
The following program example draws shape number 3 in white at a 90 degree clockwise rotation and scale factor of 2. The origin is at (140,80). It is assumed that a shape table with at least 3 shape definitions has been loaded.

```
0  XO = YO = COLR = SHAPE = ROT = SCALE
5  INIT = 2048 : DRAW = 2871
7  WHITE = 127
10 CALL INIT
20 XO = 140 : YO = 80 : COLR = WHITE
30 SHAPE = 3 : ROT = 16 : SCALE = 2
40 CALL DRAW
50 END
```

The XDRAW subroutine is identical in operation to the DRAW subroutine except that the defined shape is exclusive-ored (EX-OR'd) onto the screen. The EX-OR operation complements all screen memory bits of the shape, 0's become 1's and vice-versa. No color need be specified. A unique property of XDRAW is that 2 successive calls with identical parameters will first cause a shape to be drawn (in white) and then erased. The following program example causes the rotation of shape number 3 to track paddle 0. XDRAW is used for both the draw and erase operations. Although the color is not optional, the variable COLR may not be ommitted from the parameter declarations (line 0) or the SHAPE, ROT, and SCALE parameters will not be assigned storage in their standard locations relative to LOMEM.
0 \(X_0 = Y_0 = \text{COLR} = \text{SHAPE} = \text{ROT} = \text{SCALE} \)
5 \(\text{INIT} = 2048 : \text{XDRAW} = 2884 \)
10 CALL INIT
20 \(X_0 = 140 : Y_0 = 80 : \text{SHAPE} = 3 : \text{SCALE} = 2 \)
30 \(R = 0 : \text{GOTO 60} : \text{REM DRAW FIRST SHAPE} \)
40 \(R = \text{PDL}(0) : \text{IF R = ROT THEN GOTO 30} \)
50 CALL XDRAW : \text{REM ERASE AT OLD ROT} \)
60 \(\text{ROT} = R : \text{CALL XDRAW} : \text{REM DRAW AT NEW ROT} \)
70 \(\text{GOTO 40} : \text{REM CHECK FOR ROT CHANGE} \)
80 END

DRAW1 and XDRAW1 are identical to DRAW and XDRAW respectively except that the most recently plotted (or drawn) point serves as the shape origin and the current color is not updated. Thus \(X_0, Y_0, \) and COLR are not specified.

If you draw a shape and then wish to draw a line from the final plot position of that shape to a fixed coordinate, you may do so. After drawing the shape, however, you must call FIND prior to calling LINE. The FIND subroutine determines the X-Y coordinates of the final shape plot position (or current plot position if used after other subroutines) and uses it as the beginning endpoint of the following call to LINE. The following program example draws a shape and then a violet line from the final plot position of the shape to \((10,25)\).
COLLISIONS

Overlapping shapes define points of 'collision'. The DRAW and XDRAW subroutines return a collision count in the absolute location $32A$ (810 decimal). The collision count will be constant for a fixed shape, rotation, scale, and background, provided that no collisions with other shapes are detected. The difference between the 'standard' collision value and the encountered value (while drawing a shape) is a true collision indicator.

100 CALL DRAW

110 COUNT = PEEK (810)
APPENDING THE HI-RES PREFIX

The HI-RES PREFIX program may be permanently appended to any BASIC programs you write, making a 2-step LOAD unnecessary. If you have the APPLE-II RENUMBER/APPEND program then treat the user-written program as the one with greater line numbers (despite the fact that it begins with line 0) and the HI-RES PREFIX program as the one with smaller line numbers. If you don't have the RENUMBER/APPEND program then the APPEND may done manually as follows:

1. > LOAD (user program)
2. > POKE 0, PEEK (76)
 > POKE 1, PEEK (77)
 > POKE 76, PEEK (202)
 > POKE 77, PEEK (203)
 (user program is now hidden)
3. > LOAD (HI-RES PREFIX program)
4. > POKE 76, PEEK (0)
 > POKE 77, PEEK (1)
5. > SAVE (combined program)
SUMMARY

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Calling address</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>CLEAR</td>
<td>2062</td>
<td></td>
</tr>
<tr>
<td>BKGND</td>
<td>2865</td>
<td>COLR</td>
</tr>
<tr>
<td>POSN</td>
<td>2809</td>
<td>XO, YO, COLR</td>
</tr>
<tr>
<td>PLOT</td>
<td>2830</td>
<td>XO, YO, COLR</td>
</tr>
<tr>
<td>LINE</td>
<td>2836</td>
<td>XO, YO, COLR</td>
</tr>
<tr>
<td>DRAW</td>
<td>2871</td>
<td>XO, YO, COLR, SHAPE, ROT, SCALE</td>
</tr>
<tr>
<td>DRAW1</td>
<td>2874</td>
<td>SHAPE, ROT, SCALE</td>
</tr>
<tr>
<td>XDRAW</td>
<td>2884</td>
<td>XO, YO, COLR, SHAPE, ROT, SCALE</td>
</tr>
<tr>
<td>XDRAW1</td>
<td>2887</td>
<td>SHAPE, ROT, SCALE</td>
</tr>
<tr>
<td>FIND</td>
<td>2556</td>
<td></td>
</tr>
<tr>
<td>SHAPE LOAD</td>
<td>3001</td>
<td></td>
</tr>
</tbody>
</table>

For NO TEXT display

>POKE -16302,0

For mixed GRAPHICS/TEXT

>POKE -16301,0

Select secondary screen display

>POKE -16299,0

Select primary screen display

>POKE -16300,0

Select secondary screen plotting

>POKE 806,64

Select primary screen plotting

>POKE 806,32

(Defaults are GRAPHICS/TEXT, primary screen display, and primary screen plotting)

Collision detect (shape draw only)

PEEK (S10)
HI-RES PREFIX LOAD

AFTER LOAD

PV, LOMEM (normally $800)

PP (start of program)

HI-MEM (end of program)

$800

HI-RES SUBR'S

PV, LOMEM ($CO0)

$BFF

USER AREA

BASIC (1 page)

HI-RES SUBR'S (4 pages)

BASIC (1 page)

USER PROG (if any)

USER AREA

PP

USER PROG (execution initiated at line 0)

HI-MEM

Note: A 'page' is 256 bytes.

APPLE-II BASIC POINTERS

LOMEM (in $4A, $4B)---------Contains 'start of BASIC variables' address.

PV (SCC, SCD)--------------End of BASIC variables. Equal to LOMEM if no active variables.

