CIRCUIT ANALYSIS

Written by A. F. Petrie

In conjunction with Apple Computer Inc.

Downloaded from www.Apple2Online.com
NOTICE

Apple Computer Inc. reserves the right to make improvements in the product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. AND A.F. PETRIE MAKE NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR LICENSED "AS IS." THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., A.F. PETRIE, THEIR DISTRIBUTOR, OR THEIR RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION, AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL APPLE COMPUTER INC. OR A.F. PETRIE BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC. OR A.F. PETRIE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from Apple Computer Inc.

© 1980 by APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

The word APPLE and the Apple logo are registered trademarks of APPLE COMPUTER INC.

Special Delivery Software is a trademark of Apple Computer, Inc.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Description</td>
<td>1</td>
</tr>
<tr>
<td>Uses</td>
<td>1</td>
</tr>
<tr>
<td>How To Use The Program</td>
<td>1</td>
</tr>
<tr>
<td>Definitions</td>
<td>2</td>
</tr>
<tr>
<td>Min/Max to %Tol</td>
<td>3</td>
</tr>
<tr>
<td>AC Circuits</td>
<td>3</td>
</tr>
<tr>
<td>Load a File</td>
<td>3</td>
</tr>
<tr>
<td>Nominal Output</td>
<td>4</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>4</td>
</tr>
<tr>
<td>Worst Case & Part Effects</td>
<td>4</td>
</tr>
<tr>
<td>Trial Run & Test Limits</td>
<td>4</td>
</tr>
<tr>
<td>Optimize a Part</td>
<td>4</td>
</tr>
<tr>
<td>Different Output Node</td>
<td>5</td>
</tr>
<tr>
<td>Changes to Current File</td>
<td>5</td>
</tr>
<tr>
<td>Make a New File</td>
<td>5</td>
</tr>
<tr>
<td>Save File to Disk</td>
<td>6</td>
</tr>
<tr>
<td>DC Circuit</td>
<td>6</td>
</tr>
<tr>
<td>Voltages and Powers</td>
<td>6</td>
</tr>
<tr>
<td>Error Codes</td>
<td>6</td>
</tr>
<tr>
<td>Abort</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Circuit Size</td>
<td>6</td>
</tr>
<tr>
<td>Accuracy</td>
<td>6</td>
</tr>
<tr>
<td>Printer</td>
<td>6</td>
</tr>
<tr>
<td>Transistor Amplifier (AC.TR AMP)</td>
<td>8</td>
</tr>
<tr>
<td>OP-AMP Active Filter (AC> Filter)</td>
<td>10</td>
</tr>
<tr>
<td>Transistor Amplifier (DC> Tr Amp)</td>
<td>12</td>
</tr>
<tr>
<td>Voltage Follower (DC> OP Amp)</td>
<td>13</td>
</tr>
</tbody>
</table>

Appendix A: Sample Outputs
Appendix B: Setting Up the Apple II
CIRCUIT ANALYSIS INSTRUCTIONS

PROGRAM DESCRIPTION

Input to the program is made on a text file using a network description similar to that shown at the beginning of the sample printout. Output is designed for both CRT screen and most printers (alphanumerics are used in the plotting routine).

The program writes the network equations and solves them for you, but you must come up with the proper equivalent circuit. Some examples at the end will help you in this regard.

USES

CIRCUIT ANALYSIS is a general purpose circuit analysis program that can be used to analyze circuits for:

- FREQUENCY RESPONSE
- PART TOLERANCE EFFECTS
- WORST CASE PERFORMANCE
- PRODUCTION VARIATIONS
- TEST LIMITS
- PART VALUE OPTIMIZATION
- NODE VOLTAGES
- PART POWER DISSIPATION

The types of circuits that can be analyzed are only limited by the designer's ability to enter accurate equivalent circuits for the components used. Several examples are given of typical circuits. Below are some circuits that the program will handle:

- ACTIVE FILTERS
- R-F AMPLIFIERS
- AUDIO AMPLIFIERS
- VIDEO AMPLIFIERS
- L-C NETWORKS
- AUDIO OR R-F TRANSFORMERS
- A-C POWER NETWORKS
- TRANSISTOR BIAS CIRCUITS
- OP-AMP VOLTAGE FOLLOWERS

HOW TO USE THE PROGRAM

1. Draw a diagram of the network, including a signal at the input and its source impedance.

2. Substitute equivalent circuits for complex devices where required.

3. Assign node "0" to all ground connections (and power supply connections
in the A-C analysis). Number all junctions of two or more parts with node numbers except junctions between voltage sources and the next part (add a 1-ohm resistor if necessary at this point). Start with 1 near the input with the highest number node being the output. Inputs of active devices must have a lower number than outputs.

4. Insert the disk and 'boot' by turning on the computer or typing 'FR#6'. Choose AC or DC CIRCUIT ANALYSIS from the MASTER MENU. Choose 'MAKE A NEW FILE' and Give the file a short name (L-F FILTER, A-F AMP, etc.) when asked. Careful, don't use the same name twice unless you want the new file to replace the old. Type in the parts in order starting with the input voltage (VIN) first. The source impedance must be entered right after a voltage source (the program will remind you and automatically add the right node numbers). Press 'RETURN' after each entry to move to the next column. Use Q for part name to end the input. Don't forget to 'SAVE FILE ONTO DISK'.