PP (SCA, SCB)--------------Start of BASIC program. Equal to HI-MEM if no program.

HI-MEM ($4C, $4D)----------End of BASIC pv.
HI-RES PARAMETER LOCATIONS
(beyond LOMEM)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Locations beyond LOMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XO</td>
<td>$05, $06</td>
</tr>
<tr>
<td>YO</td>
<td>$0C, $0D</td>
</tr>
<tr>
<td>COLR</td>
<td>$15, $16</td>
</tr>
<tr>
<td>SHAPE</td>
<td>$1F, $20</td>
</tr>
<tr>
<td>ROT</td>
<td>$27, $28</td>
</tr>
<tr>
<td>SCALE</td>
<td>$31, $32</td>
</tr>
</tbody>
</table>

Note: Each parameter is two bytes in length. The low-order byte is stored in the lesser of the two locations assigned.

HI-RES SUBROUTINES SEGMENT MAP

- CODE $800-$9E8
- DATA $9E9-$9FB
- CODE $9FC-$BFF
SHAPE TAPE

Record #1 ------- Contains length of record #2. Two bytes long, low-order first.

Record Gap ------- Minimum of .7 seconds.

Record #2 ------- Shape table (see below).

```
START
(in $328, $329)

START is set to $C00 by the SHAPE LOAD subr.

0-255
Unused

n = number of shapes

index to shape definition #1 relative to START

low
high

.
.
.

low
high

SHAPE DEF #1

.
.
.

index to shape definition #n relative to START

SHAPE DEF #n

LOMEM

BASIC VARIABLES
```
SHAPE DEFINITIONS

<table>
<thead>
<tr>
<th>first shape byte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>final shape byte</td>
<td>$00</td>
</tr>
</tbody>
</table>

'end of shape' mark

SHAPE BYTE

MSB	**LSB**

\[
\begin{array}{cccc}
X & Y & P & X & Y & P & X & Y \\
\end{array}
\]

Third vector
First vector
Second vector

X Y Vector

- **0 0**: +
- **0 1**: + \(P = 0 \) Move without plot
- **1 0**: + \(P = 1 \) Plot, then move
- **1 1**: + Third vector is move without plot

ZEROES ARE IGNORED—If the remaining one or two vectors of a shape byte are zeroes then they are ignored.
SAMPLE SHAPE BYTES

(plot-prior-move vectors are circled)

00 100 100 $24
00 101 101 $2D
00 110 110 $36
00 111 111 $3F

00 000 100 $04
00 000 001 $01
01 101 101 $6D
11 111 111 $FF

10 101 100 $AC
01 100 110 $66
01 101 001 $69
10 010 010 $92

INVALID SHAPE BYTES

 ignored ignored ignored ignored

ignored ignored ignored ignored ignored

too many

 ignored
 ignored ignored ignored ignored ignored

 ignored
1. HPAG (in location $326) contains the high-order byte of the
starting address of the current HI-RES display memory in
which plotting is being done.

 Primary screen memory plotting ------ HPAG = $20
 ($2000-$3FFF)

 Secondary screen memory plotting ---- HPAG = $40
 ($4000-$5FFF)

2. HBSAL and HBASH (in locations $26 and $27) contain the BASE
ADDRESS corresponding to the current Y-coordinate. The
BASE ADDRESS is the address of the leftmost display byte of
the current line. HBSAL and HBASH will track all plotting
and drawing 'on-the-fly'.

 Current HPAG
 \[
 \begin{array}{cccccccc}
 \text{P} & \text{Q} & \text{R} & 0 & 0 & 0 & 0 & 0 \\
 \text{MSB} & \text{LSB} \\
 \end{array}
 \]

 Current Y-Coordinate
 \[
 \begin{array}{cccccccc}
 \text{A} & \text{B} & \text{C} & \text{D} & \text{E} & \text{F} & \text{G} & \text{H} \\
 \text{MSB} & \text{LSB} \\
 \end{array}
 \]

 HBASH
 \[
 \begin{array}{cccc}
 \text{P} & \text{Q} & \text{R} & \text{F} \\
 \text{MSB} & \text{LSB} \\
 \end{array}
 \]

 HBSAL
 \[
 \begin{array}{cccc}
 \text{E} & \text{A} & \text{B} & \text{A} \\
 \text{MSB} & \text{LSB} \\
 \end{array}
 \]

3. HNDX (in location $325) contains the byte index from the
BASE ADDRESS to the current plot byte and is a function of
the current X-coordinate.

 \[\text{HNDX} = \frac{X}{7} \text{ (integer divide with truncate)}\]
4. HMASK (in location 30) contains a bit mask corresponding to the current bit position within the current plot byte and is a function of the current X-coordinate. The high-order bit is always set.

<table>
<thead>
<tr>
<th>X MOD 7</th>
<th>HMASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (leftmost)</td>
<td>81</td>
</tr>
<tr>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>$A0$</td>
</tr>
<tr>
<td>6 (rightmost)</td>
<td>$C0$</td>
</tr>
</tbody>
</table>

5. HCOLOR (in location $1C$) is the HI-RES 'on-the-fly' color mask. The low-order seven bits are rotated one bit position for odd values of HNDX. The high-order bit selects one of two color sets on systems modified for extra HI-RES colors.

<table>
<thead>
<tr>
<th>COLOR</th>
<th>EVEN HNDX</th>
<th>ODD HNDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>GREEN</td>
<td>0 0 1 0 1 0 1 0 1 0</td>
<td>0 1 0 1 0 1 0 1 0 1</td>
</tr>
<tr>
<td>VIOLET</td>
<td>0 1 0 1 0 1 0 1 0 1</td>
<td>0 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>WHITE</td>
<td>0 1 1 1 1 1 1 1 1 1</td>
<td>0 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>BLACK2</td>
<td>1 0 0 0 0 0 0 0 0 0</td>
<td>1 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>ORANGE</td>
<td>1 0 1 0 1 0 1 0 1 0</td>
<td>1 1 0 1 0 1 0 1 0 1</td>
</tr>
<tr>
<td>BLUE</td>
<td>1 1 0 1 0 1 0 1 0 1</td>
<td>1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>WHITE2</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>
HI-RES INTERNAL VARIABLES

SHAPEL, SHAPEH ($1A, $1B) On-the-fly shape pointer.
HCOLOR1 ($1C) On-the-fly color byte.
COUNTH ($1D) High-order byte of step count for LINE.
HBASL, HBASH ($26, $27) On-the-fly BASE ADDRESS
HMASK ($30) On-the-fly BIT MASK.
QDRNT ($53) 2 LSB's are rotation quadrant for DRAW.
XOL, XOH ($320, $321) Most recent X-coordinate. Used for
initial endpoint of LINE. Updated
by PLOT, LINE, and FIND, not DRAW.
Y0 ($322) Most recent Y-coordinate (see XOL, XOH).
BXSAV ($323) Saves 6502 X-Register during HI-RES calls
from BASIC.
HCOLOR ($324) Color specification to PLOT, POSN.
HNDX ($325) On-the-fly byte index from BASE ADDRESS.
HPAG ($326) Starting page of plot memory. Normally
$20 for plotting in primary HI-RES
display memory ($2000-$3FFF).
SCALE ($327) On-the-fly scale factor for DRAW.
SHAPXL, SHAPXH ($328, $329) Start of shape table pointer.
COLLSN ($32A) Collision count from DRAW, XDRAW.
<table>
<thead>
<tr>
<th>Line</th>
<th>Label</th>
<th>Type</th>
<th>$xx</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>SHAPEL</td>
<td>EPZ</td>
<td>$1A</td>
<td>Pointer to SHAPE List</td>
</tr>
<tr>
<td>15</td>
<td>SHAPEH</td>
<td>EPZ</td>
<td>$1B</td>
<td>Running color mask</td>
</tr>
<tr>
<td>16</td>
<td>HCOLORI</td>
<td>EPZ</td>
<td>$1C</td>
<td>Base addr for current Hi-res plot line</td>
</tr>
<tr>
<td>17</td>
<td>COUNTR</td>
<td>EPZ</td>
<td>$1D</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>HBASL</td>
<td>EPZ</td>
<td>$26</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>HBASH</td>
<td>EPZ</td>
<td>$27</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>HMASK</td>
<td>EPZ</td>
<td>$30</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AIL</td>
<td>EPZ</td>
<td>$3C</td>
<td>Monitor A1.</td>
</tr>
<tr>
<td>22</td>
<td>AIR</td>
<td>EPZ</td>
<td>$3D</td>
<td>Monitor A2.</td>
</tr>
<tr>
<td>23</td>
<td>A2L</td>
<td>EPZ</td>
<td>$3E</td>
<td>Basic 'Start of Vars'</td>
</tr>
<tr>
<td>24</td>
<td>A2K</td>
<td>EPZ</td>
<td>$3F</td>
<td>Delta-X for HLIN, SHAPE</td>
</tr>
<tr>
<td>25</td>
<td>LOMEML</td>
<td>EPZ</td>
<td>$4A</td>
<td>Shape Temp.</td>
</tr>
<tr>
<td>26</td>
<td>LOMEMH</td>
<td>EPZ</td>
<td>$4B</td>
<td>Delta-Y for HLIN, SHAPE</td>
</tr>
<tr>
<td>27</td>
<td>DXL</td>
<td>EPZ</td>
<td>$50</td>
<td>Rot Quadrant (SHAPE). Error for HLIN.</td>
</tr>
<tr>
<td>28</td>
<td>DXH</td>
<td>EPZ</td>
<td>$51</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SHAPEX</td>
<td>EPZ</td>
<td>$51</td>
<td>Basic start of prog. pr</td>
</tr>
<tr>
<td>30</td>
<td>D Y</td>
<td>EPZ</td>
<td>$52</td>
<td>Basic end of vars ptr.</td>
</tr>
<tr>
<td>31</td>
<td>QDRNT</td>
<td>EPZ</td>
<td>$53</td>
<td>Basic acc.</td>
</tr>
<tr>
<td>32</td>
<td>EL</td>
<td>EPZ</td>
<td>$54</td>
<td>Prior X-coord save</td>
</tr>
<tr>
<td>33</td>
<td>EH</td>
<td>EPZ</td>
<td>$55</td>
<td>After HLIN or Hplot.</td>
</tr>
<tr>
<td>34</td>
<td>PPL</td>
<td>EPZ</td>
<td>$56</td>
<td>HLIN, Hplot y-coord save</td>
</tr>
<tr>
<td>35</td>
<td>PPH</td>
<td>EPZ</td>
<td>$57</td>
<td>X-reg save for basic</td>
</tr>
<tr>
<td>36</td>
<td>PVL</td>
<td>EPZ</td>
<td>$58</td>
<td>Color for Hplot, Hposw</td>
</tr>
<tr>
<td>37</td>
<td>PVH</td>
<td>EPZ</td>
<td>$59</td>
<td>Horiz offset save</td>
</tr>
<tr>
<td>38</td>
<td>ACL</td>
<td>EPZ</td>
<td>$60</td>
<td>Hi-res page ($20 normal)</td>
</tr>
<tr>
<td>39</td>
<td>ACH</td>
<td>EPZ</td>
<td>$61</td>
<td>Scale for SHAPE, MOVE</td>
</tr>
<tr>
<td>40</td>
<td>XOL</td>
<td>EQU</td>
<td>$320</td>
<td>Start of</td>
</tr>
<tr>
<td>41</td>
<td>XOH</td>
<td>EQU</td>
<td>$321</td>
<td>SHAPE TABLE.</td>
</tr>
<tr>
<td>42</td>
<td>YO</td>
<td>EQU</td>
<td>$322</td>
<td>Collision count.</td>
</tr>
<tr>
<td>43</td>
<td>BXSAV</td>
<td>EQU</td>
<td>$323</td>
<td>Start of SHAPE TABLE.</td>
</tr>
<tr>
<td>44</td>
<td>HCOLOR</td>
<td>EQU</td>
<td>$324</td>
<td>Switch to Hi-res video</td>
</tr>
<tr>
<td>45</td>
<td>HNDX</td>
<td>EQU</td>
<td>$325</td>
<td>Select text/graphics</td>
</tr>
<tr>
<td>46</td>
<td>HPAG</td>
<td>EQU</td>
<td>$326</td>
<td>Select graphics mode</td>
</tr>
<tr>
<td>47</td>
<td>SCALE</td>
<td>EQU</td>
<td>$327</td>
<td>Basic mem full error</td>
</tr>
<tr>
<td>48</td>
<td>SHAPXL</td>
<td>EQU</td>
<td>$328</td>
<td>Basic range error</td>
</tr>
<tr>
<td>49</td>
<td>SHAPXH</td>
<td>EQU</td>
<td>$329</td>
<td>2-byte tape read setup</td>
</tr>
<tr>
<td>50</td>
<td>COLLSN</td>
<td>EQU</td>
<td>$32A</td>
<td>TWO-EDGE TAPE SENSE</td>
</tr>
<tr>
<td>51</td>
<td>SHSTRT</td>
<td>EQU</td>
<td>$C00</td>
<td>Tape read (A1, A2).</td>
</tr>
<tr>
<td>52</td>
<td>HIRES</td>
<td>EQU</td>
<td>$C057</td>
<td>Read without header</td>
</tr>
<tr>
<td>53</td>
<td>MIXSET</td>
<td>EQU</td>
<td>$C053</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>TXTCLR</td>
<td>EQU</td>
<td>$C050</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>MEMFULL</td>
<td>EQU</td>
<td>$E36B</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>RANGERR</td>
<td>EQU</td>
<td>$E368</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>ACADR</td>
<td>EQU</td>
<td>$F11E</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>RD2BIT</td>
<td>EQU</td>
<td>$FCFA</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>READ</td>
<td>EQU</td>
<td>$FEFD</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>READX1</td>
<td>EQU</td>
<td>$FF02</td>
<td></td>
</tr>
</tbody>
</table>
63 * RAM VERSION $800 TO $BFF
64
65 *
66
\800: A9 20 67 SETHRL LDA $20
\802: 8D 26 03 68 STA HPG
\805: AD 57 C0 69 LDA HIRES
\808: AD 53 C0 70 LDA MIXSER
\808: AD 50 CD 71 LDA TXTCLR
\80E: A9 00 72 HCLR LDA $50
\810: 85 1C 73 BKGDOS STA HCOLOR1
\812: AD 26 03 74 BKGD LDA HPG
\815: 85 1B 75 STA SHAPEH
\817: A0 00 76 LDY $50
\819: 84 1A 77 STY SHAPEL
\81B: A5 1C 78 BKGD1 LDA HCOLOR1
\81D: 91 1A 79 STA SHAPEL,Y
\81F: 20 A2 08 80 JSR CSHFT2
\822: CB 81 INY
\823: D0 F6 82 BNE BKGD1
\825: E6 1B 83 INC SHAPEH
\827: A5 1B 84 LDA SHAPEH
\829: 29 1F 85 AND $5F
\82B: D0 EE 86 BNE BKGD1
\82D: 60 87 RTS