5. Choose from the menu and type in the frequencies when asked. Use O for step in 'FREQUENCY RESPONSE' if you want the frequency to double with each step. Try some of the examples included on the disk for practice. Follow the sample run as a guide if in doubt. In general, use the order on the MENU.

DEFINITIONS

FILE = A file stored on the disk containing your network data.

FILE NAME = A name you choose to identify the network (less than 30 characters).

PART = Name of the part. Use any 4-character name starting with the proper first letter shown below: (VIN,R234,CB2,L-M,B-T1).

V... =VOLTAGE GENERATOR. It must have a R, C, or L in series in the same branch or the program will calculate infinite branch current and overflow error. The first part in your network must be the input voltage (VIN), usually 1 volt, with part 2, its source impedance (RIN) in series (with the same node numbers).

I... = CURRENT GENERATOR.

NOTE: all V... and I... sources should be listed before other parts. The program will sort them to the beginning.

R... = RESISTOR. Any 4-character name starting with "R" may be used (R1,ROEN,R234,RE1)

C... = CAPACITOR.

L... = INDUCTOR.

Page 2
B... = CURRENT CONTROLLED CURRENT GENERATOR (BETA of a transistor). Current flows to (or from) the emitter in both the base and collector of a transistor. Add a 1-ohm resistor in series with the base to sense the current if necessary.

G... = VOLTAGE CONTROLLED CURRENT GENERATOR (GM). Control part polarity: current flows to (or from) the source in both the gate and drain of a J-FET or MOS-FET. For an OP-AMP: INPUT (C-PART) - PN=+, TN= OUTPUT (G) - FN=O, TN=OUTPUT, OUTPUT 2 - FN=OUTPUT, TN=O. *NOTE* THE CONTROL PART MUST ALWAYS BE LISTED FIRST.

VALUE = PART VALUE. .1E-6 would be .1 uF. 10E6 = 10 Megohms, 6.5E-3 = 6.5 mH. (E stands for the exponent of 10.) 'O' is a legal value only for voltage sources (the source impedance limits the current).

TOL = TOLERANCE in %. 5 = 5%, 0 = 0% An absolute value can be specified by using a '-' TOL. (To specify a +/- 7 mv offset for an OP-AMP, use 'O' for VALUE and '-.007' for TOL.)

FROM = FROM-NODE. Current is assumed to flow from this node, through the part, to the TO-NODE. Ground is node zero.

TO = TO-NODE. Note that current flow is arbitrary (if you guess wrong the calculated current is negative, but the answer is right), except as specified above. In general, current flows from the highest voltage node toward ground.

C-PART= CONTROL PART. Use the name of the part that carries the control current (R-B' for a transistor or R-IN for an OP-AMP).

MIN/MAX TO %TOL

This program can be used to convert data from the MIN/MAX form to the NOMINAL +/- TOLERANCE form used in this program.

REMOVE OLD FILES

This is used to remove unwanted files from the disk.

AC CIRCUITS

Enter your name and date when requested for later printout. It is not necessary to activate the printer until after loading your circuit. Be sure to REVIEW your file with the printer on as a record of the circuit being analyzed. The printer is automatically disabled during INPUT and MENU operations.

LOAD A FILE

If you have more than one drive, always put the APPLE/CIRCUIT disk in drive 1. The number in the upper right corner during the catalog display shows the number of free sectors left on the disk. When this number is less than 20 it is time to start saving files on another disk. DC. or AC. are
preprinted for you to make sure you call for the right type of file. If you get an error message, make sure you typed in the name exactly as shown on the listing. When you have many files on a disk, the first part of the list will be shown first, and any key can be pressed to view the rest of the list. Do not enter the file name until requested. If you discover that you have the wrong disk in the drive, use 'RETURN' to go to the menu while you change disks, then repeat 'LOAD'.

NOMINAL OUTPUT

This can be used for a quick look at the performance at one frequency.

FREQUENCY RESPONSE

Input required is the lowest frequency desired, the highest frequency desired, and frequency change for each step. (An example is 1000, 3000, 100 which would start at 1000 Hz, and step in 100 Hz increments until 3000 Hz.) The program will handle a maximum of 30 steps at one time. For a quick sweep, use '0' for step size, and the program will double the frequency with each step. (Example: 20, 20000, 0) The plotting is completely automatic once you answer 'Y'. The plot uses letters to be compatible with all printers. 'D' is used for decibels, 'A' is used for phase angle, and 'X' is used where the curves cross. Repeat the response with new limits for additional detail at any frequency. If the frequency exceeds 1 MHz, 'M' will be added to the printout to show this.

WORST CASE & PART EFFECTS

This routine will check each part for its effect on the output and the effect of its tolerance. This will aid you in choosing the tight tolerances where they will do some good! A negative value indicates that the output goes up as the part value goes down. The WORST CASE shows the results if all parts go to the worst tolerance direction.

TRIAL RUN & TEST LIMITS

This is sometimes referred to as a MONTE CARLO analysis. Part values are picked at random as they would be on an assembly line, and the results summarized statistically. 10 trials are reasonable, 30 should be used for final test limit specifications. Statistics are adjusted for sample size.

OPTIMIZE A PART

A very useful routine, with this you can adjust any part in your circuit to get the exact output you want. Be sure to pick a part that has a large effect on the output as shown in the PART EFFECTS above. If your part can't be adjusted low enough, the program will call for a negative value!
DIFFERENT OUTPUT NODE

This allows you to run all of the tests on a different node in your circuit. Be sure to check the results for reasonableness, and the REVIEW FILE for errors, as this can place outputs before inputs. Use this for looking at the low-pass, band-pass, and high-pass outputs of state variable filters.

CHANGES TO CURRENT FILE

You will use this a lot. Any file errors will automatically abort to this routine. To change a part in your circuit, type in a new line starting with the same part name. That line will automatically be substituted for the original line. Refer to the EXAMPLES and use 'RETURN' after each entry to move to the next column. Use the back arrow for corrections before 'RETURN', and type a new line for later corrections. To delete a part or change the name of a part, type the old name, and use 'D' for VALUE. The program will sort all voltage and current sources to the beginning and all dependent voltage and current sources (B,G) to the end. Use 'Q' for PART to signal the end of your circuit.

MAKE A NEW FILE

The procedure is the same as above. Name your file with a short name you will recognize later. You can use 'Q' to exit the routine with an incomplete file and save it for later completion. (If there is an error when the program tries to assemble your incomplete file just abort to the menu and 'SAVE FILE ONTO DISK'.) CAUTION: Do not abort these routines during normal loading as this will interrupt circuit assembly, causing errors in computation.

SAVE FILE TO DISK

If you want to save a new version of an old file, use FILE1 or FILE2 for a name to avoid overwriting FILE. The program will warn you before overwriting a file.

DC CIRCUIT

This is similar to AC CIRCUIT, except that power supply and bias voltages are used instead of signal voltages. This is a linear program that will come up with impossible voltages if they are required to satisfy the circuit values you enter. A separate equivalent circuit should be used for saturation conditions. This program is very useful for checking amplifier bias and power supply variations.
VOLTAGES AND POWERS

With one calculation, this routine will calculate all node voltages and all part dissipations. No additional input is required.

ERROR CODES

Should you get an 'ERROR #16' or similar message, the code can be found on page 81 of the APPLESOFT reference manual and page 115 of the DOS manual. Error trapping is used to prevent you from dropping out of the program and losing valuable data before you have a chance to save it. "PART NOT FOUND" error when the part is there is likely caused by entering an extra space with the name of the part.

ABORT

'RETURN' can be used in response to most requests for input to jump to the MENU. Do not use 'RETURN' alone during data entry into a file as you may lose your data due to not completing the input routine. It can be used for a quick exit when you find yourself in the wrong routine. The program will not abort during a long calculation until the next print-out, and then only with 'ESC' to prevent accidental aborting of a long calculation with loss of valuable data. NOTE: When you 'LOAD A file, the program automatically reviews the file as it checks for errors, and then assembles the connections. Do not abort this routine or the program will error out during calculation.

MAXIMUM CIRCUIT SIZE

<table>
<thead>
<tr>
<th>A-C ANALYSIS</th>
<th>D-C ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 PARTS</td>
<td>80 PARTS</td>
</tr>
<tr>
<td>30 NODES</td>
<td>40 NODES</td>
</tr>
</tbody>
</table>

ACCURACY

During the network solution, rows and columns of the matrix are multiplied and subtracted. Thus, for maximum accuracy extremely large and extremely small values should not be used in the same circuit analysis. If a component can be neglected, then leave it out. If in doubt, try a run with and without the part. One calculation cycle may take more than six minutes on a 60 part A-C network. Both accuracy and speed are better on small circuits, so analyze smaller blocks where possible to avoid errors (both computer and operator).

PRINTER

The printer routines in this program will work automatically with the APPLE SILENTYPE or PARALLEL INTERFACE cards. It will also work with any cards that can be called with "PR#(slot)". If your printer requires another input, set it up beforehand and don't use the printer command in CIRCUIT
ANALYSIS. Since this disk must be booted to run, some printer interfaces still may not work. NOTE: This program is set up to use 40 columns on the printer so you can use the TV monitor at the same time. DO NOT CALL FOR 80 COLUMNS.
TRANSISTOR AMPLIFIER (AC.TR AMP)

```
VIN  1   0   0   1
C1  1E-6  10  0   1
R1  1000  5   1   2
RB  100   20  2   3
RE  26    10  3   0
R2  1E3   5   4   2
CCB 1E-12 10  4   2
RC  1E6   30  4   3
R3  1000  5   4   0
B   120   30  4   3
```

Page 8
NOTES

The "T" equivalent circuit used above is recommended since the input and output impedance change properly as BETA (HFE) varies (during tolerance analysis). Node #'s are shown at nodes. Arrows "v -> <-" show current flow.

2 = the base node.

3 = the internal collector-base junction.

4 = the collector node.

0 = the emitter node (ground).

RB = the base (spreading) resistance of the transistor. 100 ohms is used as a typical value. This is the control branch (current sense) for B (HFE).

RE = the equivalent resistance of the forward biased base-emitter junction. At room temperature this equals .026/IE (1 ma. assumed above).