INIT FOR $2000-3FFF
HI-RES SCREEN MEMORY.
SET HIRES DISPLAY MODE
WITH TEXT AT BOTTOM.
SET GRAPHICS DISPLAY
SET FOR BLACK BKGD.
INIT HI-RES SCREEN MEM
FOR CURRENT PAGE, NORMAL
$2000-3FFF OR $4000-5F
(SHAPEL,H) WILL SPECIFY
32 SEPARATE PAGES
THROUGHOUT THE INIT.
TEST FOR DONE.
HI-RES GRAPHICS POSITION AND PLOT SUBRS

4:50 P.M., 12/2/1977

0620: 8D 22 03 90 HPOSN
0631: 8E 20 03 91
0634: 8C 21 03 92
0537: 48 YO
0638: 29 C0 03 94
063A: 85 26 95
063C: 4A XOL
063D: 4A XOH
063E: 05 26 98
0640: 85 26 99
0422: 68 PHA
0431: 85 27 101
0434: 0A ASL A
0438: 0A ASL A
043B: 0A ASL A
0442: 26 27 105
0446: 0A ROL HBASH
044A: 0A ASL A
044E: 66 26 109
0550: A5 27 110
0572: 29 1F 111
0574: OD 26 03 112
0577: 85 27 113
0579: 8A TXA
057A: C0 00 115
057C: F0 05 116
057E: A0 23 117
0680: 69 04 118
0682: CB 119 HPOSN1
0683: E9 07 120 HPOSN2
0685: B0 FB 121
0687: 8C 25 03 122
068A: AA HPOSN
068B: AD EA 06 124
068E: 85 30 125
0690: 98 TYA
0691: 4A LSR A
0692: AD 24 03 128
0695: 85 1C 129 HPOSN3
0577: B0 29 130
0579: 60 RTS
057A: 20 2E 06 132 HPLST
057D: A5 1C 133 HPLS1
067F: 51 26 134
0651: 25 30 135
0653: 51 26 136
0625: 91 26 137
0557: 60 139 *

STA YO
STX XOL
STY XOH
PHA
AND #SCO
STA HBSAL
LSR A
LSR A
ORA HBSAL
STA HBSAL
PLA
STA HBASH
ASL A
ASL A
ASL A
ROL HBASH
ASL A
ROL HBASH
ASL A
ORA HBSAL
LDA HBASH
AND #51F
ORA HPG
STA HBASH
TXA
CPY #50
BEQ HPOSN2
LDY #523
ADC #54
INY
SBC #57
BCC HPOSN1
STY HNDX
TAX
LDA MSKTBLS-5F9,X
STA HMASK
TYA
LSR A
LDA HCOLOR
STA HCOLOR1
BCC CSHFT2
RTS
JSR HPOSN
LDA HCOLOR1
EOR (HBSAL),Y
STA HCOLOR1
EOR (HBSAL),Y
STA (HBSAL),Y
RTS

ENTER WITH Y IN A-REG,
XL IN X-REG,
AND XH IN Y-REG.

FOR Y-COORD = OADBCEF
CALCULATES BASE ADDR
IN HBSAL, HBASH FOR
ACCESSING SCREEN MEM
VIA (HBSAL), Y ADDR
MODE.

CALCULATES
HBASH = PPPFGHCD,
HBASL = EABAB000

WHERE PPP=001 FOR $20B
SCREEN MEM RANGE AND
PPP=010 FOR $4000-7F
(GIVEN Y-COORD=ADEF)

DIVIDE XO BY 7 FOR
INDEX FROM BASE ADDR
(QUOTIENT AND BIT
WITHIN SCREEN MEM 35
(MASK SPEC'D BY REME)

SUBTRACT OUT SEvens.

WORKS FOR XO FROM
0 TO 279, LOW-ORDER
BYTE IN X-REG,
HIGH IN Y-REG ON ENT

IF ON ODD BYTE (CARRY)
THEN ROTATE HCOLOR 5

BIT FOR 180 DEGREES
PRIOR TO COPYING TO

SUBSTITUTE CORRESPONG

BIT OF HCOLOR1.
USE SIGN FOR LFT/RT SE

SHIFT LOW-ORDER
7 BITS OF HMASK
ONE BIT TO LSB.

DECR HORIZ INDEX.

WRAP AROUND SCREEN.
NEW HMASK, RIGHTMOST
DOT OF BYTE.

UPDATE HORIZ INDEX.

ROTATE LOW-ORDER
7 BITS OF HCOLORI
ONE BIT POSN.

ZXYXYXYX -> ZXYXYXYX

XYZ

SHIFT LOW-ORDER
7 BITS OF HMASK
ONE BIT TO MSB.

NEXT BYTE.

WRAP AROUND SCREEN IF
ALWAYS TAKEN.
4:50 P.M., 12/2/1977

NO 90 DEG ROT (X-OR).
IF B2=0 THEN NO PLOT.
FOR EX-OR INTO SCREEN.
SCREEN BIT SET?
ALWAYS TAKEN.
NO 90 DEG ROT.
IF B2=0 THEN NO PLOT.
SET HI-RES SCREEN BIT.
TO CORRESPONDING HCB.
IF BIT OF SCREEN CHANGES.
THEN INCR COLS.
ADD QDRNT TO.
SPECIFIED VECTOR.
AND MOVE LFT, RT.
UP, OR DWN BASED.
ON SIGN AND CARRY.
SIGN FOR UP/DWN SELECT.
CALC BASE ADDRESS.
(ADR OF LEFTMOST BIT.
FOR NEXT LINE UP.
IN (HBASL,HBASH).
WITH 192-LINE WRAPAR.
**** BIT MAP ****
FOR ROW = ABCDEFGH,

WHERE PPP=001 FOR PRIE.
HI-RES PAGE ($2000-...
4:50 P.M., 12/2/1977

0927: 85 27 229 UPDN1 STA HBASL
0929: 60 230 RTS
092A: 18 231 DOWN CLC
092B: A5 27 232 DOWN4 LDA HBASL
092D: 69 04 233 ADC $34
092E: 234 EQA EQU $-1
092F: 2C EA 09 235 BIT EQ1C
0931: D0 F3 236 BNE UPDN1
0934: 06 26 237 ASL HBASL
0936: 90 19 238 BCC DOWN1
0938: 69 E0 239 ADC $5E0
093A: 18 240 CLC
093B: 2C 2E 09 241 BIT EQ4
093E: F0 13 242 BEQ DOWN2
0940: A5 26 243 LDA HBASL
0942: 69 50 244 ADC $550
0944: 49 F0 245 EOR $3F0
0946: F0 02 246 BEQ DOWN3
0948: 49 F0 247 EOR $3F0
094A: 85 26 248 DOWN3 STA HBASL
094C: AD 26 03 249 LDA HPAG
094E: 90 02 250 BCC DOWN2
0951: 69 E0 251 DOWN1 ADC $5E0
0953: 66 26 252 DOWN2 ROR HBASL
0955: 90 D0 253 BCC UPDN1