RC = common-base output impedance, equal to 1/HOB (or HFE/HOE).

CCB = collector-base capacitance.

B = HFE, the current gain of the transistor.
OP-AMP ACTIVE FILTER (AC FILTER)

![Circuit Diagram]

PART VALUE	**TOL**	**% FROM TO C-PART**
WG 1 | 0 | 0 1
RG 1 | 0 | 0 1
RS1 10E3 | 5 | 1 2
RFB1 10E3 | 5 | 4 2
RIN1 1E6 | 5 | 3 2
R+G1 4700 | 5 | 3 0
RG1 100 | 0 | 4 0
G1 1E6 | 30 | 0 4 RIN1
RS2 10E3 | 5 | 4 5
CFB2 5.6E-9 | 5 | 8 5
RIN2 1E6 | 5 | 0 5
RG2 100 | 0 | 8 0
G2 1E3 | 30 | 0 8 RIN2
RS3 10E3 | 5 | 8 6
CFB3 5.6E-9 | 5 | 7 6
RIN3 1E6 | 5 | 0 6
RG3 100 | 0 | 7 0
G3 1E3 | 30 | 0 7 RIN3
R2-1 440E3 | 5 | 8 3
R3-1 10E3 | 5 | 7 2

NOTES

This is a three-amplifier, statevariable 3-kHz bandpass filter. The normal
output is node 8. Look at node 7 to see the low-pass response, or node 4 to see the high-pass response.
TRANSISTOR AMPLIFIER (DC.TR AMP)

\[
\begin{align*}
2 & \text{R1} \rightarrow 4 \text{R2-1} \\
2 & \text{R2} \\
0 & \\
\end{align*}
\]

\[
\begin{align*}
\text{RB} & \\
\text{RCC} & \\
\text{VBE} & \\
\text{RB} & \\
\text{RE} & \\
\text{R1} & \\
\text{R2} & \\
\text{B} & \\
\end{align*}
\]

\[
\begin{align*}
\text{VCC} & \quad 5 & 0 & 0 & 1 \\
\text{RCC} & \quad 1 & 0 & 0 & 1 \\
\text{VBE} & \quad .6 & 10 & 3 & 2 \\
\text{RB} & \quad 100 & 10 & 3 & 2 \\
\text{RE} & \quad 26 & 10 & 3 & 0 \\
\text{R1} & \quad 10E3 & 5 & 4 & 2 \\
\text{R2} & \quad 1E3 & 5 & 1 & 4 \\
\text{B} & \quad 150 & 30 & 3 & 4 \\
\end{align*}
\]

NOTES

The current flows out of the emitter node (3) to the base (2) and collector (4) to obtain the correct polarity for VBE.

1 = the supply node.
2 = the base node.
3 = the internal emitter node.
4 = the collector node.
VBE = the forward voltage of the base-emitter junction.
(Other parts are similar to AC.TR AMP.)
VOLTAGE FOLLOWER (DC. OP AMP)

```
+------|---+---|---+------|
|      |   | |   |      |
|      v   |   |   |      |
|      | 3  | 3  | 3  |      |
|      |   |   |   |      |
|      | VS | IB-| RO|      |
|      |   |   |   |      |
|      | v  | v  | v |      |
|      | 0  | 0  | 0 | 0  |
```

1-VOS-ROS→2

^ ! !
! RIN !
! ! IB+
RS v !
! 3 3 3
! ! 2 !
VS IB- ! ! RO
! ! ! G !
! ! ! v ! v

<table>
<thead>
<tr>
<th>PART VALUE</th>
<th>TO</th>
<th>FROM TO C-PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>5</td>
<td>0 0 1</td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>0 1</td>
</tr>
<tr>
<td>VOS</td>
<td>0</td>
<td>-.012 1 2</td>
</tr>
<tr>
<td>ROS</td>
<td>1</td>
<td>0 1 2</td>
</tr>
<tr>
<td>IB+</td>
<td>.25E-6</td>
<td>20 2 0</td>
</tr>
<tr>
<td>IB-</td>
<td>.25E-6</td>
<td>20 3 0</td>
</tr>
<tr>
<td>RIN</td>
<td>1E6</td>
<td>30 2 3</td>
</tr>
<tr>
<td>RO</td>
<td>100</td>
<td>0 3 0</td>
</tr>
<tr>
<td>G</td>
<td>1E3</td>
<td>30 0 3 RIN</td>
</tr>
</tbody>
</table>

NOTES

This example shows how to introduce op-amp input offset voltage and bias currents into the equivalent circuit.