CALC BASE ADR FOR NEXT DOWN TO (HBASL, HBASL)
WITH 192-LINE WRAPAR
HI-RES GRAPHICS LINE DRAW SUBRS

PAGE 8

4:50 P.M., 12/2/1977

0957: 48 256 HLINRL PHA
0958: A9 00 257 LDA $50 SET (XOL,XOH) AND
095A: 8D 20 03 258 STA XOL YO TO ZERO FOR
095D: 8D 21 03 259 STA XOH REL LINE DRAW
0960: 8D 22 03 260 STA YO (DX, DY).
0963: 68 261 PLA ON ENTRY
0964: 48 262 HLIN PHA
0965: 38 263 SEC XL: A-REG
0966: ED 20 03 264 SBC XO XH: X-REG
0969: 48 265 PHA Y: Y-REG
096A: 8A 266 TXA SBC XOH
096B: ED 21 03 267 STA QDRNT CALC ABS(X-XO)
096E: 85 53 268 BCS HLIN2 IN (DXL,DXH)
0970: BO 0A 269 PLA X DIR TO SIGN BIT
0972: 68 270 PLA OF QDRNT.
0973: 49 FF 271 ADC $1 0=RIGHT (DX POS)
0975: 69 01 272 PHA 1=LEFT (DX NEG)
0977: 48 273 LDA $50 SBC QDRNT
0978: A9 00 274 STA DXH CALC ABS(X-XO)
097A: E5 53 275 STA EH IN (EL, EH) TO
097C: 85 51 276 HLIN2 ABS(X-XO)
097E: 85 55 277 STA DXL
0980: 68 278 STA EL
0981: 85 50 279 STA DXL
0983: 85 54 280 STA EL
0985: 68 281 PLA
0986: ED 20 03 282 STA XO SBC YO
0989: 8E 21 03 283 STA XO
098C: 98 284 TYA CALC -ABS(Y-YO)-1
098D: 18 285 CLC IN DY.
098E: ED 22 03 286 SBC YO ROTATE Y DIR INTO
0991: 90 04 287 BCC HLIN3 QDRNT SIGN BIT
0993: 49 FF 288 EOR $FF (0=UP, 1=DOWN)
0995: 69 FE 289 ADC $FE ROR QDRNT
0997: 85 52 290 HLIN3 STA DY
0999: 8C 22 03 291 STY YO INIT (COUNTL,COUNTH),
099C: 66 53 292 SEC TO -(DELTX+DELTY+1)
099E: 38 293 SEC
099F: E5 50 294 SBC DXL INIT (COUNTL,COUNTH),
09A1: AA 295 TAX TO -(DELTX+DELTY+1)
09A2: A9 FF 296 LDA $FF
09A4: E5 51 297 SBC DXH HORIZ INDEX
09A5: 85 1D 298 STA COUNTH ALWAYS TAKEN.
09A5: AC 25 03 299 LDY HNDX
09A8: BO 05 300 BCS MOVEX2 MOVE IN X-DIR. USE
09AD: 0A 301 MOVEX ASSUME CARRY SET.
09AE: 20 88 08 302 ASL A (EL, EH)-DELTY TO (EL, EH)
09B1: 38 303 SEC NOTE: DY IS (-DELTY)-1
09B2: A5 54 304 MOVEX2 CARRY CLR IF (EL, EH).
09B4: 65 52 305 LDA EL GOES NEG.
09B5: 65 54 306 ADC DY
09B8: A5 55 307 STA EL
09BA: EZ 00 308 LDA EH
09BE: E5 55 309 HCOUNT SBC $50
09BC: 20 88 08 302 JSR LFTRT QDRNT 96 FOR LFT/RTT
09BF: 38 303 SEC
09C2: A5 54 304 MOVEX2 LDA EL
09C4: 65 52 305 ADC DY
09C5: 65 54 306 STA EL
09CE: A5 55 307 LDA EH
09DA: E9 00 308 SBC $50
09DF: E5 55 309 HCOUNT STA EH
<table>
<thead>
<tr>
<th>Time</th>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0930:1</td>
<td>B1 26</td>
<td>310</td>
<td>LDA (HBASL), Y</td>
</tr>
<tr>
<td>0930:1</td>
<td>45 1C</td>
<td>311</td>
<td>EOR HCOLOR1</td>
</tr>
<tr>
<td>0932:1</td>
<td>25 30</td>
<td>312</td>
<td>AND HMASK</td>
</tr>
<tr>
<td>7C4:1</td>
<td>51 26</td>
<td>313</td>
<td>EOR (HBASL), Y</td>
</tr>
<tr>
<td>0936:1</td>
<td>91 26</td>
<td>314</td>
<td>STA (HBASL), Y</td>
</tr>
<tr>
<td>0938:1</td>
<td>E8</td>
<td>315</td>
<td>INX</td>
</tr>
<tr>
<td>0939:1</td>
<td>D0 04</td>
<td>316</td>
<td>BNE HLIN4</td>
</tr>
<tr>
<td>09CB:1</td>
<td>E6 1D</td>
<td>317</td>
<td>INC COUNTH</td>
</tr>
<tr>
<td>09CD:1</td>
<td>F0 6B</td>
<td>318</td>
<td>BEQ RTS2</td>
</tr>
<tr>
<td>09CF:1</td>
<td>A5 53</td>
<td>319</td>
<td>HLIN4</td>
</tr>
<tr>
<td>09D1:1</td>
<td>B0 DA</td>
<td>320</td>
<td>LDA QDRNT</td>
</tr>
<tr>
<td>09D2:1</td>
<td>20 F9 08 321</td>
<td></td>
<td>BCS MOVEX</td>
</tr>
<tr>
<td>09D3:1</td>
<td>18</td>
<td>322</td>
<td>CLC</td>
</tr>
<tr>
<td>09D6:1</td>
<td>A5 54</td>
<td>323</td>
<td>LDA EL</td>
</tr>
<tr>
<td>09D9:1</td>
<td>65 50</td>
<td>324</td>
<td>ADC DXL</td>
</tr>
<tr>
<td>09DB:1</td>
<td>85 54</td>
<td>325</td>
<td>STA EL</td>
</tr>
<tr>
<td>09DD:1</td>
<td>A5 55</td>
<td>326</td>
<td>LDA EH</td>
</tr>
<tr>
<td>09DF:1</td>
<td>65 51</td>
<td>327</td>
<td>ADC DXL</td>
</tr>
<tr>
<td>09E1:1</td>
<td>5Q D9</td>
<td>328</td>
<td>MSKTLB</td>
</tr>
<tr>
<td>09E3:1</td>
<td>81</td>
<td>329</td>
<td>DBT $8.1</td>
</tr>
<tr>
<td>09E4:1</td>
<td>82 84 88 330</td>
<td></td>
<td>DBT $82, $84, $88</td>
</tr>
<tr>
<td>09E7:1</td>
<td>90 A0</td>
<td>331</td>
<td>DBT $90, $A0</td>
</tr>
<tr>
<td>09E9:1</td>
<td>CO</td>
<td>332</td>
<td>DBT $CO</td>
</tr>
<tr>
<td>09EA:1</td>
<td>1C</td>
<td>333</td>
<td>MSKTLB</td>
</tr>
<tr>
<td>09EB:1</td>
<td>FF FE FA</td>
<td></td>
<td>DBT $FF, $FE, $FA, $</td>
</tr>
<tr>
<td>09EE:1</td>
<td>FA EC E1</td>
<td></td>
<td>DBT $A1, $8D, $78, $</td>
</tr>
<tr>
<td>09F1:1</td>
<td>D4 C5 B4 334</td>
<td></td>
<td>DBT $FF, $FE, $FA, $</td>
</tr>
<tr>
<td>09F4:1</td>
<td>A1 8D 78</td>
<td></td>
<td>DBT $FF, $FE, $FA, $</td>
</tr>
<tr>
<td>09F7:1</td>
<td>61 49 31</td>
<td></td>
<td>DBT $FF, $FE, $FA, $</td>
</tr>
<tr>
<td>09FA:1</td>
<td>18 FF 335</td>
<td></td>
<td>DBT $FF, $FE, $FA, $</td>
</tr>
</tbody>
</table>
HI-RES GRAPHICS COORDINATE RESTORE SUBR.

4:50 P.M., 12/2/1977

PAGE: 10

09FC: A5 26 338 HFIND LDA HBASL
09FE: 0A 339 ASL A
09FF: A5 27 340 LDA HBASH
A001: 29 03 341 AND #$3
A002: 2A 342 ROL A
A003: 05 26 343 ORA HBASL
A004: 0A 344 ASL A
A005: 0A 345 ASL A
A006: 0A 346 ASL A
A007: 0A 347 ASL A
A008: 8D 22 03 348 STA YO
A009: A5 27 349 LDA HBASH
A00A: 4A 350 LSR A
A00B: 4A 351 LSR A
A00C: 6D 22 03 352 STY YO
A00D: AD 25 03 353 STA YO
A00E: 4A 354 LDA HNDX
A00F: 355 ASL A
A010: 6D 25 03 356 ADC HNDX
A011: 0A 357 ASL A
A012: AA 358 TAX
A013: CA 359 DEX
A014: A5 30 360 LDA HMASK
A015: 29 7F 361 AND #$7F
A016: 28 362 HFIND1 INX
A017: 4A 363 LSR A
A018: D0 FC 364 BNE HFIND1
A019: 8D 21 03 365 STA XOH
A01A: 8A 366 TXA
A01B: 18 367 GLC
A01C: 6D 25 03 368 ADC HNDX
A01D: 90 03 369 BCC HFIND2
A01E: 52 21 03 370 INC XOH
A01F: 8D 20 03 371 HFIND2 STA XOL
A020: 60 372 RTS2 RTS

CONVERTS BASE ADR TO Y-COORD.

FOR HBASL = EABAB000

HBASH = PPPF0GHC

GENERATE Y-COORD = ABCDEFGH

(PPP=SCREEN PAGE,

NORMALLY 001 FOR $2000-$3FFF

HI-RES SCREEN)

CONVERTS HNDX (INDEX FROM BASE ADR)

AND HMASK (BIT MASK) TO X-COORD

IN (XOL,XOH)

(RANGE $0-$133)

CALC HNDX*7 +

LOG (BASE 2) HMASK.
HI-RES GRAPHICS SHAPE DRAW SUBR

375 *
376 * SHAPE DRAW
377 * R = 0 TO 63
378 * SCALE FACTOR USED (1=NORMAL)
379 *

0A3B: 86 1A 380 DRAW STX SHAPEL DRAW DEFINITION
0A3D: 84 1B 381 STY SHAPEH POINTER.
0A3F: AA 382 DRAW1 TAX
0A40: 4A 383 LSR A ROT (SO-S3F)
0A41: 4A 384 LSR A QDRNT 0=UP, 1=RT
0A42: 4A 385 LSR A 2=DRAW, 3=LFT.
0A43: 4A 386 LSR A
0A44: 85 53 387 STA QDRNT
0A46: 8A 388 TAX
0A47: 29 0F 389 AND #$FF
0A49: AA 390 TAX
0A4A: BA EB 09 391 LDY COS,X SAVE COS AND SIN
0A4D: 84 50 392 STY DXL VALS IN DXL AND DY.
0A4F: 49 0F 393 EOR #$FF
0A51: AA 394 TAX
0A52: BA EC 09 395 LDY COS+1,X
0A55: C8 396 INY
0A56: 84 52 397 STY DY
0A58: AC 25 03 398 DRAW2 LDY MNDX BYTE INDEX FROM
0A5B: A2 00 399 LDX #$50 HI-RES BASE ADR.
0A5D: 8E 2A 03 400 STX COLLED CLEAR COLLISION COUNT.
0A60: A1 1A 401 LDA (SHAPEL,X) 1ST SHAPE DEF BYTE.
0A62: 85 51 402 DRAW3 STA SHAPEX
0A64: A2 80 403 LDX #$80 EL, EH FOR FRACTIONAL
0A66: 86 54 404 STX EL L,R,U,D VECTORS.
0A68: 86 55 405 STX EH SCALE FACTOR.
0A6A: AE 27 03 406 LDX SCALE
0A6D: A5 54 407 DRAW4 LDA EL IF FRACTION
0A6F: 38 408 SEC
0A70: 65 50 409 ADC DXL THEN MOVE IN
0A72: 85 54 410 STA EL SPECIFIED VECTOR
0A74: 90 04 411 BCC DRAWS DIRECTION.
0A76: 20 D8 08 412 JSR LRUD1
0A79: 18 413 CLC
0A7A: A5 55 414 DRAW5 LDA EH IF FRACTION
0A7C: 65 52 415 ADC DY THEN MOVE IN
0A7E: 85 55 416 STA EH SPECIFIED VECTOR
0A80: 90 03 417 BCC DRAW6 DIRECTION +90 DEG.
0A82: 20 D9 08 418 JSR LRUD2 LOOP ON SCALE
0A85: CA 419 DRAW6 DEX FACTOR.
0A86: D0 E5 420 BNE DRAWS NEXT 3-BIT VECTOR
0A88: A5 51 421 LDA SHAPEX OF SHAPE DEF.
0A8A: 4A 422 LSR A NOT DONE THIS BYTE.
0A8B: 4A 423 LSR A
0A8C: 4A 424 LSR A
0A8D: D0 D3 425 BNE DRAWS SHAPE DEFINITION.
0A8F: E6 1A 426 INC SHAPEL
0A91: D0 02 427 BNE DRAWS
0A93: E6 1B 428 INC SHAPEH

4:50 P.M., 12/2/1977
0A95: A1 1A 429 DRAWS LDA (SHAPEL,X) DONE IF ZERO.
0A97: D0 C9 430 BNE DRAWS
0A99: 60 431 RTS
434 *
435 * EX-OR SHAPE INTO SCREEN.
436 *
437 * ROT = 0 TO 3 (QUADRANT ONLY)
438 * SCALE IS USED
439 *

OA9A: 86 1A 440 XDRAW STX SHAPEL
OA9C: 84 1B 441 STY SHAPEX SHAPE DEFINITION
OA9E: AA 442 XDRAW1 SHAPEL POINTER.
OA9F: 4A 443 LSR A ROT (50-53F)
OAAD: 4A 444 LSR A QDRNT 0=UP, 1=RT,
OAAL: 4A 445 LSR A 2=DWN, 3=LFT.
OAA2: 4A 446 LSR A
OAA3: 85 53 447 STA QDRNT
OAA5: 8A 448 TXA
OAA6: 29 0F 449 AND #$F
OAA8: AA 450 TAX
OAA9: BC EB 09 451 LDY COS,X SAVE COS AND SIN
OAAC: 84 50 452 STY DXL VALS IN DXL AND DY.
OAAE: 49 0F 453 EOR #$F
OAB0: AA 454 TAX
OAB1: BC EC 09 455 LDY COS+1,X
OAB4: C8 456 INY
OAB5: 84 52 457 STY DY
OAB7: AC 25 03 458 XDRAW2 INDEX FROM HI-RES
OABA: A2 00 459 LDX #$0 BASE ADR.
OABC: 8E 2A 03 460 STX COLLSH CLEAR COLLISION DETECT
OABF: A1 1A 461 LDA (SHAPEL,X) 1ST SHAPE DEF BYTE.
OAC1: 85 51 462 XDRAW3 STA SHAPEX
OAC3: A2 80 463 LDX #$80
OAC5: 86 54 464 STX EL EL,EH FOR FRACTIONAL
OAC7: 86 55 465 STX EH L,R,U,D VECTORS.
OAC9: AE 27 03 466 LDX SCALE SCALE FACTOR.
OACC: A5 54 467 XDRAW4 LDA EL
OACE: 38 468 SEC IF FRAC COS OVFL
OACF: 65 50 469 ADC DXL THEN MOVE IN
OADF: 85 54 470 STA EL SPECIFIED VECTOR
OADD: 20 C0 08 472 BCC XDRAW5 DIRECTION
OAE5: 18 473 CLC
OAE9: A5 55 474 XDRAW5 LDA EH IF FRAC SIN OVFL
OADB: 65 52 475 ADC DY THEN MOVE IN
OADD: 85 55 476 STA EH SPECIFIED VECTOR
OAEF: 90 00 477 BCC XDRAW6 DIRECTION +90 DEG.
OAE1: 20 D9 08 478 JSR LRJDX1
OAE2: C0 479 XDRAW6 JSR LRJDX2
OAE5: D0 E5 480 LDA SHAPEX LOOP ON SCALE
OAE7: A5 51 481 LSR A FACTOR.
OAE9: 44 482 LSR A NEXT 3-BIT VECTOR
OAEA: 4A 483 LSR A OF SHAPE DEF.
OAE1: 4A 484 LSR A
OAE2: DO D3 485 BNE XDRAW3
OAE5: E6 1A 486 INC SHAPEL DONE IF ZERO.
OAF0: DO 02 487 BNE XDRAW7
OAF2: E6 1B 488 INC SHAPEL SHAPE DEF.
OAF4: A1 1A 489 XDRAW7 LDA (SHAPEL,X)
OAF5: DO C9 490 BNE XDRAW3 DONE IF ZERO.
OAF8: 60 491 RTS
EN TRY POINTS FROM APPLE-II BASIC