- 2 = the non-inverting input.
- 3 = the inverting input (which is connected to the output 3).
- VS = the input signal voltage.
- VOS = the input offset (+/- .012 V.).
- IB = the input bias current (.25 uA.).
- RO = the output impedance.
- G = gm = (voltage gain/RO) (Voltage gain = 100,000)

Page 13
APPENDIX A - SAMPLE RUNS

APPLE/CIRCUIT 1.0
DC.TR AMP
JOHN DOE 2/16/81

<table>
<thead>
<tr>
<th>PART VALUE</th>
<th>TOL% FROM TO</th>
<th>C-PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC 5 V</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VBE 6 V</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>RCC 1 OHM</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RB 100 OHM</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>RE 26 OHM</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>R1 100000</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>R2 1000 OHM</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>B 150</td>
<td>30</td>
<td>8</td>
</tr>
</tbody>
</table>

VOLTAGES AND POWERS

1. 4.99739632
2. 6.69420045
3. 0.676957516
4. 2.39371338

(NEGATIVE POWER = SUPPLYING POWER)

PART: POWER(MW):=

<table>
<thead>
<tr>
<th>PART VALUE</th>
<th>EFFECT ON OUTPUT%</th>
<th>TOLERANCE EFFECT%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC -13.02</td>
<td>85.15</td>
<td>0</td>
</tr>
<tr>
<td>VBE 0.01</td>
<td>14.86</td>
<td>1.48</td>
</tr>
<tr>
<td>RCC -0.04</td>
<td>-0.04213939</td>
<td>0</td>
</tr>
<tr>
<td>RB 0.042894991</td>
<td>4.2894991E-03</td>
<td>0.03</td>
</tr>
<tr>
<td>RE 1.67</td>
<td>.167491225</td>
<td>2.13</td>
</tr>
<tr>
<td>R1 42.5</td>
<td>42.3</td>
<td>2.2</td>
</tr>
<tr>
<td>R2 -44.08</td>
<td>-44.17</td>
<td>-12.65</td>
</tr>
</tbody>
</table>

WORST CASE: OUTPUT VOLTS

- MINIMUM = 1.99435713
- NOMINAL = 2.39371338
- MAXIMUM = 2.90618289
- TOTAL RANGE = 911825764 (38.09 %)

TRIAL RUN & TEST LIMITS

- NUMBER OF TRIALS (10) = 10
- NOMINAL = 2.39371338 VOLTS
- AVERAGE = 2.34458921 VOLTS
- STD DEV = 0.204396026 VOLTS

- 99 PERCENT FALL WITHIN:
 - MINIMUM = 1.81724746 VOLTS
 - MAXIMUM = 2.87193096 VOLTS
PART TO BE OPTIMIZED = R1
DESIRED VOLTAGE = 2.5

PART R1 = 100000
OUTPUT VOLTAGE = 2.39371338

PART R1 = 110447.134
OUTPUT VOLTAGE = 2.49622016

PART R1 = 110849.813
OUTPUT VOLTAGE = 2.50000998

RETURN PART TO ORIGINAL VALUE (Y/N)? N

NEW OUTPUT NODE # = 3

NODE 3 IS NOW NODE 4

NODE 4 IS NOW NODE 3

PART VALUE TOL% FROM TO C-PART
------------- ------- ---- ---- ---- ----
VCC 5 V 0 0 1
VBE .6 V 10 4 2
RCC 1 OHM 0 0 1
RB 100 OHM 10 4 2
RE 26 OHM 10 4 0
R1 100000 OHM 5 3 2
R2 1000 OHM 5 1 3
B 150 30 4 3 4 RB

NUMBER OF TRIALS (10) = 10
NOMINAL = .0676957516 VOLTS
AVERAGE = .0676494753 VOLTS
STD DEV = 9.61904149E-03 VOLTS

99 PERCENT FALL WITHIN:
MINIMUM = .0428323483 VOLTS
MAXIMUM = .0924666023 VOLTS

<< END OF DC.TR AMP >>
APPLE/CIRCUIT 1.0
AC.TR AMP
JOHN DOE 2/16/81

** FILE - AC.TR AMP **

PART VALUE TOL\% FROM TO C-PART
PART EFFECT ON | TOLERANCE EFFECT %
--- | --- | ---
VIN | 100 | 0
C1 | 29.21 | 2.92
R1 | -28.53 | -1.43
R2 | -1.32 | -263662812
R3 | -41.3 | -4.13
R4 | 321.35 | 1.62
C2 | -0.978452364 | -9.28452364E-03
R3 | 0.279439104 | 8.38317311E-03
R4 | 67.95 | 3.4
B | 27.6 | 8.28

WORST CASE: OUTPUT DECIBELS PHASE-DEG
--- | --- | ---
MINIMUM | 14.1518717 | 23.02 | -143.98
NOMINAL | 18.2265718 | 25.21 | -147.23
MAXIMUM | 22.3661472 | 26.99 | -149.08
TOTAL RANGE = 45.07 % | 3.97 | 5.11

TRIAL RUN & TEST LIMITS

FREQUENCY IN HERTZ = 1000
NUMBER OF TRIALS (10) = 10
NOMINAL = 18.2265718 | 25.21 | DB
AVERAGE = 17.7997719 | 25.01 | DB
STD DEV = 1.22260462

99 PERCENT FALL WITHIN:
MINIMUM = 14.6454519 | 23.31 | DB
MAXIMUM = 20.9540918 | 26.43 | DB

Ryan Design - Page 3

PART EFFECT ON | TOLERANCE EFFECT %
--- | --- | ---
VIN | 100 | 0
C1 | 29.21 | 2.92
R1 | -28.53 | -1.43
R2 | -1.32 | -263662812
R3 | -41.3 | -4.13
R4 | 321.35 | 1.62
C2 | -0.978452364 | -9.28452364E-03
R3 | 0.279439104 | 8.38317311E-03
R4 | 67.95 | 3.4
B | 27.6 | 8.28