4:50 P.M., 12/2/1977

009: 20 90 DB 494 BPOSN JSR PCOLR POSN CALL, COLR FROM

00C: 8D 24 03 495 STA HCOLOR

0AF: 20 AF DB 496 JSR GETYO YO FROM BASIC.

202: 4B 497 PHA XO FROM BASIC.

203: 20 9A OB 498 JSR GETXO

006: 68 499 PLA

007: 20 2E 08 500 JSR HPOSN

00A: AE 23 03 501 LDX BXSAV

00D: 60 502 RTS

00E: 20 F9 0A 503 BLOT JSR BPOSN PLOT CALL (BASIC).

011: 4C 7D 06 504 JMP HPLT1

014: AD 25 03 505 BLIN1 LDA HNDX

017: 4A 506 LSR A SET HCOLOR FROM

018: 20 90 DB 507 JSR PCOLR BASIC VAR COLR.

01B: 20 75 08 508 JSR HPOSN3

01E: 20 9A OB 509 BLINE JSR GETXO LINE CALL, GET XO FROM

021: 8A 510 TXA

022: 48 511 PHA

023: 98 512 TYA

024: AA 513 TAX

025: 20 AF DB 514 JSR GETYO YO FROM BASIC

025: A8 515 TAY

029: 68 516 PLA

02A: 20 64 09 517 JSR HLIN

02D: AE 23 03 518 LDX BXSAV

030: 60 519 RTS

031: 20 90 OB 520 BGNB JSR PCOLR BACKGROUND CALL

334: 4C 10 08 521 JMP BKGD0
DRAW CALL FROM BASIC.

EX-OR DRAW
FROM BASIC.

SAVE FOR BASIC.

SCALE FROM BASIC.

ROT FROM BASIC.
SAVE ON STACK.

START OF SHAPE TABLE.

SHAPE FROM BASIC.

SHAPE NO. = 2.

ADD 2-BYTE INDEX
TO SHAPE TABLE

START ADR
(X LOW, Y HI).

ROT FROM STACK.
BASIC PARAM FETCH SUBR'S

0901: A0 16 568 PCOLR LDY #$16
0902: B1 4A 569 PBTE LDA (LOMEML),Y
0904: D0 16 57Q BNE RERR1 GET BASIC PARAM.
0906: 88 571 DEX (ERR IF >255)
0907: B1 4A 572 LDA (LOMEML),Y
0909: 60 573 RTS SAVE FOR BASIC.
090A: 8E 23 03 574 STX BXSAV X0 LOW-ORDER BYTE.
090D: A0 05 575 LDY #$35
090F: B1 4A 576 LDA (LOMEML),Y
0911: AA 577 TAX HI-ORDER BYTE.
0912: C8 578 INY
0913: B1 4A 579 LDA (LOMEML),Y
0915: A8 580 TAY
0916: E0 18 581 CPX #$18
0917: E9 01 582 SBC #$1 RANGE ERR IF >279.
0919: 90 ED 583 BCC RTSB
091A: 4C 68 EE 584 RERR1 JMP RANGERR
091B: A0 0D 585 GETYO OFFSET TO YO FROM LOMM
091C: 20 92 OB 586 JSR PBYTE GET BASIC PARAM YO.
091D: C9 CO 587 CMP #$CO (ERR IF >191)
091E: B0 F4 588 BCS RERR1
091F: 60 589 RTS

SHAPE TAPE LOAD SUBROUTINE

PAGE: 18

PAGE: 18

0B91: 8E 23 03 592 SHLOAD STX BXSAV SAVE FOR BASIC.
0B9C: 20 1E F1 593 JSR ACADR READ 2-BYTE LENGTH INTO
0B9F: 20 FD FE 594 JSR READ BASIC ACC ($CE,CF).

* WARNING: OPERAND OVERFLOW IN LINE 595

0BC2: A9 00 595 LDA #$SHSTRT
0BC4: 85 3C 596 STA A1L
0BC6: 8D 28 03 597 STA SHAPXL
0BC9: 18 598 CLC
0BCA: 65 CE 599 ADC ACL
0BCC: A8 600 TAY
0BCD: A9 0C 601 LDA #$SHSTRT/256
0BCF: 85 3D 602 STA A1R
0BD1: 8D 29 03 603 STA SHAPXH
0BD4: 65 CF 604 ADC ACH
0BD6: B0 25 605 BCS MFULL1 NOT ENOUGH MEMORY.
0BD8: C4 CA 606 CPY PPL
0BDA: 48 607 PHA
0DB3: E5 CB 608 SBC PPH
0BDD: 68 609 PLA
0BDE: B0 1D 610 BCS MFULL1
0BEC: 84 3E 611 STY A2L
0BEE: 85 3F 612 STA A2H
0BE4: C8 613 INY
0BE5: D0 02 614 BNE SHLOD1
0BE7: 69 01 615 ADC #$1
0BEC: 84 4A 616 SHLOD1 STY LOMEML
0BEB: 85 4B 617 STA LOMEMH
0BFD: 84 CC 618 STY PVL
0BFE: 85 CD 619 STA PVH
0BF1: 20 FA FC 620 JSR RD2BIT
0BF4: A9 03 621 LDA #$53 5 SECOND HEADER.
0BF6: 20 02 FF 622 JSR READX1
0BF9: AE 23 03 623 LDX BXSAV
0BFC: 60 624 RTS