WORST CASE: OUTPUT DECIBELS PHASE-DEG
--- | --- | ---
MINIMUM | 14.1518717 | 23.02 | -143.98
NOMINAL | 18.2265718 | 25.21 | -147.23
MAXIMUM | 22.3661472 | 26.99 | -149.08
TOTAL RANGE = 45.07 % | 3.97 | 5.11

TRIAL RUN & TEST LIMITS

FREQUENCY IN HERTZ = 1000
NUMBER OF TRIALS (10) = 10
NOMINAL = 18.2265718 | 25.21 | DB
AVERAGE = 17.7997719 | 25.01 | DB
STD DEV = 1.22260462

99 PERCENT FALL WITHIN:
MINIMUM = 14.6454519 | 23.31 | DB
MAXIMUM = 20.9540918 | 26.43 | DB

PART TO BE OPTIMIZED | R3
PARAMETER TO BE OPTIMIZED:
(1-VOLTS, 2-DB, 3-DEGREES)= 2
DESIRED PARAMETER VALUE = 20

PART R3 | 1000
PARAM. VALUE = 25.2140998

PART R3 | 975.483234
PARAM. VALUE = 25.0664834

PART R3 | 142.405544
PARAM. VALUE = 10.9331799

PART R3 | 300.724402
PARAM. VALUE = 16.8938559

PART R3 | 422.814195
PARAM. VALUE = 19.4565468

PART R3 | 454.336918
PARAM. VALUE = 19.9805549

PART R3 | 455.563974
PARAM. VALUE = 20.0000833

RETURN PART TO ORIGINAL VALUE (Y/N)? N

<< END OF AC.TR AMP >>
APPLE/CIRCUIT 1.0

AC. TR AMP

JOHN DOE 2/16/81

<< FILE - AC. TR AMP >>

<table>
<thead>
<tr>
<th>PART</th>
<th>VALUE</th>
<th>TOL%</th>
<th>FROM</th>
<th>TO C-PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>R1</td>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>R2</td>
<td>100000</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CCB</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RC</td>
<td>1000</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>120</td>
<td>30</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<< NOMINAL OUTPUT >>

FREQUENCY IN HERTZ = 1000
VOLTAGE GAIN = 18,2265718
DECIBLES = 29,21
PHASE SHIFT DEG = -147.23

<< FREQUENCY RESPONSE >>

LOW, HIGH, STEP FREQ.= 20,20000,0

FREQ-HZ OUTPUT-VOLTS DECIBELS PHASE-DEG

20 671648071 -3.46 -91.78
40 34136437 2.55 -93.55
80 6474888 8.52 -97.07
160 2179057 14.35 -103.93
320 63357803 19.68 -116.39
640 2729095 23.68 -134.8
1280 176986 58.74 -153.34
2560 10374482 26.46 -166.06
5120 52544543 26.46 -173.24
10240 2611876 56.72 -179.2
20480 10762676 26.72 -179.2

PLOT DATA (Y/N)? Y

<table>
<thead>
<tr>
<th>FREQ-HZ</th>
<th>DECIBELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>+ A D</td>
</tr>
<tr>
<td>40</td>
<td>+ A + D</td>
</tr>
<tr>
<td>80</td>
<td>+ A + D</td>
</tr>
<tr>
<td>160</td>
<td>+ A D</td>
</tr>
<tr>
<td>320</td>
<td>A + D</td>
</tr>
<tr>
<td>640</td>
<td>A + D</td>
</tr>
<tr>
<td>1280</td>
<td>+ A D</td>
</tr>
<tr>
<td>2560</td>
<td>A D</td>
</tr>
<tr>
<td>5120</td>
<td>A D</td>
</tr>
<tr>
<td>10240</td>
<td>A D</td>
</tr>
<tr>
<td>20480</td>
<td>A D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ-HZ</th>
<th>PHASE ANGLE (DEG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-180</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>-120</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>-60</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>0</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>60</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>120</td>
<td>+ + + + + + + + +</td>
</tr>
<tr>
<td>180</td>
<td>+ + + + + + + + +</td>
</tr>
</tbody>
</table>
Frequency in Hertz = 1000

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>EFFECT ON OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>100</td>
</tr>
<tr>
<td>C1</td>
<td>29.21</td>
</tr>
<tr>
<td>R1</td>
<td>-26.53</td>
</tr>
<tr>
<td>R8</td>
<td>-1.32</td>
</tr>
<tr>
<td>R5</td>
<td>-41.93</td>
</tr>
<tr>
<td>CCB</td>
<td>-0.0928452364</td>
</tr>
<tr>
<td>RC</td>
<td>0.0279439104</td>
</tr>
<tr>
<td>R3</td>
<td>67.95</td>
</tr>
<tr>
<td>B</td>
<td>27.6</td>
</tr>
</tbody>
</table>

Tolerance:

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>EFFECT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>0</td>
</tr>
<tr>
<td>C1</td>
<td>2.92</td>
</tr>
<tr>
<td>R1</td>
<td>-1.43</td>
</tr>
<tr>
<td>R8</td>
<td>-26.3662812</td>
</tr>
<tr>
<td>R5</td>
<td>-4.13</td>
</tr>
<tr>
<td>CCB</td>
<td>1.62</td>
</tr>
<tr>
<td>RC</td>
<td>8.38317311E-03</td>
</tr>
<tr>
<td>R3</td>
<td>3.4</td>
</tr>
<tr>
<td>B</td>
<td>8.28</td>
</tr>
</tbody>
</table>

Worst Case:

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>Output Decibels</th>
<th>Phase Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>14.1518717</td>
<td>-143.98</td>
</tr>
<tr>
<td>C1</td>
<td>23.02</td>
<td>-147.23</td>
</tr>
<tr>
<td>R1</td>
<td>25.21</td>
<td>-149.08</td>
</tr>
<tr>
<td>R8</td>
<td>24.92</td>
<td>5.11</td>
</tr>
</tbody>
</table>

Total Range: 45.07 %

Frequency in Hertz = 1000

Number of Trials (10) = 10

Nominal = 18.2255718

Average = 17.4689292

Std Dev = 0.3363578

99 Percent Fall Within:

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>Output</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM</td>
<td>15.7305837</td>
<td>DB</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>19.5200008</td>
<td>DB</td>
</tr>
</tbody>
</table>

Optimize a Part

Frequency in Hertz = 1000

Part to Be Optimized = R3

Parameter to be Optimized:

1-Volts, 2=DB, 3-Degrees = 2

Desired Parameter Value = 20

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>Param Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>25.2140998</td>
</tr>
<tr>
<td>R3</td>
<td>975.483234</td>
</tr>
<tr>
<td>R3</td>
<td>142.405544</td>
</tr>
<tr>
<td>R3</td>
<td>10.9331799</td>
</tr>
<tr>
<td>R3</td>
<td>300.724402</td>
</tr>
<tr>
<td>R3</td>
<td>16.8938559</td>
</tr>
<tr>
<td>R3</td>
<td>422.814195</td>
</tr>
<tr>
<td>R3</td>
<td>19.456468</td>
</tr>
<tr>
<td>R3</td>
<td>454.336918</td>
</tr>
<tr>
<td>R3</td>
<td>19.9805549</td>
</tr>
<tr>
<td>R3</td>
<td>455.563974</td>
</tr>
<tr>
<td>R3</td>
<td>20.00000833</td>
</tr>
</tbody>
</table>

Another Try (Y/N)? N

RETURN PART TO ORIGINAL VALUE (Y/N)? Y

<< END OF AC.TR AMP >>
APPLE/CIRCUIT 1.0
DC TR AMP
JOHN DOE 2/16/81

PART VALUE	TOL% FROM TO C-PART
VCC 5 | V 0 0 1
VBE .6 | V 10 3 2
RCC 100 | OHM 0 0 1
RB 26 | OHM 10 3 0
R1 100000 | OHM 5 4 2
R2 1000 | OHM 3 1 4
E 150 | 30 3 4 RB

VOLTAGES AND POWERS

NODE: VOLTAGE:

1 4,99739632
4 669420045
3 9676957516
4 2,39371338
(NEGATIVE POWER = SUPPLYING POWER)

PART: POWER (MW,):

VCC -13.02
VBE .01
RCC <.01
RB <.01
RE .18
R1 .03
R2 6.78
E 6.02

PART EFFECTS & WORST CASE

PART NAME	EFFECT ON	TOLERANCE	EFFECT %
VCC 85.15 | 0 | 1.48
VBE 14.85 | 0 | 0
RCC -.044213939 | 0 | 0
RB 0.042894991 | 4.2894991E-03 | .167491225
RE 1.67 | 2.13
R1 42.5 | 2.12
R2 -44.08 | -12.65
B -42.17

WORST CASE: OUTPUT VOLTS

MINIMUM = 1.99435713
NOMINAL = 2.39371338
MAXIMUM = 2.99618289
TOTAL RANGE = .911825764 (38.09 %)

TRIAL RUN & TEST LIMITS

NUMBER OF TRIALS (10) = 10
NOMINAL = 2.39371338 VOLTS
AVERAGE = 2.38244119 VOLTS
STD DEV = .191639553 VOLTS
99 PERCENT FALL WITHIN:
MINIMUM = 1.888201114 VOLTS
MAXIMUM = 2.87687123 VOLTS
PART TO BE OPTIMIZED = R1
DESIRED VOLTAGE = 2.5

PART R1 = 100000
OUTPUT VOLTAGE = 2.39371338

PART R1 = 110447.134
OUTPUT VOLTAGE = 2.49622016

PART R1 = 110849.813
OUTPUT VOLTAGE = 2.50000998

ANOHER TRY (Y/N)? N

RETURN PART TO ORIGINAL VALUE (Y/N)? N

> CAUTION NODE EXCHANGE CAN CAUSE ERRORS

NEW OUTPUT NODE # = 3
NODE 3 IS NOW NODE 4

NODE 4 IS NOW NODE 3

> FILE - DC.TR AMP

<table>
<thead>
<tr>
<th>PART VALUE</th>
<th>TOL%</th>
<th>FROM</th>
<th>TO</th>
<th>C-PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC 5 V</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VBE .6 V</td>
<td></td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RCC 1 OHM</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RB 100 OHM</td>
<td></td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RE 26 OHM</td>
<td></td>
<td>10</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>R1 110849.813 OHM</td>
<td></td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>R2 1000 OHM</td>
<td></td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>B 150</td>
<td>30</td>
<td>4</td>
<td>3</td>
<td>RB</td>
</tr>
</tbody>
</table>

> TRIAL RUN & TEST LIMITS

NUMBER OF TRIALS (10) = 10
NOMINAL = .0649348008 VOLTS
AVERAGE = .064156361 VOLTS
STD DEV = 5.82386655E-03 VOLTS

99 PERCENT FALL WITHIN:
MINIMUM = .0491307853 VOLTS
MAXIMUM = .0791819367 VOLTS

> END OF DC.TR AMP
APPLE/CIRCUIT 1.0

D-C CIRCUITS

A. F. PETERIE 2/12/81

YOUR NAME: JOHN DOE
DATE: 2/16/81

APPLE/CIRCUIT 1.0

D-C CIRCUITS

JOHN DOE 2/16/81

PRINTER IS: OFF

L - LOAD FILE FROM DISK
P - PRINTER ON/OFF
R - REVIEW CURRENT FILE
V - VOLTAGES AND POWERS
W - WORST CASE & PART EFFECTS
T - TRAIL RUN & TEST LIMITS
O - OPTIMIZE A PART
D - DIFFERENT OUTPUT NODE
C - CHANGES TO CURRENT FILE
M - MAKE A NEW FILE
S - SAVE FILE ONTO DISK
Q - QUIT THIS PROGRAM

SELECT BY LETTER: L
(TO EXIT ROUTINE, PRESS 'RETURN')

<< LOAD FILE FROM DISK >>

INSERT DISK WITH DESIRED NETWORK FILE
THEN TYPE DRIVE NUMBER (1 OR 2): 2

DISK VOLUME 254

A 022 H APPLE/CIRCUIT
A 058 A COPYRIGHT 1981 BY
A 048 DAPPLE & A F PETERIE

T 002 AC TR AMP
T 003 AC FILTER
T 005 DC TR AMP
T 006 DC OP AMP
T 006 AC R61
T 008 DC R81

NAME OF FILE = DC TR AMP

=======================================

<< FILE - DC TR AMP >>

PART VALUE TOL% FROM TO C-PART
--- --- --- --- --- --- ----
VCC 5 0 0 0 1
VBE 1.6 V 10 3 2
RCC 100 OHM 0 0 1
RB 100 OHM 10 3 2
RE 26 OHM 10 3 0
R1 100000 OHM 5 4 0
R2 1000 OHM 5 4 4
B 150 30 3 4 RB

<< ASSEMBLING CONNECTIONS >>
APPLE/CIRCUIT 1.0
DC.TR AMP
JOHN DOE 2/16/81

PRINT IS: OFF

L - LOAD FILE FROM DISK
P - PRINTER ON/OFF
R - REVIEW CURRENT FILE
V - VOLTAGES AND POWERS
W - WORST CASE & PART EFFECTS
T - TRIAL RUN & TEST LIMITS
O - OPTIMIZE A PART
D - DIFFERENT OUTPUT NODE
C - CHANGES TO CURRENT FILE
M - MAKE A NEW FILE
S - SAVE FILE ONTO DISK
Q - QUIT THIS PROGRAM

SELECT BY LETTER: P
PRINT 'PROBLEM'

TURN PRINTER ON AND 'ON LINE'

IF YOU ARE NOT USING AN APPLE PRINTER INTERFACE CARD, THE PRINTER COMMANDS IN THIS PROGRAM MAY NOT WORK PROPERLY.

IF YOUR PRINTER IS 'ON LINE', AND THIS MESSAGE IS STILL HERE, THEN YOUR PRINTER CAN'T BE USED WITH THIS PROGRAM.

PUSH 'RESET' TO START AGAIN FROM THE BEGINNING AND DON'T USE THE PRINT COMMAND IN THIS PROGRAM (SORRY).

==
APPLE/CIRCUIT 1.0
DC.TR AMP
JOHN DOE 2/16/81
==
<< END OF DC.TR AMP >>
APPENDIX B - SETTING UP THE APPLE II SYSTEM

This appendix includes a list of the equipment you will need to use the Circuit Analysis Programs on your Apple II. You do not need to read all the manuals but they should be on hand to answer questions that may arise in operating the equipment (eg. how to boot the diskette).

In order to be able to provide Special Delivery Software at a lower cost the master program diskette has been copy protected and write protected. It is suggested that you put this diskette in a safe place in the event that you should need to use it following damage to the backup diskette.

The Circuit Analysis programs are written in Applesoft BASIC. To use them you will need the following equipment.

- an Apple II Plus with 48K bytes of RAM; or
- an Apple II with 48K bytes RAM and an Applesoft firmware card; or
- an Apple II with the Language System.

Plus:

- an Apple Disk II with Controller (16 sector PROMs);
- a video monitor or television.

For reference you should have on hand a copy of the following manuals:

- This Manual;
- Apple II BASIC Programming Manual (Setting up the Apple II);
- DGS Manual (How to boot the diskettes).